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Institut d’Aéronomie Spatiale de Belgique, Brussels, Belgium

M. Maksimovic
LESIA, Observatoire de Paris-Meudon, France

J. F. Lemaire
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[1] In solar wind kinetic exospheric models the exobase level is defined as the altitude
where the mean free paths of the coronal protons and electrons become larger than the
density scale height. For the region above this exobase, kinetic exospheric models have
been developed assuming that the charged particles of the solar wind move
collisionless in the gravitational, electric, and interplanetary magnetic fields, along
trajectories determined by their energy and pitch angle. In these models the exobase
was usually chosen at a radial distance of �5–10 Rs, above which the total potential
energy of the protons is a monotonic decreasing function of the radial distance.
Although these models were able to explain many characteristics of the solar wind,
they failed to reproduce the bulk velocities observed in the fast solar wind, originating
from the coronal holes, without postulating proton and electron temperatures at the
exobase in clear disagreement with recent measurements obtained with the SOHO
satellite. Moreover, since the number density is lower in the coronal holes than in the
other regions of the solar atmosphere, the altitude of the exobase is located deeper in
the corona at a radial distance �1.1–5 Rs. At these smaller radial distances, the
gravitational force is larger than the electric force acting on the protons up to a radial
distance rm. Therefore the total potential energy of the protons is first attractive
(increasing with altitude) and then repulsive (decreasing with altitude). We describe a
new exospheric model with a nonmonotonic total potential energy for the protons and
show that lowering the altitude of the exobase below the maximum of the potential
energy accelerates the solar wind protons to large velocities. Since the density is lower
in coronal holes and the exobase is at lower altitude, the solar wind bulk velocities
predicted by our new exospheric model are enhanced to values comparable to those
observed in the fast solar wind. INDEX TERMS: 2164 Interplanetary Physics: Solar wind

plasma; 2169 Interplanetary Physics: Sources of the solar wind; 7827 Space Plasma Physics: Kinetic and

MHD theory; 7511 Solar Physics, Astrophysics, and Astronomy: Coronal holes; KEYWORDS: solar wind,
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1. Introduction

[2] In solar wind kinetic exospheric models the exobase
is the altitude which separates a collision dominated region
where a fluid approximation is valid and the exosphere
where the plasma is assumed to be fully collisionless. In
the exosphere the trajectory of a charged particle is there-

fore only determined by the conservation of the total
energy

E ¼ mv 2

2
þ mfg þ ZeV rð Þ ¼ cst ð1Þ

and of the first adiabatic invariant

M ¼ mv 2 sin2 q
2B

¼ cst; ð2Þ
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provided that the guiding center approximation is valid. In
these equations, v is the velocity of the particle, m is its
mass, and Ze is its charge. fg = �MG/r is the gravitational
potential (M denotes the mass of the Sun, G denotes the
gravitational constant, and r is the radial distance) and V(r)
is the interplanetary electrostatic potential. q is the pitch
angle of the particle, i.e., the angle between the magnetic
field B(r) and the velocity vector v of the particle. For
simplicity and without loss of generality we assume that the
magnetic field lines are radial, i.e., that the angular velocity
of the Sun is zero. It has been shown by Pierrard et al.
[2001] that this simplification does not affect significantly
the distributions of densities and bulk speeds in the present
type of modelization.
[3] The correct determination of the radial profile of the

interplanetary electrostatic potential, V(r), is the key point in
all the solar wind kinetic/exospheric models. Because of
their mass, the electron tends to escape more easily from the
Sun’s gravitational field than the ions. To avoid charge
separation and currents on large scales in the exosphere, the
electrostatic potential gives therefore rise to a force which
attracts the electrons towards the Sun and repels the protons.
Actually, at the scale of the plasma Debye length, V(r) is
induced by a slight charge separation between electrons and
ions, which, apart the gravitational effect mentioned above,
is also due to magnetic forces and thermoelectric effects.
[4] For the solar wind electrons the gravitational potential

is negligible at all the radial distances in the exosphere. The
total potential energy of an electron mefg(r) � eV(r) �
� eV(r) is therefore an increasing function of the radial
distance r. For the protons, however, it is much more
complicated since the gravity cannot be neglected for those
particles. In earlier exospheric models of the solar wind
[Lemaire and Scherer, 1971a, 1973; Pierrard and Lemaire,
1996; Maksimovic et al., 1997b, 2001], the exobase level r0
was taken at such radial distance (between 5 and 10 solar
radii Rs) that the total potential energy of a proton mpfg(r) +
eV(r) is a monotonically decreasing function of r. All the
protons are submitted to a repulsive total force and are on
escaping trajectories.
[5] This latter condition is no more valid when the

exobase location is closer to the surface of the Sun, which
actually happens in the coronal holes. In that case there
appear ballistic protons, for which the total potential energy
is attractive. With such conditions, a maximum for the
proton total potential energy appears at a radial distance rm
located close to the Sun (between 1.1 and 7 Rs). Above rm the
electrostatic (repulsive) force acting on a proton becomes
larger than the gravitational (attractive) force. Indeed the
gravitational force decreases as r�2 while the outward
electric field decreases more slowly with r.
[6] As we mentioned previously, the earlier exospheric

solar wind models were developed with an exobase level
taken above rm, so that the total potential energy was always
a monotonic decreasing function of the radial distance for
the protons and a monotonic increasing function for the
electrons. Exospheric models of the solar and polar wind
have been reviewed by Lemaire and Scherer [1973], Fahr
and Shizgal [1983], and Lemaire and Pierrard [2001]. Here
we extend these exospheric models to the case where the
exobase r0 is lower than rm so that the total potential energy
of the protons is attractive below rm and repulsive above rm.

[7] The aim of this study is to show that extended
exospheric models can reproduce the main characteristics
of the fast solar wind originating in coronal holes. In the
next section we present the details of this new kinetic
exospheric model of the solar wind. The methods used to
determine the parameters of the model and to calculate the
self-consistent electrostatic potential distribution are dis-
cussed in section 3. In section 4 we present some applica-
tions showing how the solar wind can be accelerated to
higher bulk velocities when the exobase level is located
below rm. It is shown that this model explains the accel-
eration of the fast solar wind, without the need of additional
energy and momentum deposition in the corona.

2. Generalization of the Kinetic Exospheric
Models

[8] In this section we describe how to calculate the main
macroscopic quantities (density, field-aligned flux, parallel
and perpendicular pressures, and energy flux) of the protons
and electrons in the solar wind by integrating their velocity
distribution functions (VDF) for the case of a global
potential energy of the protons with a maximum at a
distance rm and an exobase level r0 located below rm. These
integrations can equivalently be performed in the velocity
space [Lemaire et Scherer, 1971b, hereafter LS71] or in the
[E, M] space [Khazanov et al., 1998]. The dimensionless
total potential energy of a particle is defined by y(r) =
mfgþZeV rð Þ

kT0
, where T0 is the plasma temperature at r0,

assumed to be identical for protons and electrons.

2.1. Exobase Level for Coronal Holes

[9] The exobase altitude r0 is usually defined as the
distance from the Sun where the Coulomb mean free path
l becomes equal to the local density scale height H:

H ¼ � d ln ne

dr

� ��1

; ð3Þ

where ne is the electron density determined from eclipse
observations as was done in the work of Lemaire and
Scherer [1971a]. For the coronal temperatures and densities
considered in this paper, the classical Spitzer’s [1962]
proton deflection mean free path is

lp � 7:2	 107
T2
p

ne
; ð4Þ

where Tp is the proton temperature (MKSA units). In the
equatorial streamers, the density is large so that r0 is
generally located between 5 and 10 solar radii and therefore
generally above rm. However, in the coronal holes the density
is lower than in the other regions of the solar corona and the
exobase is therefore located deeper into the solar corona.

2.2. Electrons

[10] For the electrons, y(r) is always monotonically
increasing with radial distance. The Lorentzian exospheric
model [Pierrard and Lemaire, 1996] has been used to take
into account the effects of the suprathermal tails observed at
large distance in the electrons VDF of the high-speed solar
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wind [Maksimovic et al., 1997b]. The electrons moving
along a magnetic field line may belong to different classes
of orbits: the escaping electrons (which have a kinetic
energy larger than the escape energy), the ballistic electrons
(which have not enough kinetic energy to escape and have a
turning point in the exobase; they fall back into the corona),
the trapped electrons (which have one magnetic mirror point
and one turning point in the exosphere; they bounce con-
tinuously up and down along a magnetic field line), and the
incoming electrons (whose VDF is assumed to be empty,
since no particles are assumed to return from the interplan-
etary space to the Sun). In Figures 1a and 1b, these four
classes of orbits are illustrated in velocity space and in the
[E, M] space, respectively.
[11] In the Lorentzian model of Pierrard and Lemaire

[1996] and Maksimovic et al. [1997b], the electron VDFs
were assumed to possess an enhanced population of supra-
thermal electrons characterized by small values of the
electrons kappa index, in agreement with the observations
[Maksimovic et al., 1997a]. In the hot equatorial regions,
the electron VDFs are closer to the Maxwellian equilibrium
corresponding to ke = 1. This Lorentzian exospheric
model rather satisfactorily accounts for the main features
of the solar wind. Nevertheless, it was unable to reproduce
the large speeds (�700–800 km/s) sometimes observed in
the high speed solar wind without postulating unreasonably
large coronal temperatures (Te = 2 	 106 K) in disagree-
ment with the recent SOHO measurements (Te � 106K,
e.g., David et al. [1998]). In the present work we show how
it is possible to reach such velocities by modifying both the

ke value and the position of the exobase r0, without the
need of excessively high coronal temperatures.

2.3. Protons in [r0, rm]

[12] The expressions of the moments of the proton VDF
have been generalized to take into account a nonmonotonic
distribution of their potential energy. Such a potential energy
has been treated by Lemaire [1976] for the case of a rotating
ion-exosphere. However, the case of the solar wind is more
complicated, since the radial distance rm cannot be
calculated analytically. Indeed, the Pannekoek-Rosseland
potential distribution considered by Lemaire [1976] is not
valid for open field lines when the plasma is not in
hydrostatic equilibrium, and the electric field has to be
calculated self-consistently by successive iterations. The
mathematical method to determine the position of the max-
imum of the proton potential, rm, is explained in section 3.
[13] The VDF of the protons is a truncated maxwellian,

like in previous exospheric models. Indeed, Maksimovic et
al. [1997b] assumed a Lorentzian VDF only for electrons
since solar wind bulk speeds are relatively insensitive to the
existence of protons suprathermal tails.
[14] From r0 to rm, y(r) is monotonically increasing with

radial distance, and we simply adapted the model described
in LS71 by setting the position of the maximum of y(r) at a
finite distance, rm, instead of at infinity. The different classes
of proton orbits are illustrated in Figures 1a and 1b.
[15] The number density n, the flux of particles F, the

parallel and perpendicular momentum flux Pk and P?,
respectively, and the energy flux parallel to the magnetic
field �, are given in Appendix A for the different classes of
particles by integrating the VDF over the appropriate
regions of the velocity space, as was done in LS71. Note
that we have modified some mathematical forms initially
introduced in this older study in order to use only the
complementary error function, erfc(x), and the Dawson’s
integral, D(x), instead of their Km(x) and Wm(x) functions.
Indeed, asymptotic expressions for the former functions can
be evaluated more precisely when their arguments are large
[Scherer, 1972], i.e., when the altitude r is close to rm. All
these procedures were carefully cross-checked with the
equivalent method developed by Khazanov et al. [1998] in

Figure 1a. Schematics of the regions in [vk, v?] space for
the case of an attractive total potential. The different classes
of particules are (1) escaping particles, (2) ballistic particles,
(3) trapped particles, and (4) incoming particles. This
situation arises for the electrons from the exobase level r0 to
1 and for the protons from r0 to rm, the radial distance
where the total potential energy of the protons has a
maximum.

Figure 1b. Same as in Figure 1a but mapped in the [E,
M] space. The different curves in Figure 1a map into
straight lines in this equivalent formulation.
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the [E-M] paradigm, using their formulae (9) to (11) and
(D2) to (D8). Note that there is a small error in their formula
(D6) that can be easily found by starting with their general
formula (9e).

2.4. Protons in [rm, 11]

[16] From rm to infinity, y(r) decreases monotonically.
Since only protons with sufficiently high energy can reach rm,
the flux of escaping particles is smaller than that used in the
earlier exosphericmodels for which the exobasewas assumed
to be located beyond rm. This is illustrated in Figure 2a
where the shaded area corresponds to escaping particles,
accelerated upwards by the repulsive potential distribution.
The unshaded area is a new empty region of velocity space
while the black region corresponds to the missing incoming
particles. Figure 2b illustrates the situation in the [E, M]
space used in the study of Khazanov et al. [1998].
[17] The calculation of the different moments of the VDF

of protons beyond rm are given in details in Appendix B.

3. Determination of the Model Values of rm, V0,
and Vm and of the Radial Distribution of the
Electrostatic Potential

[18] The moments of the VDF in the solar wind depend
on the electrostatic potential distribution V(r). In earlier

exospheric models the only unknown parameter was the
value of the electrostatic potential at the exobase V0 which
was imposed so that the flux of escaping protons is equal to
the flux of escaping electrons. Otherwise, there would be a
continuous positive charge accumulation at the base of the
corona and a continuous increase of negative charges at
large radial distances. The equilibrium value of V0 depends
on the temperature at the exobase T0 and on the value of the
kappa index ke, characterizing the hardness of the spectrum
of the suprathermal electrons.
[19] Now that the total potential energy of protons has a

maximum, we have three unknown parameters in the
model: V0 is the value of the electric potential at the
exobase, Vm is its value at rm, and rm is the altitude of

Figure 2a. Schematics of the regions in [vk, v?] space for
the case of a repulsive potential beyond rm, the radial
distance of the maximum of the proton total potential
energy. The escaping particles (5) are those which have
enough kinetic energy to overcome the maximum of the
total potential and which are not magnetically reflected. The
unshaded region (7) is an empty region and results from the
fact that not all the protons from the exobase are able to
reach rm. The incoming particles (6) are assumed to be
missing owing to presumed absence of pitch angle
scattering in the exosphere. vb is the velocity corresponding
to the intersection of the q = qm (v) and q = qM (v) curves.

Figure 2b. Same as in Figure 2a but represented in [E,
M] space.

Figure 3. The search of the critical value of rm illustrated
for the case ke = 2.5, r0 = 1.5 Rs and T0 = 1.0 	 106 K. The
three panels show, for three different values of rm, all the
possible solutions for yp, the dimensionless total potential
of the protons, that satisfy the quasi-neutrality equation. In
the top and bottom panels, the values of rm are respectively
smaller and larger than the critical value of rm for which the
solution is continuous in the whole range of altitudes
between r0 and 1. This solution is illustrated in the middle
panel for which the value of rm is close enough to ensure the
continuity of the solution.
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the maximum of the proton potential. V0 determines the
potential barrier that the electrons have to overcome in order
to reach infinity with a zero residual velocity. Vm

corresponds to the potential barrier for the protons. To
determine these three parameters simultaneously, we follow
an iterative procedure originally developed by Jockers
[1970]: fixing a value of rm, the values of V0 and Vm are
calculated by solving the electrical quasi-neutrality equation
and the zero current condition with an iterative Newton-
Raphson method.

np r ¼ rm;V0;Vm; rmð Þ ¼ ne r ¼ rm;V0ð Þ ð5Þ

Fp r ¼ rm;V0;Vm; rmð Þ ¼ Fe r ¼ rm;V0ð Þ: ð6Þ

[20] In equation (5), ne and np are the electron and proton
densities at r = rm, and in equation (6), Fe and Fp are the
field-aligned fluxes for electrons and protons at r = rm. This
approach is a generalization of the work described in
appendix 3 of Jockers [1970]. Indeed, Jockers [1970] used
Maxwellian VDF for electrons and protons while we are
using a Lorentzian VDF for the electrons. It has been
verified that when taking ke � 1, we recover the same
results as those described in his model I.

[21] For the fixed value of rm, once we have determined
the values of V0 and Vm, the radial distribution of V(r) can
be calculated by solving numerically the electrical quasi-
neutrality equation at any radial distance: ne(r) = np(r). Note
that the formulae for np(r) are different below or above rm.
For r > rm, this equation has one or three mathematical
solutions depending on the values of rm and r (see Figure 3
for an example). Obviously, the physically meaningful
solution must start from yp(rm) and continuously decrease
to infinity. Such a solution only exists for a ‘‘critical’’ value
of rm. Indeed, if rm is too small, there is a range of radial
distances above rm where no real solution exists. On the
other hand, if rm is too large, the solution is not continuous.
An example of this behaviour is given in Figure 3.

4. Radial Distribution of Solar Wind Plasma

[22] In this section we present the numerical results
obtained with the generalized model when the exobase r0
is lower than rm. We examine the effect of the model
parameters that influence most significantly the value of the
solar wind bulk velocity at large distance. The aim is to
identify for which range of values one obtains bulk
velocities observed in the high speed solar wind. These
model parameters are (1) the index ke of the Lorentzian

Figure 4. Influence of a change in the value of the kappa index ke of the electron VDF on n, the number
density, V, the electrostatic potential, and u, the bulk speed of the solar wind for the case r0 = 2.5 Rs and
T0 = 1.0 	 106 K. The total potential of the protons is given in the lower right panel and is normalized so
that it is zero at rm. The ke = 1000 curve (solid line), close to the Maxwellian case, is drawn together with
three other curves corresponding to electrons VDF characterized by more and more suprathermal
electrons: ke = 3 (dotted line), ke = 2.5 (dashed line) and ke = 2.2 (dashed-dotted line).
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electron VDF, (2) the level of the exobase r0, and (3) the
temperature at the exobase T0. In Figures 4 to 6 the plasma
density n(r), the electrostatic potential V(r), the bulk speed
u(r), and the total normalized potential of the protons yp(r)
are represented versus the radial distance up to 20 Rs. The
asymptotic bulk speed at a distance of 1 AU are reported in
Tables 1 to 3 together with the fitted values of rm, V0, and Vm.
The density at the exobase is ne = np = n0 = 3	 1010 m�3 and
was assumed identical for all models, except when we vary
the radial distance of the exobase. In that case, n0 was
calculated in order to satisfy the equality of the mean free
path of protons and the density scale height (equations (3)
and (4)), given that T0 was assumed constant.

4.1. Influence of Kappa Index Ke

[23] Let us assume that the exobase is located at a fixed
distance, r0 = 2.5 Rs and that the temperature at the exobase
is T0 = 1.0 	 106 K. We examine how the value of ke
influences the solar wind macroscopic quantities defined
above and in particular the bulk speed u(r). The values of
ke considered in Figure 4 are listed in Table 1. They include
ke = 1000, corresponding almost to the Maxwellian case
(ke = 1). The other ke indexes are compatible with Ulysses
observations [Maksimovic et al., 1997a].

[24] Figure 4 and Table 1 indicate that the lower the ke
index, the higher the bulk speed at 1 AU. This is a direct
consequence of the larger value of V0, the exobase potential,
shown in upper right panel of Figure 4. Indeed, in order to
keep equal the escape flux of protons and electrons, a higher
potential difference between the exobase and infinity is
required. This effect has already been studied and discussed
by Maksimovic et al. [1997b] but the asymptotic values of
u(r) reached here are slightly larger than in this previous
study because of the fact that the proton flux is reduced at
altitudes below rm where there are ballistic protons.

4.2. Influence of the Exobase Level r0
[25] The ke index of the electron VDF and T0, the

temperature at the exobase are fixed: ke = 2.5 and T0 = 1.0	
106 K. We examine how the bulk speed u(r) depends on the
radial distance of the exobase r0. The density at the exobase is
modified accordingly to equations (3) and (4). The values of
r0 chosen in Figure 5 are reported in Table 2 corresponding to
typical density profiles postulated in coronal holes regions
[Whitbroe, 1988; Maksimovic et al., 1997b].
[26] Figure 5 and Table 2 indicate that the electrostatic

potential difference for the electrons is very sensitive to the
position of the exobase and is over 5000 Volts when the

Figure 5. Influence of the exobase radial distance r0 on the same physical variables as in Figure 4, for
ke = 2.5 and T0 = 1.0 	 106 K. Four different values of r0 are assumed: r0 = 2.5 Rs (solid line), r0 = 2.0 Rs

(dotted line), r0 = 1.5 Rs (dashed line), and r0 = 1.1 Rs (dashed-dotted line). The density at the exobase,
n0, has been evaluated in order to satisfy equations (3) and (4). The solar wind is more strongly
accelerated and reaches larger asymptotic values at infinity when the exobase level is located deeper in
the corona.
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exobase is located below 1.1 Rs. Consequently, the solar
wind is more strongly accelerated when r0 is drastically
reduced. Observed high-speed solar wind bulk velocities are
obtained for low enough exobase levels. Indeed, the
outward proton flux is again reduced and a larger exobase
potentiel difference is required to equalize the escape fluxes
of electrons and ions.

4.3. Influence of the Exobase Temperature, T0

[27] The ke index of the electron VDF and the altitude of
the exobase are fixed: ke = 2.5 and r0 = 2.0 Rs. We examine
how the bulk speed u(r) depends on the temperature at the
exobase, T0. The results are displayed in Figure 6 and in

Table 3. It can be seen that even with an unrealistically high
temperature of 2 	 106 K at the exobase, the solar wind
bulk velocity at large distance never reaches values as high
as in the cases when the exobase altitude and/or ke are
lowered. This clearly shows that T0 is not the key parameter
leading to fast speed streams, a conclusion already claimed
by Lemaire and Scherer [1971a].

5. Summary and Perspectives

[28] In the present study we describe a new exospheric
model of the solar wind where a non monotonic radial
distribution of the proton potential energy is taken into

Figure 6. Influence of the exobase temperature T0 on the same physical variables as in Figure 4 for
ke = 2.5 and r0 = 2.0 Rs. Three values of T0 are assumed: T0 = 1.0 	 106 K (solid line), T0 = 1.5 	 106 K
(dashed line), and T0 = 2.0 	 106 K (dashed-dotted line). The solar wind velocity at large distance is not
as sensitive to the exobase temperature, T0, as it is to the exobase radial distance, r0.

Table 1. Values of rm, the Radial Distance of the Maximum Total

Potential Energy of the Protons, V0, the Exobase Electric Potential,

Vm, the Electric Potential at r = rm and u, the Solar Wind Bulk

Speed at 1 AU Obtained for Different Values of ke, the Kappa

Index of the Lorentzian VDF of Coronal Electrons, for an Exobase

Located at r0 = 2.5 Rs and an Exobase Temperature of T0 = 106 K

ke rm, Rs V0, V Vm, V u, km s�1

1000 6.690 685.7 338.1 182
5.0 4.465 947.8 723.1 277
3.0 3.677 1566.2 1411.5 439
2.5 3.476 2240.0 2110.7 565
2.2 3.370 3245.6 3133.4 713

Table 2. Values of rm, the Radial Distance of the Maximum Total

Potential Energy of the Protons, V0, the Exobase Electric Potential,

Vm, the Electric Potential at r = rm and u, the Solar Wind Bulk

Speed at 1 AU Obtained for Different Values of the Exobase Level

r0 for a Kappa Index of the Electron VDF Given by ke = 2.5 and an

Exobase Temperature of T0 = 106 K

r0, Rs rm, Rs V0, V Vm, V u, km s�1

2.5 3.476 2240.0 2110.7 565
2.0 2.797 2771.9 2608.5 624
1.5 2.089 3725.1 3506.7 718
1.1 1.510 5221.4 4926.5 848
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account. This model is based on Lorentzian (Kappa) VDFs
for the electrons and Maxwellian VDFs for the protons.
[29] The distribution of the interplanetary magnetic field

is assumed to be radial for simplicity and because a spiral
structure does not change significantly the density and bulk
speed profiles [Pierrard et al., 2001]. However, the use of a
flux tube geometry similar to the one described in Munro
and Jackson [1977] and very often used in MHD models
has not yet been introduced in our kinetic models.
[30] When the exobase level r0 is lower than rm, the radial

distance of the maximum of the proton potential energy, the
protons are in an attractive potential at low altitude (r < rm)
where they are decelerated by the dominant gravitational
field. Only the protons with high enough energy are able to
overcome the total potential barrier and will be accelerated
to supersonic velocities in the region r > rm. We have shown
that the lower the altitude of this exobase the larger the
gravitational potential barrier limiting the escape flux of
protons. Therefore the electric potential difference V0 that
keeps the escape fluxes of protons and electrons equal to
each other is enhanced. Furthermore, the polarization
electric field that maintains the electron and ion density
scale heights equal and that ensures the plasma to be quasi-
neutral, increases and strongly accelerates the solar wind to
large bulk velocities at asymptotic distances.
[31] Our new exospheric model offers a simple physical

explanation for the existence of high values of the bulk
velocities observed in the fast solar wind which is known to
originate from the coronal holes. Indeed, the density in the
coronal holes is smaller so that the exobase is low. Also, the
suprathermal electrons are overpopulated in the tails of
the VDF, as it is indeed observed in the high speed solar
wind. We have shown that an adequate combination of these
two parameters in our model leads to bulk velocities �700–
800 km/s, i.e., corresponding to the large values often
observed in the high-speed solar wind. These results are
obtained without taking unrealistic values for r0, T0 or ke. In
particular, it does not require a large temperature at the
exobase as in earlier hydrodynamics and exospheric solar
wind models since the asymptotic value of the solar wind is
not extremely sensitive to the value of T0.
[32] For simplicity, we have assumed a single exobase for

electrons and protons, which is only an approximation if the
temperatures of electrons and protons are assumed identical.
Indeed, with equal temperatures, the Coulomb mean free
path of the electrons is smaller than that of the protons since
they are related by

le ¼ 0:416
Te

Tp

� �2

lp: ð7Þ

Therefore in order to have the same exobase level for the
electrons and the protons, the electron temperature should be
1.55 times larger than the temperature of the protons. This
would increase the bulk velocity at large radial distance to
higher values. However, recent SOHO measurements indi-
cate that in the corona, the protons temperature is larger than
the electrons temperature [e.g. Esser et al., 1999]. Therefore
more protons have enough kinetic energy to overcome the
gravitational potential well and the polarization electric-field,
ensuring the quasi-neutrality of the plasma is reduced.
Consequently, the solar wind bulk speed is reduced by�20–
40 km s�1 depending on the conditions chosen at the
exobase. The case of multiple exobases for the different
species is a rather complicated mathemical problem and has
been solved by Brandt and Cassinelli [1966] only for the
simplest case of a Pannekoek-Rosseland polarization electric
field. Finally, note that if we assume Tpk > Tp? at the exobase,
the bulk velocity would also increase to higher values.
[33] The main goal of this paper was to show that in the

framework of this extended exospheric model of the solar
wind, collisionless kinetic theory is able to reproduce the
large bulk velocities observed in the fast solar wind, without
ad hoc assumptions of hydrodynamical/fluid models about
the rate of additional coronal heating and momentum trans-
fer by wave-particle interactions.

Appendix A: Formulae for Protons Below rm

[34] Since the gravitational and the electric forces balance
each other at the radial distance rm, we have to modify
several parameters in the model of LS71:

V 2
1 rð Þ ¼ ym � y rð Þ

X 2 rð Þ ¼ ym � y rð Þ � m� 1

m� h
ym � y0ð Þ;

where h = B(r)/B(r0) and m = B(r)/B(rm); ym and y0 are the
dimensionless total potential of the protons rm and r0,
respectively. With these definitions, V1

2 (r) represents the
minimum dimensionless energy that a proton at the altitude
r should have in order to escape from the gravitational
potential well. X 2(r) is a dimensionless variable equal to 0
at r0 and at rm.

A1. Ballistic Protons

nb rð Þ ¼ n0 exp �qð Þ
�
1� erfc V1ð Þ � A 1� erfc

Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� �� �

� 2ffiffiffi
p

p B exp
V 2
1

m� 1

� �
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��

� exp
X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ���
ðA1Þ

Fb rð Þ ¼ 0 ðA2Þ

Pb
k rð Þ ¼ nb rð ÞkT0 þ n0kT0 exp �qð Þ

� hA 1� erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� ���

� 2ffiffiffi
p

p Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p exp
�X 2

1� h

� ��

þ mB
2ffiffiffi
p

p exp
V 2
1

m� 1

� ��
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �
þ V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �

� exp
X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��
þ Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

���
ðA3Þ

Table 3. Values of rm, the Radial Distance of the Maximum Total

Potential Energy of the Protons, V0, the Exobase Electric Potential,

Vm, the Electric Potential at r = rm and u, the Solar Wind Bulk

Speed at 1 UA Obtained for Different Values of the Exobase

Temperature T0 for a Kappa Index of the Electron VDF Given by

ke = 2.5 and an Exobase Level of r0 = 2.0 Rs

T0, K rm, Rs V0, V Vm, V u, km s�1

1.0 	 106 2.797 2771.9 2608.5 624
1.3 	 106 2.775 2809.4 2648.3 635
1.5 	 106 2.750 2860.2 2701.0 646
2.0 	 106 2.667 3037.4 2884.4 680
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Pb
? rð Þ ¼ Pb

k rð Þ � n0kT0 exp �qð Þ hq
1� h

A 1� erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� �� ��

þ 2ffiffiffi
p

p mV 2
1

m� 1
B exp

V 2
1

m� 1

� ��
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �

� exp
X 2ffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
� �

D Xffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
� ���

ðA4Þ

�b rð Þ ¼ 0: ðA5Þ

A2. Escaping Protons

ne rð Þ ¼ n0

2
exp �qð Þ

�
erfc V1ð Þ � A erfc

Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� �

þ 2ffiffiffi
p

p B exp
V 2
1

m� 1

� �
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��
� exp

X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ���
ðA6Þ

Fe rð Þ ¼ n0

4

ffiffiffiffiffiffiffiffiffiffi
8kT0

mp

r �
m exp �qmð Þþ h� mð Þ exp �qm

1� hm

� ��
ðA7Þ

Pe
k rð Þ ¼ 1

2
ne rð ÞkT0 þ 1

2
n0kT0 exp �qð Þ

� hA erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� ���

þ 1ffiffiffi
p

p Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p exp
�X 2

1� h

� ��

� mBffiffiffi
p

p exp
X 2

m� 1

� ��
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �
� Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �

� exp
�V 2

1
m� 1

� �
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��
� V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

���
ðA8Þ

Pe
? rð Þ ¼ Pe

k rð Þ þ 1

2
n0kT0 exp �qð Þ h q

1� h
A erfc

Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� ��

� 2ffiffiffi
p

p mV 2
1

m� 1
B exp

V 2
1

m� 1

� ��
D V1ffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �

� exp
X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ���
ðA9Þ

�e rð Þ ¼ n0

4

ffiffiffiffiffiffiffiffiffiffi
8kT0

pm

r
kT0 exp �qmð Þ

�
m 2þ qm � qð Þ

� exp
�hm qm

1� hm

� �
2� qð Þ½ m� hð Þ þ m qm:�

�
ðA10Þ

A3. Trapped Protons

nt rð Þ ¼ n0 exp �qð Þ A 1� erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� �� ��

� 2ffiffiffi
p

p B exp
X 2

m� 1

� �
D
�

Xffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
��

ðA11Þ

Ft rð Þ ¼ 0 ðA12Þ

Pt
k rð Þ ¼ nt rð ÞkT0 � n0kT0 exp �qð Þ

� hA 1� erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� ���

� 2ffiffiffi
p

p Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p exp
�X 2

1� h

� ��

� 2ffiffiffi
p

p mB exp
X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� �
� Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��
ðA13Þ

Pt
? rð Þ ¼ Pt

k rð Þ þ n0kT0 exp �qð Þ h q
1� h

A 1� erfc
Xffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� �� ��

� 2ffiffiffi
p

p mV 2
1

m� 1
B exp

X 2

m� 1

� �
D Xffiffiffiffiffiffiffiffiffiffiffi

m� 1
p

� ��
ðA14Þ

�t rð Þ ¼ 0: ðA15Þ

[35] The definition of the complementary error function
and Dawson’s integral are

erfc xð Þ ¼ 2ffiffiffi
p

p
Z 1

x

exp �t2

 �

dt

D xð Þ ¼ exp �x2

 � Z x

0

exp t2

 �

dt

[36] These functions are related to the Km(x) and Wm(x)
functions introduced in LS71 by the following relations:

Km xð Þ ¼ 1

2
m� 1ð Þ Km�2 xð Þ � xm�1ffiffiffi

p
p exp �x2


 �
K0 xð Þ ¼ 1� erfcðxÞ

K1 xð Þ ¼ 1ffiffiffi
p

p 1� exp �x2

 �� 


Wm xð Þ ¼ xm�1ffiffiffi
p

p exp x2

 �

� 1

2
m� 1ð Þ Wm�2 xð Þ

W0 xð Þ ¼ 2ffiffiffi
p

p exp x2

 �

D xð Þ

W1 xð Þ ¼ 1ffiffiffi
p

p exp x2

 �

� 1:
� 


[37] Moreover, for convenience, the following dimen-
sionless variables have also been introduced:

q ¼ y� y0 qm ¼ ym � y0

A ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
exp � h q

1� h

� �
B ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� m

p
exp � mV 2

1
m� 1

� �
:

Appendix B: Formulae for Protons Beyond rm

[38] To calculate the moments of the escaping particles
above rm, we integrate the VDF of the protons over a
domain of velocity space defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m � v2y

q
;1

h i
0; qM½ �;

from which we remove the new empty domain defined by

vb;1½ � qm; qM½ �:

[39] These limits of the velocity space are defined in polar
coordinates. vb corresponds to the intersection of hyperbolae
qM and qm illustrated in Figure 2.
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[40] The following definitions have been used:

sin2 qM ¼ m 1� ym � y
V 2

� �

sin2 qm ¼ h 1þ y� y0

V 2

� �

V 2 ¼ mv2

2kT
V 2
y ¼ y

V 2
m ¼ ym V 2

b ¼ qm

1� hm
� q

hm ¼ B rmð Þ=B r0ð Þ:

[41] Unlike in the article of Lemaire [1976], the math-
ematical expressions for the moments of the protons VDF
are formulated in terms of the complementary error function
and Dawson’s integral. It has been checked that these
expressions are consistent with formulae (18), (30) and (31)
of Lemaire [1976] and with the general formulae (7)–(9) of
Khazanov et al. [1998].

n rð Þ ¼ 1

2
n0 exp �qð Þ erfc V 0

M


 �
� A erfc YMð Þ

n
� B0 erfc X 0

M


 �
� erfc XMð Þ


 �o
ðB1Þ

F rð Þ ¼ n0

4

ffiffiffiffiffiffiffiffiffiffi
8kT0

mp

r �
m exp �qmð Þ þ h� mð Þ exp �qm

1� hm

� ��
ðB2Þ

Pk rð Þ ¼ n rð ÞkT0 þ
1

2
n0kT0 exp �qð Þ

� hA erfc YMð Þ þ 2ffiffiffi
p

p YM

��
exp �Y 2

M


 ��

� mB0
��

erfc XMð Þ þ 2ffiffiffi
p

p XM exp �X 2
M


 ��

� erfc X 0
M


 �
þ 2ffiffiffi

p
p X 0

M

�
exp �X 0 2

M


 ��#)
ðB3Þ

P? rð Þ ¼ Pk � n0kT0 exp �qð Þ

�
(

h q
1� h

A erfc YMð Þ � mV 0 2
M

1� m
:B0 erfc X 0

M


 �
� erfc XMð Þ

� 
)
ðB4Þ

� rð Þ ¼ n0

4
kT0

8kT0

mp

� �1=2

exp �qmð Þ
�
m 2þ qm � qð Þ:

� exp
�hm qm

1� hm

� �
2� qð Þ½ m� hð Þ þ m qm�;

�
ðB5Þ

where the following variables are defined according to
Lemaire’s [1976] work by

V 0 2
M ¼ qm � q ðB6Þ

Y 2
M ¼ qm

1� hm
� q

1� h
ðB7Þ

X 2
M ¼ qm � q

1� m
þ hmqm
1� hm

ðB8Þ

X 02
M ¼ qm � q

1� m
: ðB9Þ

[42] These variables are related to those defined above for
the case r < rm by

V 0
M ¼ V1

Y 2
M ¼ X 2

1� h

X 2
M ¼ X 2

1� m

X 02
M ¼ V 2

1
1� m

:

[43] Note that we have introduced in equations (B1)–(B5)
the parameter B0 =

ffiffiffiffiffiffiffiffiffiffiffi
1� m

p
exp


 �mðq�qmÞ
1�m

�
instead of the

parameter B, defined for the case r < rm, since at altitudes
above rm, the variable m becomes larger than 1.
[44] When r = rm, it can be verified that h = hm, m = 1, q =

qm, n
b = nt = 0, and the mathematical expression for the

number density of the escaping particles, given by formulae
(A6) and (B1), are continuous at rm. The other moments and
their first derivatives are also continuous at r = rm.
[45] Note that all these expressions have been normal-

ized so that n0 corresponds to the actual density at the
exobase.
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