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Minimum Variance Analysis

In the following, we outline the theory behind minimum variance analysis of the magnetic field
(MVAB) and present a step-by-step example using Cluster data. The theory section is partly based on
Sonnerup and Scheible (1998).

1.1 Theory

In this context, the main purpose of minimum variance analysis (MVA) is to find an estimate of the
orientation of a nearly one-dimensional discontinuity such as acurrent sheet or wave front. In Figure
1.1, this means that we have to find the unit vectors of the yet unknown coordinate system zyz. The
orientation of the discontinuity is uniquely described by its normal, i.e., the unit vector along z.

Concider first the ideal one-dimensional discontinuity in Figure 1.1a). For this case, the expression
of divergence can be expressed

0B,
V:-B=—=0 1.1
% (1.1)
Similarly, Faraday’s law reduces to
0B 0B,
E=--—_=_2"= 1.2
VX ot o (1.2)

The magnetic field along the z-direction, which is the sought after estamate of the normal direction, thus
have no variance, either temporal or spatial.

For real cases, as illustrated in Figure 1.1b), there will alost always be deviation from this simple
model, either due to internal structures in the discontinuity, or due to time variations. In practice, one
therefore has to find the direction with minimum variance in the magnetic field. For a case with N
discrete measurmenets, this implies a minimization of the following residue

é\\ 4

Figure 1.1: Left : ideal 1-D discontinuity. Right : realistic nearly 1-D discontinuity. The sought-after
orientation is described by the normal vector, n.
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where N is the number of samples, B(¥ means sample number i, and the brackets () denote an ensemble
average.

Differention with respect to n = [n,,ny,n.] yields three linear equations

0 2 .12
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where A is a so-called Lagrange multiplier (which here describe the actual variance along each direction)
used to impose the constraint |n| = 1.

After differentiation, these three equations can be written on matrix form :

3

> (BiBj) = (Bi)(Bj)) n; = An; (1.5)

i=1

It is seen that the A values are eigenvalues, and n; are eigenvectors of the covariance matrix Q =
(BiBj) — (Bi){(B;).

Minimum variance analysis of the magnetic field thus consist of finding the eigenvalues and eigenvec-
tors of the covariance matrix Q. The eigenvector corresponding to the lowest eigenvalue (= minimum
variance) is an estimate of the normal direction of the discontinuity.

The ratio between the eigenvalue indicate how well the components of the new coordinate system are
resolved. Three distinct eigenvalues (A; <« A2 <« Ag) are desirable, but not always achieved. The ratio
A2/A1 is often used as a quality estimate of MVA, but a large eigenvalue ratio does not necessarily mean
a correct normal estimation.

1.2 Step-by-step example

In order to illustrate step-by-step how MVAB can be applied to fin a boundary normal, we will use
data from the Cluster C2 spacecraft during a magnetopause crossing on 5 July, 2001. This event has
been described in detail by Haaland et al. (2004), and also carefully examined by Hasegawa et al. (2004)
who reconstructed the topology, and by Sonnerup et al. (2004) who used is as a bechmark data. The
data are given in a GSE coordinate system, so eigenvectors and the orientation of the discontinuity will
also be expressed in GSE coordinates.

Figure 1.2 shows an overview of the magnetic field for this event. We will use 17 samples of magnetic
field data from Cluster C2 (red line) for the time interval 06:23:20 to 06:24:25 to illustrate the use of
MVA.

The 17 individual B-field vectors, here presented as a 3x17 matrix in a GSE coordinate system and
truncated to two digits, are:
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Figure 1.2: Magnetic field during a Cluster magnetopause crossing on 5 July 2005. Data from C2 (red
line) during the shaded time interval will used to illustrate minimum variance.

[ 3141 20.72 —8.49}
3118 2062 —9.21
29.76  18.33  —5.18
3141 2012 —9.70
30.55 19.86 —11.89
30.89 17.93 —13.06
2223 1383 —17.54
16.20 12.65 —19.42

B'=| 1335 992 —2165 (1.6)
2.66 230 —25.19
238 452 —28.04
—8.57 —7.00 —30.60
—6.13 —5.43 —32.90
—6.97 —4.44 —31.55
—6.98 —246 —32.04
—1234 -3.16 -32.31

| —11.60 —4.38 —32.75J

1.2.1 Step 1 - removing the sample mean

It is convenient to remove the sample means from of the input variables in the data matrices. Most
of the methods we will introduce in this chapter assume zero mean or automatically removes the mean.
There is no loss of generality in doing this, as the variance of a time series does not cange by adding a
constant. The sample mean of our magnetic field, b; is simply the mean of the individual columns in
our data matrix B’

1 X
b = ¥ ;bij (1.7)

The means of each column in our data matrix B’, i.e., the means of B., B!, and B, are:



(ny=1[ 11.1475 7.8791 —21.2701 ] (1.8)

and the resulting matrix B with the sample mean removed becomes:

20.258  12.842  12.778 ]
20.030  12.743  12.058
18.616  10.456  16.095
20.267  12.243  11.570
19.403  11.985  9.371
19.749  10.058  8.206
11.088 5956  3.723
5151 4778 1.845
B= 2206  2.042 —0.380 (1.9)
—8479 5574 —3.928
—8.766 —3.353 —6.778
~19.724 —14.881 —9.333
—17.284 —13.317 —11.635
~18.126 —12.328 —10.289
~18.135 —10.346 —10.778
—23.495 —11.044 —11.045
| 22756 —12.263 —11.481

1.2.2 Step 2 - obtaining the covariance matrix

Th covariance between two time series or data sets (with zero mean) is defined as

1 N
Gij = o > whitk (1.10)
k=1
which is equivalent to
Q=B"B/N (1.11)

where NN is the number of observations (here 17) and the superscript 7 means transpose. The covariance
matrix Q = (B;Bj) — (B;)(B;), thus becomes :

[297.269 178.502 165.233'|
Q= 178502 109.784  99.550 (1.12)
[ 165233 99.550  96.109 J

1.2.3 Step 2 - eigenvalues and eigenvectors

With the covariance matrix known, we can now compute the eigenvalues, A; by solving the charac-
teristic equation :

Q- A =0 (1.13)

where I is the identity matrix. The resulting eigenvalues, listed in decreasing order are A; = 497.79,
A2 = 3.50 and A3 = 1.87. The corresponding eigenvectors, are the rows of the matrix

[—0.77161 —0.46605 —0.43291-|
= 0.29021  0.34768 —0.89157J (1.14)

A=
[ 0.56603 —0.81358 —0.13302



In the above matrix, the eigenvectors are orthonormal, i.e., perpendicular to each other, and normalized
so that |a;] = 1. The eigenvector associated with the smallest eigenvalue gives an estimate of the boundary
normal, n = [0.56603, —0.81358, —0.13302], of the magnetopause, while the other two eigenvectors define
the tangential plane of the magnetopause. The eigenvalue ratio serve as a measure of the uncertainty in
the direction of the eigenvectors (Sonnerup and Scheible, 1998).

For any eigenvalue problem like the one in Equation (1.13), the sense of the first eigenvector is
undetermined and can be chosen by the user (or by the software package used !). The direction of the
eigenvector is therefore arbitrary, and different software packages may therfore return different signs of
the eigenvectors.

Step 3 - principal components

The eigenvector matrix (Equation 1.14) can now be used to rotate the original data set into a new,
orthogonal principal component coordinate system.

Y = BA (1.15)

In the resulting matrix, Y, has the same units and average as the original input matrix B, but three
components are sorted now after variance. Since the largest eigenvalue was significantly larger than the
intermediate and minimum eigenvalues, most of the variance and thus information of the magnetic field
is now collected in one component. This is often the case for nearly one-dimensional discontinuities, and
will be utilized in the next chapter.

1.3 Adding Q-matrices

So far, only measurements from one spacecraft were used. If one assumes that the all four spacecraft
traverses the same discontinuity, it is possible to combine information from two or more spacecraft. This
is done by adding a set of suitable weighted and normalized covariance matrices from each spacecraft, and
then calculate the eigenvalues and eigenvectors of the combined matrix. The weighting and normalization
of the individual Q-matrix is not unique, but it is desireable to put more emphasis on results where the
eigenvalues are well separated, for example by multiplying each individual covariance matrix with the
before mentioned eigenvalue ratio; w*) = )\gk) / )\§k), where the index & denotes the spacecraft.

A composite matrix with weights, wy, for each method, can thus be expressed

k=K
Qcom,; = Y wPQl (1.16)
k=1
As with a single Q-matrix, the composite normal of the discontinuity is now given by the composite
eigenvector corresponding to the smallest eigenvalue.
Similarly, it is also possible to combine different methods, e.g. MVAB and other variance methods
(see e.g. Sonnerup et al., 2004; Sonnerup et al., 2006; Haaland et al., 2006).



1.4 Exercises

Datasets for the exercises are available on www.issi.unibe.ch/~haaland/Sinaia07/ (or given alterna-
tive URL).

1) Do a minimum variance analysis of the magnetic field data from Cluster SC2 from 5 July 2001.
What is the orientation of the boundary normal ?

2) Swap the first and last record and redo the the analysis. What happens to the variance analysis?
2) Remove the first and last sample of the data matrix (Equation 1.6), and redo the analysis.

3) Do a deHoffmann-Teller analysis of the data. What is the velocity of the boundary along the normal?
Is there any difference between the data from Spacecraft SC1 and SC37?

4) Construct a Walen plot of the datasets from SC1 and SC2 (tip : calculate the Alfven velocity, VA,
plot this component by component versus the quantity (VHT - V)). Is there any difference between SC1
and SC2 7

5) Fetch the magnetic field data from all four spacecraft, do a minimum variance analysis of each space-
craft for the time interval 06:23:00 - 06:24:40. Thereafter, combine the matrices as described in Section
1.3. What is the composite normal ?
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Multispacecraft Discontinuity Analysis

In this chapter we present a simple method to derive orientation and speed of a discontinuity from
simultaneous measurements of a field or plasma quantity from four spacecraft.

2.1 Theory

Four spacecraft timing methods utilize the fact that a single common feature of a discontinuity can
be identified at four different locations at different (or sometimes simultaneous) times when crossing
the discontinuity. Identifying the common feature and timetagging this at each of the four spacecraft is
therefore an essential element of timing methods. Additional information, for example the duration of a
crossing can give valuable information about any evolution or acceleration of the discontinuity.

2.1.1 Crossing times and duration

Crossing times and durations can in principle be derived from any measured quantity provided that
the time resolution is sufficient. Experience with Cluster suggest that the magnetic field or density
proxies from the EFW instruments provide the best results. Timing and duration from the magnetic
field are often easier to estimate if the measurements are rotated into a maximum variance coordinate
system. A common coordinate system for all four spacecraft may be used (see Section 1.3), but this is
not critical since the direction of the maximum variance component is typically well determined.

Figure 2.1: Idealized magnetic field (or density) profile across a discontinuity, and one possible definition
of crossing time, to, and crossing duration, 27. With a known velocily, Va(t), of the discontinuity, the
thickness, dq is given by 27 * Vup(t). After Paschmann et al. (2005)

For many discontinuities, the maximum variance component, B, of the magnetic field resemble
a Harris sheet like profile; Bia.(t) = f(t) x tanh(t/27) (see e.g., Haaland et al., 2004; Paschmann
et al., 2005; Thompson et al., 2005). For such cases, a natural definition of crossing time, denoted ¢y in
Figure 2.1, is the time where f(¢) has reached 50% of its extremal value. Also, the hyperbolic tangent
curve representing a Harris sheet has the property that 76% of the total change, Af(t) occurs within
the characteristic time interval 2.
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Crossing times, t. (¢=0,1,2,3), for each crossing is here defined as the time where measured quantity
f(t) crosses the zero line. This definition of crossing time is not unique; as the multi-spacecraft methods
rely on relative timing only, any distinct feature observed by all spacecraft can be used for timing.

2.1.2 Velocity and orientation

With relative spacecraft separation vectors, rj, and crossing times known, the boundary normal, n
and velocity along this normal, V,, can be found from :

(V(ti —to))-n=(ri —10) ' m (2.1)

Given four spacecraft, the velocity and normal can thus be solved from

IR U I I
rs —Ig . Vi ny = t2 — tO (2.2)

[ro-ro ] Velnl] Lti-n ]
Which can be solved for i/V},, e.g., by multiplying from left with the inverted separation distance matrix.
In the above method, the velocity of the discontinuity is assumed to be constant and equal at all four
spacecraft. Differences in crossing duration between the spacecraft are attributed to different thicknesses.

Variants of the above method which take non-constant motion into account have been presented by
Haaland et al. (2004) and Paschmann et al. (2005).

2.1.3 Classification

Discontinuities are often classified as a tangential discontinuity (TD) or rotational discontinuities
(RD). The difference is illustrated in Figure 2.2.

A tangential discontinuity separate two different plasma regions. There is no mixing of the two plasma
regimes, and they may even have two different compositions. A TD is thus classified by zero plasma
flow across (ignoring diffusion, there is no flow component along the normal), zero normal magnetic field
component, and constant total pressure, p = pg + p, across the discontinuity.

A rotational discontinuity (RD), on the other hand, may have a finite normal component, but since
RDs are Alfvenic, the magnetic field changes should be correlated with changes in the plasma flow.

TD - tangential discontinuity RD - rotational discontinuity

Yy

Figure 2.2: Left: Example of a tangential discontinuity (TD). There is no magnetic field along the
normal component, nor any plasma transport across the discontinuity. Right: Illustration of a rotational
discontinuity (RD). There is a finite magnetic field component along the normal and plasma flow acros
the boundary.

Y
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There have been attempts to classify solar wind discontinuities as RDs or TDs based on the mag-
netic field alone (see e.g., Knetter et al., 2004, and references therein), but the success of such methods
inherently depend on the ability to establish the true normal of the discontinuity, and there are am-
biguous cases where no classifications can be done. Still, if a reliable normal has been established, a
significant normal magnetic field component may indicate a rotational discontinuity and the presence
of reconnection. Signatures of reconnection, e.g., plasma acceleration may provide further support for
reconnection.

A more reliable method, which utilizes plasma data, is the so-called Walén test (e.g., Sonnerup et al.,
1995; Khrabrov and Sonnerup, 1998). This consists of plotting the plasma bulk velocity components
measured during a discontinuity crossing (after tansformation into a suitable frame, co-moving with the
discontinuity - typically the deHoffmann-Teller (HT) frame), against the corresponding components of
the measured Alfvén velocities. The results are characterized in terms of the slope, a and correlation
coefficients between (V — V) and Va. A poor correlation or slopes close to 0 indicate tangential
discontinuity, whereas RDs should ideally have a slope close to 1.

2.2 Example

As a step-by-step example, we will use the same set of measurements as in the previous chapter.
Figure 1.2 shows the maximum variance component of the magnetic field for this event.

Cluster Magnetic Field

Bmax [nT]

-20

-30

0622:30 0623:00 0623:30 062400 0624:30 0625:00 0625:30

Figure 2.3: Mazimum variance component of the data set from Figure 1.2. The dashed lines show the
corresponding Harris sheet fit results.

Spacecraft positions are found in the Cluster auxillary data, and are normally available at one record
per minute. The crossing used for this example, takes place around 06:23 UT and the separation dis-
tances (in km GSE) relative to spacecraft C4 (separation distance rg) are :

ri—to= | 1669.3 1621.7 12804 |
rp—To= | —387.4 1579.3 12241 | (2.3)
rs—To= | 7247 25134 —400.6 |

Examination of Figure 2.3 shows that the spacecraft C1, C2 and C3 crosses 6.7, 33.5 and 44.4 seconds,
respectively, after spacecraft C4. Inserted into Equation 2.4, we get :

—1

1 Ny 1669.3 1621.7 1280.4 6.7
vo| ™| = —387.4 1579.3 1224.1 33.5 (2.4)
" on, 724.7 25134 —400.6 44.4

Which gives a normal n = [—0.53208,0.83282, —0.15265] and a velocity V,, = 39.3 km/s.

13



2.3 Exercises

Datasets for the exercises are available on www.issi.unibe.ch/~haaland/Sinaia07/ (or given alterna-
tive URL).

1) Estimate the duration of each crossing, and calculate the thickness and orientation of the magne-
topause using the 4-SC timing method.

2) Redo the timing analysis with plasma density data. Try to explain any differences in orientation,
speed and thickness.

14



Gradient Methods

An unique property of the Cluster mission is the ability to determine full three dimensional gradients.
In this chapter we show how this can be used to determine electric current density from the curlometer
technique. Parts of this text is based on Dunlop et al. (1989)

3.1 Theory

Determining the electic current is perhaps the most useful utilization of Cluster’s gradient capabilities,
but there are also other useful applications, such as checking a vector for divergence, or finding the
gradient of a scalar or vector.

\b-b

Az

Ax ¢ 1

Figure 3.1: Illustration of the Cluster tetrahedron.

3.1.1 The curlometer

The curlometer technique utilizes Amperes law and magnetic field :

V x B = pod (3.1)

where J is the sought after current density. In component form, this is the same as :

_ 9By, _ 9B.

J“” - 0z oy
_ OB, _ 0Ba.

Yy T oz 0z (32)
_ 0B, _ 9By

JZ - Oy Ox
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Assuming a linear variation of the field within the spacecraft tetrahedron, Equation 3.3 can be written

J, =A2Bs _AB.
T T Az Ay
_ AB. _ AB,

Jy - Az Az (33)
J. _ AB, _ AB,
2 T Ay Az

where Az, Ay and Az are determined from the spacecraft separation distance as illustrated in Figure
3.1, and the AB’s are the corresponding average change in B-field.

Given the fact that the Cluster tetrahedron is not always of the regular shape illustrated in Figure
3.1, it is often useful to introduce a formalism independent on geometry and coordinate system. This is
obtained by concidering the integral form of Ampéres law :

,uo/J-dS:/B-dl (3.4)
The surface S with corners i, j, k (i,j,k=1,2,3,4) in Figure 3.1, is given by :

1
§|AR‘” X ARjk| i,j,k‘ = 1,2,3,4 (35)

where Ry; is the spacecraft separation vector betwen spacecraft ¢ and j.
Once again, assuming linear variation of the B-field, the line integral on the right hand side of
Equation (3.7), can be expressed :

where the averages, (B);; = 1/2(B; + B;). Equation (3.7) can thus be expressed :
u0J|ARﬂ X ARjk| =2 (<B>” . AR” + <B>zk AR, + <B>jk . AR]k) i,5,k=1,2,3,4 (37)

By using spacecraft 4 as a reference spacecraft, and denoting AR; as the relative separation distance for
spacecraft i, and AB; as the relative magnetic field difference, the above equations can be simplified to :

/L()J . (ARZ X AR]) = (SBZ . AR] — AB] . ARZ Z,] = 1,2,3 (38)

where J is the average electric current in the tetrahedron.

3.2 Example - determing current density

Since the calculations presented here assume linear variaation of the field within the Cluster tetrahe-
dron, gradient methods usually only work for small spacecraft separation distances. The example event
used in the previous chapters had spacecraft separation distances in the order of 1000 km, and thus can
not be used to illustrate use of the curlometer.

Figure 3.2 shows an example of the curlometer method to a magnetopause crossing around on 2
March, 2002. During this period, the spacecraft separation was about 100 km, and as seen from the
Figure, all four spacecraft are inside the current sheet for a period. The linear approximation should
thus be satisfied.
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FGM Magnetic field

J [uAm?]

\
~71

i
1 \T‘\‘\Cﬂ :

—

Error estimate (O« B/ [0 xBJ|)

0EL E
0330:51 0330:57 0331:03 0331:10 0331:16 0331:22 0331:29

Figure 3.2: Magnetopause orientation and velocity during a Cluster crossing of the dayside magnetopause
around 03:30 UT on 2 March, 2002. Top three panels : Bx, By and Bz GSE components from each
spacecraft. Panel 4: Current density Jx (black), Jy (red) and Jz (green) GSE components. Bottom panel
Error estimate, here expressed as percentage of V - B/|V x B|.

3.3 Exercises

Datasets for the exercises are available on www.issi.unibe.ch/~haaland/Sinaia07 (or given alternative
URL).

1) For each spacecraft, perform a minimum variance analysis of the magnetic field in Figure 3.2. Do the
orientations obtained differ a lot 7

2) Difficult : Try using the reciprocal vector routines provided earlier and calculate the current (i.e.
curl B).
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