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3 Gradient estimation accuracy in model magnetic fields

The estimation of spatial derivatives (curl, divergence, gradient) is a key issue in Cluster data
analysis. In the following you make use of the reciprocal vector method to estimate the spatial
derivative matrix along simplified spacecraft orbits in given model magnetic fields. The inter-
spacecraft distance can be varied as well as the magnetic field model and the imposed noise
level. Since this exercise is meant to help assessing the imperfections of the gradient estimation
method, the model magnetic fields are chosen to be curl-free (and, of course, divergence-free).

3.1 Model fields and spacecraft configuration

The model fields used in the IDL program testkb are

• the cylindrical magnetic field of a long straight wire (curved, circular field lines in planes
perpendicular to the z-axis),

• a radial field in two dimensions (rad2d, straight but convergent field lines in planes per-
pendicular to z),

• a radial field in three dimensions (rad3d, radially convergent fieldlines), and

• a dipole field (dipole, both field line convergence and curvature are present).

All fields are divergence-free and curl-free everywhere outside the origin (r = 0). The fields are
given in cartesian coordinates in appendix 3.3.3.

Spatial derivatives of the model fields are evaluated using the reciprocal vector method, see 3.3.1.
The method rests on the assumption of linear field variations. This implies that for the non-
linearly varying magnetic fields given above errors are introduced which should depend on the
inter-spacecraft distance ∆ relative to the inhomogeneity length scale L (curvature radius or
convergence length scale). For the example fields studied here, L varies linearly with distance r,
thus the ratio ∆/r should be indicative of the nonlinear error contribution.

Besides inaccuracies in spatial gradient estimation due to nonlinear field variations, there are
also errors introduced by inaccurately determined spacecraft positions, and by measurement
errors. The latter can be simulated in the IDL program testkb through additive noise.
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3.2 How to use the IDL program testkb

All IDL programs needed for this exercise can be found in the subdirectory
ComputerSessions/BasicAnalysisTechniques Vogt/ex3/ of the workshop web page1. For
convenience, you may download the zip archive ex3pro.zip which contains all of them. You
may want to create a subdirectory for this exercise on your local PC
Linux> mkdir ex3
Linux> cd ex3
move the zip archive to the subdirectory, and then unzip it
Linux> unzip ex3pro.zip

The driver routine is testkb. In order to use it, you simply edit the parameter section (either
in an editor like xemacs, or using the idlde editor), and then type
IDL> .r testkb
at the IDL prompt.

3.2.1 Parameters

Here are the parameters that you should play with when you start using the IDL program
testkb.

BMODEL The parameter selects one of the model fields implemented in the program to see the
different effects of field line convergence or curvature on the resulting error.

NOISEPARAM Choose a small non-zero value to mimic the effects of additive noise on the mea-
surements.

BUNIT If BUNIT=1 is set, the magnetic field is normalized before gradient estimation so that
effectively the elements of the matrix ∇B̂ are estimated. This should yield measures of
inhomogeneity length scales. Note that |B̂ ·∇B̂|−1 is the curvature radius, and |V̂ ·∇B̂|−1

can be understood as a convergence length scale if V̂ is perpendicular to the local magnetic
field vector.

SCALEDB If this parameter is set to SCALEDB=1, then the output is scaled: radial distance with
the inter-spacecraft distance ∆, and spatial derivatives are multiplied with the ratio ∆/B,
where B is the strength of the local magnetic field.

The default values of the other parameters are reasonable and do not need to be changed if you
just start to play around with this program.

The results are displayed as line plots in double-logarithmic representation. Different line styles
indicated different inter-spacecraft distances. Graphics output can be directed to a postscipt file
by means of the parameter POSTSCRIPT.

1http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/
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Figure 1: Estimation of divergence and curl in the (cylindrical) magnetic field of a long straight
wire. The separation of lines reflects differences in the inter-spacecraft distances ∆. The estimated
∇ ·B and (∇×B)z fall of with distance r as ∆/r3.

3.2.2 Selected examples

You may start with BMODEL=’curved’, and zero values for NOISEPARAM, BUNIT, and SCALEDB.
You should get first the graphics in figure 1. The straight lines with a slope of−3 for the estimated
values of ∇·B and (∇×B)z indicate a power law dependence on r, and the separation of the four
lines. suggest a (linear) dependence on inter-spacecraft distance ∆. (Note that the spacecraft
distances are chosen to be 0.1, 0.3, 1.0, 3.0 in normalized units by default.) The figure is thus
consistent with the analytical result presented in appendix 3.3.4, namely, that both ∇ ·B and
(∇×B)z should be proportional to ∆/r3 for small ∆/r.

Changing the model to BMODEL=’rad3d’ gives a slightly different picture. The resulting graphics
is shown in figure 2. The straight lines in the panels for ∇·B, (∇×B)y, and (∇×B)z fall off with
distance r as ∆/r4 for small ∆/r which is consistent with the results presented in appendix 3.3.4.

The effect of additive noise is shown in figure 3. The parameter NOISEPARAM was chosen to be
10−4. The figure helps to understand when measurement inaccuracies become more important
than nonlinear contributions to the field variations.

3.3 Appendix: Theory of spatial gradient estimation

So far (at least) two methods to estimate spatial derivatives from Cluster data have been intro-
duced by various authors, namely, the so-called curlometer technique and the reciprocal vector
/ barycentric coordinates method). Both methods are equivalent in the sense that linear field
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Figure 2: Estimation of divergence and curl in a radially converging field. The estimated ∇ ·B,
(∇×B)y, and (∇×B)z fall of with distance r as ∆/r4.

Figure 3: Estimation of divergence and curl in a radially converging field if noise is added.
For small values of ∆/r the estimated ∇ · B, (∇ × B)y, and (∇ × B)z are more affected by
measurement errors than by nonlinear field variations.
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variations are evaluated (note that the linear approximation of a field is unique if the values at
four distinct points in space are known). Detailed discussions can be found in various chapters
of Analysis Methods for Multi-Spacecraft Data, G. Paschmann and P. Daly (Eds.), ESA Publi-
cation Division (Noordwijk, Netherlands), 1998; hereafter referred to as the ISSI Cluster data
analysis book. It is available as free pdf from the International Space Science Institute (Bern,
Switzerland). For the 6th COSPAR Capacity Building Workshop a local copy can be accessed
from the workshop web page2.

In this exercise we only address the reciprocal vector method because the structure of the
estimation formulas appears to be more transparent.

3.3.1 The reciprocal vector method

Briefly, barycentric coordinates provide a convenient means to linearly interpolate a physical
quantity g inside a satellite cluster tetrahedron by using the measured values gα at the four
spacecraft positions rα:

g̃(r) =
3∑

α=0

µα(r)gα

where:
µα(r) = 1 + kα · (r− rα)

g̃ denotes the linear function that interpolates between the measurements. The vectors kα are
given by the formula:

kα =
rβγ × rβλ

rβα · (rβγ × rβλ)
(α, β, γ, λ) must be a permutation of (0, 1, 2, 3). Relative position vectors are denoted by rαβ =
rβ − rα. The set {kα} is called the reciprocal base of the tetrahedron.

Vector functions B can be handled in a similar way by applying the above formulas to the
cartesian components. Since g̃ and B̃ are linear functions, the calculation of the derivatives can
be done quite easily. The results are:

∇g ' ∇g̃ =
3∑

α=0

kαgα

ê · ∇g ' ê · ∇g̃ =
3∑

α=0

(ê · kα)gα

∇ ·B ' ∇ · B̃ =
3∑

α=0

kα ·Bα

∇×B ' ∇× B̃ =
3∑

α=0

kα ×Bα

The element (i, j) of the matrix ∇B is given by:

∂Vj

∂xi
≡ (∇B)ij '

3∑
α=0

(kαBα)ij ≡
3∑

α=0

kαiVαj

2http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/Etc/issibook.pdf
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With regard to error estimation it is important to notice that ∇×B and ∇ ·B are just linear
combinations of various (∇B)ij ’s and thus of terms like kαiVαj , with i = j or i 6= j.

In short,

∇B ' ∇ · B̃ =
3∑

α=0

kαB†
α .

Note that the superscript † denotes the transposition (of a matrix, or, if applied to a vector, to
turn column vectors into row vectors and vice versa).

3.3.2 Inter-spacecraft distance and geometric error parameters

In this exercise we assume (without loss of generality) that we analyse the data in a frame
moving with the barycenter of the tetrahedron

rbc =
1
4

3∑
α=0

rα ,

thus rbc = 0. Then the parameter

R =

√√√√1
4

3∑
α=0

|rα|2

is a measure of the distance between the four Cluster spacecraft that can be used for scaling
purposes. Note that R2 is 1/4 the trace of the spacecraft position tensor

R =
3∑

α=0

rαr†α .

(This expression differs by a factor of 1/4 from the definition of the volumetric tensor given by
Harvey in the ISSI Cluster data analysis book.)

In a similar manner we can define the reciprocal tensor as

K =
3∑

α=0

kαk†α

which can be shown to be the inverse of the spacecraft position tensor. The square root of the
trace of K, i.e.,

K =

√√√√ 3∑
α=0

|kα|2

constitutes an inverse length scale which turns out to be important in the analysis of geometric
errors in gradient estimation. First-order (isotropic) error estimation yields for the geometric
error of a spatial derivative DB:

δ|DB| =

√
f

3
K δB

where δB denotes a typical error of the field measurement. The parameter f can be understood
as the number of degrees of freedom of the differential operator D; use f = 3 if DB = ∇ · B,
f = 2 if DB = ∇×B, and f = 1 if DB = ê · ∇B (directional derivative or partial derivative).
For details, see the ISSI Cluster data analysis book.
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Figure 4: Sketch of the three-dimensional model satellite configuration used in the IDL program
testkb.

3.3.3 Model magnetic fields

The model fields used in this exercise are the cylindrical magnetic field of a long straight wire

Bcurved(r) = B∗

(
R∗
r

)2
 −y

x
0

 ,

a radial field in two dimensions,

Brad2d(r) = −B∗

(
R∗
r

)2
 x

y
0

 ,

a radial field in three dimensions,

Brad3d(r) = −B∗

(
R∗
r

)3
 x

y
z

 ,

and a dipole field

Bdip(r) = B∗

(
R∗
r

)5
 3xz

3yz
3z2 − r2

 .

All fields are divergence-free and curl-free everywhere outside the origin (r = 0).

3.3.4 Model spacecraft configuration and error analysis

In order to simplify the error analysis, we choose the spacecraft configuration sketched in figure 4
with ∆x1 = ∆x2 = ∆x3 = ∆. The parameter R for this configuration is R = (3/4)∆. To first
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order in ∆/r, the spatial derivatives of the model fields estimated by finite differencing are found
to be (after some lengthy but straightforward calculation)

∇ ·B ∝ ∆
r3

, (∇×B)z ∝ ∆
r3

,

and
∂By

∂x
∝ 1

r2
,

∂Bx

∂y
∝ 1

r2
,

∂By

∂y
∝ ∆

r3

for the first model field Bcurved,

∇ ·B ∝ ∆
r3

, (∇×B)z ∝ ∆
r3

,

and
∂Bx

∂x
∝ 1

r2
,

∂Bx

∂y
∝ ∆

r3
,

∂By

∂y
∝ 1

r2

for the second model field Brad2d, and

∇ ·B ∝ ∆
r4

, (∇×B)y ∝ ∆
r4

, (∇×B)z ∝ ∆
r4

as well as

∂Bx

∂x
∝ 1

r3
,

∂By

∂y
∝ 1

r3
,

∂Bz

∂z
∝ 1

r3
,

∂Bx

∂y
∝ ∆

r4
,

∂Bx

∂z
∝ ∆

r4

for the third model field Brad3d.
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