6th COSPAR Capacity Building Workshop
Sinaia, 4-16 June 2007
Joachim Vogt

Basic Analysis Techniques
& Multi-Spacecraft Data
— Computer Session —

Sheet 1 5 June 2007

1 Getting started with IDL

Follow the instructions to learn how to use IDL and to invoke basic features. Note that this
guide is not meant to be used without further reference. If you have questions, please consult
the IDL help system or ask the instructor.

1.1 Preparations

Log into the Linux PC. If you do not have an account of your own, go to the workshop directory
and create a subdirectory where you can store your files without interfering with other workshop
participants.

Linux> mkdir your_name

Linux> cd your_name

All the sample program files can be found in the subdirectory
ComputerSessions/BasicAnalysisTechniques_Vogt/exl/ of the |workshop web page di-
rector,

Start IDL, first option: line mode.

Linux> idl

IDL> (waiting for input)

Note that IDL programs, functions and procedures can be conveniently edited in xemacs
IDLWAVE mode.

Linux> xemacs test.pro &

Start IDL, second option: IDL Development Environment.
Linux> idlde & (a new window is opened)

Invoke the help system
IDL> ?
and look for documentation.

"http:/ /www.faculty.iu-bremen.de/jvogt/cospar/chbw6/

http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/
http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/

Keeping track of your input is not absolutely necessary but can be quite useful. The following
command writes it to the file idlsave.pro.
IDL> journal

1.2 1D arrays and line (2D) plots

One-dimensional arrays can be created with the family of indgen routines.
IDL> a = findgen(21)

IDL> help, a

IDL> print, a

Functions of arrays can be defined in a straightforward way.
IDL> b = sin(a)

IDL> help, b

IDL> print, b

You may access individual elements of the array or a subarray. a[0] is the first element of the
array a.

IDL> print, al[0]

IDL> print, al[3:5]

IDL> c = alwhere(b gt 0)]

Create a simple line plot.
IDL> plot, b
IDL> plot, a, b

You may want to redefine the array variables to get a better resolution. Note the differences
between the various plot commands, and that linestyle is an optional keyword.

IDL> a = findgen(201)/10.

IDL> b = sin(a)

IDL> plot, b

IDL> plot, a, b

IDL> plot, a, b, linestyle=2

A 1D floating-point array x with nx elements which ranges from xmin to xmax can be created
in the following way.

IDL> nx = 21

IDL> xmax 5.

IDL> xmin = -5.

IDL> x = xmin + (xmax-xmin)*findgen(nx)/float(nx-1)

1.3 2D arrays

The easiest way to define multidimensional arrays is the # operator.

IDL> a = findgen(5)
IDL> b = (findgen(4)+1.)/2.
IDL> c = a#b

Here the variable c is a two-dimensional array of first dimension 5 and second dimension 4 whose
elements are formed by multiplication of the elements of a and b.

IDL> help, c

IDL> print, c

This array can also be displayed by simple contour plots. Note the different results of the three
commands.

IDL> contour, c

IDL> contour, c, a, b

IDL> contour, c, a, b, nlevels=20, /follow

If arrays are interpreted as vectors and matrices in the usual sense, matrix multiplication is
achieved by means of the ## operator rather than the # operator.

1.4 2D coordinate arrays for defining scalar and vector fields

Very often two-dimensional arrays for z and y coordinates are needed. The coordinate arrays
should have a structure such that functions f of two variables (x,y) can be evaluated on a
two-dimensional grid directly as f(x,y) (without addressing individual elements of the array).
Here is a procedure to achieve this.

1. Define two 1D arrays which give the range and the resolution of the independent variables
x and y (coordinate axes).
IDL> x = findgen(101)/10.-5.
IDL> y = findgen(51)/5.
The array x has 101 elements and ranges from —5 to 5. The array y has 51 elements and
ranges from 0 to 10.

More generally, you can specify number of elements and range in the following way.
IDL> nx = 101 & xmin = -5. & xmax = 5.

IDL> x = xmin + (xmax-xmin)*findgen(nx)/float(nx-1)

IDL> ny = 51 & ymin = 0. & ymax = b.

IDL> y = ymin + (ymax-ymin)*findgen(ny)/float(ny-1)

2. Define two 1D arrays x1 and y1 with the same number of elements as the arrays x and y,
respectively.
IDL> x1 = fltarr(101)
IDL> y1 = fltarr(51)
Initialize all elements with the value 1.
IDL> x1[*] = 1.
IDL> yi[*] = 1.

These two steps can be combined as follows.
IDL> x1 = replicate(1.,101)
IDL> y1 = replicate(l.,51)

3. Finally, construct two 2D arrays which represent = and y but have identical (2D) structure.
IDL> xx = x#yl
IDL> yy = xl#y

For convenience, all these steps are combined into the IDL function coord2d.pro. Copy this
function into your working directory and call
IDL> COORD2D, 101, 51, xx, yy, xmin=-5., xmax=5., ymin=0., ymax=5.

An array zz which contains the values of, e.g., f(x,y) = sin(y/x + y) on the grid given by xx
and yy is now easily created through

IDL> zz = sin(sqrt(xx) + yy)

Note that zz automatically inherits the properties of xx and yy.

1.5 3D plots: displaying functions of two variables

Plotting an arbitrary function of two variables can be conveniently achieved in the following
way.

1. Define two 2D coordinate arrays xx and yy.
IDL> COORD2D, 101, 51, xx, yy, xmin=-5., xmax=5., ymin=0., ymax=5.

2. Now evaluate a function f(z,y) at grid points (x;,y;) and store the result in a third array
zz, e.g.,
IDL> zz = exp(-xx"2)*sin(yy)

3. Plot the array zz by means of a 3D plotting routine.
IDL> contour, zz, xx, yy, nlevels=20, /follow
IDL> surface, zz, xx, yy
IDL> show3, zz, X, y, e_contour={nlevels:20}

1.6 Programs, procedures and functions

A sequence of commands can be stored into a file and then forms a program. A small sample
program is contour-example.pro which comprises the commands given in the previous section
to produce a contour plot. Execute the program by typing

IDL> .r contour-example.

Procedures and functions are also sequences of commands which perform a specific task. How-
ever, such routines are more flexible because they can have parameters with values specified only
at execution time. See the IDL documentation for more information.

1.7 Creating postscript output

So far we have only plotted on the screen. To get a hardcopy we first create a postscript (ps)
file which can then be sent to a printer. This implies changing the display variable. Without
going into details, have a look at the commands in the files of the procedures openps.pro and
closeps.pro and type

IDL> openps, ’contour.ps’, dnameold

IDL> .r contour-example

IDL> closeps, dnameold

Check the result with a ps viewer, e.g.,
Linux> gv contour.ps

1.8 Converting postscript to other graphics formats

If you do not have a postscript viewer/converter on your computer, you should convert the
postscript files to other graphics formats on the Linux PC. Here are two options.

e convert can produce a large number of different graphics formats (jpg, png, tif, gif ...).
For example, you may simply type
Linux> convert filename.ps filename.png
at the Linux prompt to convert a postscript file to png. See the documentation on convert
for details:
Linux> info convert
Linux> man convert

e epstopdf generates pdf output. Type
Linux> epstopdf filename.ps
to yield a file named filename.pdf .

1.9 Reading and writing files

There are several ways in IDL to write/read data to/from a file. The most convenient is the
save/restore combination (see documentation).

Unfortunately, very often we cannot use this option, e.g., when we have to read data from files
which have been formatted in a specific way by other programmes. In general, we must specify
the format through a keyword in the printf/readf commands. However, in many cases the
‘IDL free format’ works fine, and additional keywords are not necessary.

The following sequence of commands illustrates how to write variables to a file using the free
format. The keyword get_lun guarantees that the variable lun is assigned a free file unit.

IDL> a = findgen(5)
IDL> b = sqrt(a)
IDL> ¢ = sqrt(b)

IDL> openw, lun, ’filel.dat’, /get_lun

IDL> printf, lun, a, b, c

IDL> close, lun

Now you may use a text editor (e.g., xemacs) to check filel.dat, or you may type

IDL> $more filel.dat

Reading this data file is straightforward. You first have to define suitable arrays, open the file,
and then read the data into the variables.

IDL> x = fltarr(5)

IDL> y = x

IDL> z = x

IDL> openr, lun, ’filel.dat’, /get_lun

IDL> readf, lun, x, y, Zz

IDL> close, lun

IDL> print, x

IDL> print, y

IDL> print, z

Note that in this example the arrays are stored as rows.

Now suppose you want to read a data file where it is appropriate to assign different arrays to
the columns (the typical situation if time series are considered). To illustrate such a case, have
a look at the program files write-file2.pro and read-file2.pro and run the programs.
IDL> .r write-file2

Check the result:

IDL> $more file2.dat

Now read the file.

IDL> .r read-file2

IDL> print, x

IDL> print, y

IDL> print, z

1.10 Random number generator

So-called random processes are often used to model the influence of noise on measurements.
They are characterized in probabilistic terms. We come back to this point later. For the mo-
ment it suffices to know that the IDL functions RANDOMU (uniorm distribution) and RANDOMN
(normal=gaussian distribution) can be used to generate series of random numbers. Try

IDL> plot, randomu(seed,200)

and

IDL> plot, randomn(seed,200)

to get a feeling how a random process looks like.

A harmonic signal contaminated by gaussian noise at a signal-to-noise ratio of 10:1 can be
visualized by

IDL> time = findgen(200)/10.

IDL> signal = sin(time) + 0.l*randomn(seed,200)

IDL> plot, time, signal

	Getting started with IDL
	Preparations
	1D arrays and line (2D) plots
	2D arrays
	2D coordinate arrays for defining scalar and vector fields
	3D plots: displaying functions of two variables
	Programs, procedures and functions
	Creating postscript output
	Converting postscript to other graphics formats
	Reading and writing files
	Random number generator

