AC field measurements and wave analysis tools

Ondřej Santolík

Charles University and IAP ASCR, Prague

6th COSPAR Capacity Building Workshop

Regional Workshop for Space Physicists from Central and Eastern Europe Sinaia, Romania, June 4–16, 2007

Outline:

- Introduction
 - Waves in plasmas
 - Cold plasma theory CMA diagram
 - Examples of waves in the Earth's magnetosphere
- Analysis methods for multi-component measurements.
 - STAFF-SA and WBD instruments onboard Cluster
 - Plane wave methods
 - Wave distribution function
 - Backward ray tracing
- Examples of measurements of different types of waves in space plasmas
 - Auroral hiss
 - Auroral kilometric radiation
 - Electron and proton whistlers
 - Equatorial noise
 - Whistler mode chorus
 - Magnetosheath "lion roar" emissions

Waves in plasmas

Equation of motion: COLD PLASMA approximation

$$\vec{\mathcal{J}} = \sum_{s} n_{s} q_{s} \vec{\mathcal{V}}_{s} \qquad m_{s} \vec{\mathcal{V}}_{s} i\omega = q_{s} \left(\vec{\mathcal{E}} + \vec{\mathcal{V}}_{s} \times \vec{B}_{0}\right)$$

$$\underbrace{\text{Dielectric tensor}}_{\epsilon \cdot \vec{\mathcal{E}}} = \begin{pmatrix} S & -iD & 0 \\ iD & S & 0 \\ 0 & 0 & P \end{pmatrix} \cdot \begin{pmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \end{pmatrix} \qquad \underbrace{\text{Cartesian}}_{coordinates}$$

$$\vec{B}_{0} = \begin{pmatrix} 0 \\ 0 \\ B_{0} \end{pmatrix}$$

$$S = \frac{1}{2}(R+L) \qquad R = 1 - \sum_{s} \frac{\Pi_{s}^{2}}{\omega(\omega + \Omega_{s})}$$

$$D = \frac{1}{2}(R-L) \qquad L = 1 - \sum_{s} \frac{\Pi_{s}^{2}}{\omega(\omega - \Omega_{s})}$$

$$plasma frequency$$

$$\Omega_{s} = \frac{q_{s}B_{0}}{m_{s}} \qquad \Pi_{s}^{2} = \frac{n_{s}q_{s}^{2}}{m_{s}\varepsilon_{0}} \qquad P = 1 - \sum_{s} \frac{\Pi_{s}^{2}}{\omega^{2}}$$

Dispersion relation

 $AN^4 + BN^2 + C = 0$

Examples of solutions

R-mode

$$\theta = \frac{\pi}{2}$$
 : $N^2 = \frac{RL}{S}$ X-mode
 $N^2 = P$ O-mode

STAFF Instrument

(Spatio Temporal Analysis of Field Fluctuations)

- search coil sensors (tri-axial, 0.1 Hz- 4 kHz)
- waveform analyzer (0.1 -180 Hz)
- spectrum analyzer

<u>On-board analysis</u>

- 3 magnetic (STAFF) and 2 electric signals (EFW)
- 27 frequency channels 8-4000 Hz, 26% bandwidth
- complex amplitudes: $\mathcal{B}_x, \mathcal{B}_y, \mathcal{B}_z, \mathcal{E}_x, \mathcal{E}_y$
- spectral matrices 5x5: $\hat{S}_{ij} = \langle \xi_i \xi_j^* \rangle$
 - power-spectral densities (time resolution 0.125s-2s)

relative phase shifts, mutual coherency (1s-4s)

- high-resolution measurements of electric or magnetic fields
- digitized waveforms
- selected frequency bands from 25 Hz to 577 kHz.

Instrument mode used for common WBD-STAFF studies :

- continuous waveforms
- single electric field component
- pass-band filtered between 50 Hz and 9.5 kHz
- sampled at 27.44 kHz

Spearman's rank correlation coefficients

Parameters of the model of moving structures : Normal direction

Parameters of the model of moving structures : Drift velocity and convection electric field

Duration: 30-100 s Diameter of field aligned depletions: 100-500 km scales down to <u>10-50 km</u> in the ionosphere 1.3 mV/m duskward convection field in the polar cap <u>50 kV potential</u> across the polar cap

Plane wave methods

Faraday's law $\vec{k} \times \vec{\mathcal{E}} = \omega \vec{\mathcal{B}} \implies \vec{\mathcal{E}} \cdot \vec{\mathcal{B}} = 0 \quad (\vec{\mathcal{E}} \perp \vec{\mathcal{B}})$ $\vec{k} \cdot \vec{\mathcal{B}} = 0 \quad (\vec{k} \perp \vec{\mathcal{B}})$

<u>Spectral matrix of analytic magnetic components</u> $S_{ij} = \langle \mathcal{B}_i \mathcal{B}_j^* \rangle$

Overdetermined set of equations

 $\mathsf{A} \cdot \vec{k} = \begin{pmatrix} \Re S_{11} & \Re S_{12} & \Re S_{13} \\ \Re S_{12} & \Re S_{22} & \Re S_{23} \\ \Re S_{13} & \Re S_{23} & \Re S_{33} \\ 0 & -\Im S_{12} & -\Im S_{13} \\ \Im S_{12} & 0 & -\Im S_{23} \\ \Im S_{13} & \Im S_{23} & 0 \end{pmatrix}$

6 equations
2 unknowns

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = 0$$

Axes of the polarization ellipse

$$\hat{\vec{a}} = (w_3V_{13}, w_3V_{23}, w_3V_{33})$$

$$\hat{\vec{b}} = (w_2V_{12}, w_2V_{22}, w_2V_{32})$$
Ellipticity
$$L_p = w_2/w_3 \leftarrow \qquad \text{Ratio of}$$
the axes of the polarization ellipse:
1 for the circular polarization
0 for the linear polarization
$$F = 1 - \sqrt{w_1/w_3}$$
Ratio of
$$\frac{\text{Ratio of}}{\text{standard deviations of}}$$
1 for a planar polarization
0 for unpolarized signals

Wave distribution function (WDF) methods

<u>WDF</u>: continuous distribution G of wave energy with respect to the wave-vector directions.

$$S_{ij} = \sum\limits_m \, \int \, a_{mij}(heta, \, \phi) \, G_m(heta, \, \phi) \; d^2(heta, \, \phi)$$

 S_{ij} ... theoretical prediction of the spectral matrix;

 $a_{mij}(\theta, \phi) \dots$ matrix of integration kernels: theoretical predictions of normalized spectral matrices for plane waves with different wave-normal directions;

m . . . wave mode

- Dispersion relation theoretical polarization integration kernels
- Least squares methods to find the WDF which is most consistent with the experimental spectral matrix.

Inverse ray tracing

Following the ray backward from the point of observation.
Initialization by a wave normal direction found experimentally.
Basic equations: Given the dispersion relation

$$\omega = \omega(\vec{r}, \vec{k}, t),$$

we have

$$\frac{d\vec{r}}{dt} = \frac{\partial\omega}{\partial\vec{k}}$$
$$\frac{d\vec{k}}{dt} = -\frac{\partial\omega}{\partial\vec{r}}$$

Basic limitations:

- Wentzel-Krammers-Brillouin (WKB) approximation or limit of geometric optics: dispersive properties of the medium are slowly varying functions of space and time compared to the wavelength and wave period. Fails: sharp gradients and/or rapid changes of the refractive index
- Need of realistic description of the medium

Auroral region

Propagation of auroral hiss

Whistlers and proton whistlers

March 31, 2001

- Major interplanetary disturbance.
- Pushing the bow shock inside the geosynchronous orbit [Ober *et al.*, 2002].
- Producing geomagnetic activity, $K_p = 9-$, Dst = -360 nT [Skoug *et al.*, 2003].
- Dispersionless injection of energetic electrons in the pre-midnight sector, AE = 1200 nT
 [Baker *et al.*, 2002].

Whistler-mode chorus **Cluster 3**

Multipoint measurements

Parallel component of the Poynting vector normalized by its standard deviation.

 Z_{SM} coordinate (perpendicular to the geomagnetic equatorial plane) of all the four spacecraft.

Analysis of wave packets of the whistlermode chorus

- FIR filter 2-4 kHz
- Amplitude envelope of the signal
- Local maxima of the sub-structure

Amplitudes of local maxima and time delays between the neighboring maxima

Fine structure

Separate elements

18th April 2002 Cluster 4

Detailed spectrograms 18th April 2002

Simulation of the source region

SUMMARY

- Different types of waves propagate in plasmas in the Earth's magnetosphere and in the solar wind. Their propagation and polarization properties can often be explained using the cold plasma theory.
- Wave instruments onboard scientific spacecraft (for example, the STAFF and WBD instruments onboard Cluster) provide us with high-resolution multi-component measurements. These data require special analysis techniques.
- Several examples of such measurement and analysis, in different regions, have been shown:
 - auroral hiss
 - auroral kilometric radiation
 - electron and proton whistlers (*)
 - equatorial noise (*)
 - whistler mode chorus (*)

(*) will be analyzed during the computer session