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Dragoş Constantinescu

International Max Planck Research School
on Physical Processes in the Solar System and Beyond

at the Universities of Braunschweig and Göttingen





Wave Sources and Structures in
the Earth’s Magnetosheath and

Adjacent Regions

Von der Fakultät für Physik

der Technischen Universität Carolo-Wilhelmina

zu Braunschweig

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr.rer.nat.)

genehmigte

Dissertation

von Ovidiu Dragoş Constantinescu
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Summary

The near-Earth space environment is a result of the violent interaction between the
supersonic solar wind and the magnetic field generated in the Earth core. Among
other physical phenomena, it abounds in a multitude of plasma waves which mediate
the energy transfer from the solar wind towards the inner magnetosphere.

For many years, the study of the Earth magnetosphere has been limited to iso-
lated measurements performed by rockets or spacecraft. Single point measurements
do not allow to disentangle spatial from temporal variations unless strong assump-
tions are made. It is also very difficult to determine even elementary three dimen-
sional quantities, such as wave vectors, with single point measurements.

With the launch of the four Cluster spacecraft, simultaneous multi-point mea-
surements in space are routinely available. This work aims to develop the necessary
tools, and to use the multi-point measurements provided by Cluster to their full
potential in order to shed a bit of light on the magnetic structures and wave sources
in the Earth magnetosphere.

Chapter 1 gives a brief overview of the near-Earth space environment and of
the physical processes taking place here.

Chapter 2 introduces the Cluster spacecraft fleet and their payload. Special
emphasis is put on the magnetic field and particle instruments which produce the
data later used in this work.

Chapter 3 presents the general formalism of the mathematical techniques we
use to analyze the multi-point measurements from Cluster. Using synthetic data
and a plane wave representation, we investigate the capabilities and limitations of
the simplest technique in this class, the beamformer. We conclude that, given the
limited number of sensors offered by Cluster, the beamformer is of no practical use.

The Capon technique, which overcomes the limitations of the beamformer, is
examined next. We apply the Capon technique to artificial data representing various
number of plane waves detected by various sensor configurations. Here we also study
the effect of the wave front curvature on the results given by the Capon technique
when plane wave representation is used. The plane wave representation performs
well as long as the source of the detected wave is far from the Cluster constellation
but fails if the source is close.

Chapter 4 is devoted to the source locator – the Capon technique with spherical
wave representation. While a plane wave representation provides the wave vector, a
spherical wave representation provides the distance to the source as well. For sensor
geometries similar to Cluster configuration, synthetic data is used again to study the
performance of the method for different scenarios, such as single or multiple wave
sources placed at various distances. Particular attention is paid to effects arousing
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Summary

from the motion of the source and of the sensors relative to the background plasma.
Such motions have an influence on both the observed frequency and on the local
wave length.

Once the performances of the source locator are established, we perform two case
studies with Cluster data. The first case study shows a close wave source with an
elongated shape in the day-side magnetosheath. The second is a statistical study of
waves nature and origin in the magnetosheath and adjacent regions.

Chapter 5 presents a magnetohydrostatic model for mirror structures. The
model describes well many observed features and gives the three dimensional mag-
netic field geometry inside the mirror structure. By means of direct numerical in-
tegration, single particle orbits are investigated. They are categorized as trapped
or escaping and regular or irregular. The evolution of a bi-Maxwellian ensemble
shows a decrease in the pressure anisotropy and slight departures from the density
- magnetic field anti-correlation.

The mirror magnetic field is too complex to allow for a virtual interference tech-
nique to be applied. Therefore, a method for fitting multi-spacecraft data is devel-
oped and applied to Cluster magnetic field measurements. This way, a magnetic
mirror structure is identified in the dusk side magnetosheath.
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1.1 Introduction

1.1 Introduction

The first evidence of the geomagnetic field was the alignment of the magnetic needle
with the local magnetic meridian observed by Chinese over one thousand years ago.
In 1600, Sir William Gilbert, physician of Queen Elizabeth I of England, showed that
this phenomenon could be explained if the Earth itself is a great magnet - “Magnus
magnes ipse est globus terrestis” (Gilbert 1600). Later, in 1896, Birkeland created
an artificial aurora by sending electrons against a magnetized sphere. This way he
linked the auroral activity with the Earth magnetic field. The link between the Sun
and the geomagnetic activity was suggested in 1931 by Chapman and Ferraro (1931).
They showed that plasma flowing from the Sun would create a current sheet which
would compress and confine the Earth magnetic field. But only after the beginning
of the space age, in the 1950’s, in situ measurements from rockets and satellites were
available and enabled a more detailed view of the magnetosphere (Stern 1996).

The Earth magnetosphere is a complex system generated by the interaction
between the streaming plasma of the solar wind and the Earth magnetic field. It
extends about 30RE transversal to the Sun-Earth line and up to thousands Earth
radii in the Sun-Earth direction.

The speed of the solar wind when it encounters the Earth magnetosphere is highly
supersonic. Therefore a standing shock wave is formed in front of the magnetosphere.
Passing through the shock, the solar wind plasma is heated, compressed and slowed
down to subsonic speed. This hot plasma (red in figure 1.1) encloses like a sheath the
Earth magnetic field. The violent interaction between the solar wind and the Earth
magnetosphere gives birth to a multitude of physical phenomena such as plasma
waves, turbulence, and particle acceleration in the shocked plasma and even in front
of the MHD shock.

The Earth magnetic field itself is highly deformed, compressed in the day-side
and stretched in a long tail in the night side. Through the cusps (see figure 1.1)
energetic plasma of solar origin finds its way into the ionosphere creating day-side
diffuse aurorae, while during magnetic substorms, the energy stored into the tail
lobes is transfered to the plasmasheet particles which are responsible for the night-
side discrete aurorae.

1.2 The solar wind

The source of the solar wind is the outermost region of the Sun atmosphere, the
hot, tenuous corona. The equilibrium relation between the pressure gradient and the
gravitational force for a static, isothermal, spherical symmetric atmosphere leads to
the barometric expression for the pressure p at the distance r from the center of the
Sun:

p(r) = p0 exp

{
GM�m

2kBT

(1

r
− 1

R

)}
(1.1)

where G is the gravitational constant, kB is the Boltzmann constant, M� is the mass
of the Sun, m is the particle mass, and p0 is the pressure at the base of the corona
(at the distance R from the center of the Sun).
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1 The magnetosphere

Figure 1.1: Meridional section through the Earth magnetosphere with the Sun on the left. The
Earth magnetic field interacts with the solar wind to form the bowshock at a standoff distance
of about 15 RE. The magnetosheath formed by the shocked solar wind wraps the cavity which
contains the deformed dipole field.

The asymptotic pressure at infinity, resulting from the equation (1.1), is about
e−8 × p0, several orders of magnitude larger than the pressure of the interstellar
medium. This indicate that the Sun atmosphere cannot be in static equilibrium.
This fact, together with the observations of Biermann (1951) of cometary tails,
suggesting that gas is streaming outward from the Sun, leaded Parker in 1958 to
its famous solution of steady expansion of the solar corona. Solving the stationary
continuity and the momentum conservation equations for non-null radial flow, he
obtains the flow velocity as a function of the distance from the Sun:

u2 − 2kBT

m
− 2kBT

m
ln

mu2

2kBT
= 8

kBT

m
ln

r

rc

+ 2GM�

(1

r
− 1

rc

)
(1.2)

where rc = GM�m/(4kBT ) is the distance from the Sun where the flow velocity
becomes equal with the thermal velocity: u2 = 2kBT/m. This flow speed becomes
soon supersonic in the interplanetary medium. Unlike equation (1.1), the Parker
solution gives a pressure which tends to zero at large distances. On this basis, before
any direct interplanetary observations were available, Parker deduced the existence
of a continuous, supersonic solar wind.

The rotation of the Sun combined with the steady radial flow bend the solar
magnetic field (IMF) into an Archimedean spiral (known as the Parker spiral) as
illustrated in the figure (1.2). By the time they reach the Earth orbit, the angle

6



1.2 The solar wind

Figure 1.2: The effect of the Sun rotation on its magnetic field. The magnetic field is frozen into
the radially expanding plasma. It follows an Archimedean spiral resembling the water spiraling out
from a rotating sprinkler. The Earth orbit is represented by the red dashed line.

between the magnetic field lines and the solar wind direction is already close to 45◦

(Parker 1958, 1965).

As the solar wind expands, at some large distance, the interstellar plasma pres-
sure will become comparable with the solar wind pressure (since the former now
tends to zero) and the solar wind has to slow down. The interaction between the
two plasmas results into a shock called termination shock. As the Sun moves relative
to the interstellar medium, beyond the termination shock, there is a heliopause, a
heliosheath and a bow shock. After 27 years from its launch, Voyager 1 reached the
termination shock on December 16, 2004, at a distance of 94AU from the Sun (Stone
et al. 2005).

The solar wind consists largely of hydrogen plasma with less than 5% (number
density) of ionized helium and traces of heavier elements. At 1AU the solar wind
flows with a typical velocity of 500 km/s although it can reach at times speeds as
high as 1500 km/s. The typical sound speed here is only about 50 km/s which means
the flow is highly supersonic. The particle density decreases from 104 cm−3 in the
corona to 5 cm−3 close to the Earth orbit, while the plasma temperature decreases
from 106 to 105 K. The magnetic field at 1AU is about 5 nT. The magnetic pressure
is comparable with the plasma pressure indicating that the magnetic effects will be
as important as the pressure effects in the near-Earth solar wind plasma.

7
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1 The magnetosphere

1.3 The shock and the foreshock

Shocks are very common phenomena. They appear whenever an object moves faster
than the information can propagate through the unperturbed surrounding medium.
The shock modifies the properties of the medium such that, through the shocked
medium, the information can propagate faster than the moving object. The shock
becomes in this way the information horizon for the moving object. Typically, the
shocked medium downstream of the shock is hotter, denser, and flows slower than
the medium upstream of the shock.

As the supersonic solar wind encounters the Earth magnetic field, a shock is
formed. This shock is called bowshock because its shape, symmetrical about the
Sun - Earth line, is close to a paraboloid of revolution. The standoff distance of the
bowshock is about 14 RE.

The thickness of a shock formed in an ordinary gas is of the order of the mean
free path of the gas molecules. The mean free path in the solar wind plasma is
about 1AU. Since the bowshock thickness is between 100 and 1000 km, collisions
cannot play a role in the bowshock physics. The place of collisions is taken by
the magnetic fields which intermediate the interactions between particles. Another
difference between ordinary gas shocks and astrophysical shocks is the richness of
wave modes in magnetized plasma compared with only one isotropic, non-dispersive
pressure wave mode (sound) present in ordinary gas.

It is often convenient to use a reference frame for which the shock is at rest.
The electric field associated with the upstream flow is Eu = −uu ×Bu, where the
index “u” denotes the upstream value. If we locally approximate the shock surface
with a plane, we can chose a reference system which moves parallel with the shock
surface such way that the upstream flow velocity becomes parallel with the upstream
magnetic field. In this reference frame, called de Hoffman - Teller frame (HTF), the
electric field is null and the particles follow simple orbits described by a combination
between uniform motion along the magnetic field and a gyrating motion around it.
The HTF velocity is (Kivelson and Russell 1995):

vHT =
n̂× (uu ×Bu)

n̂ · Bu

, (1.3)

n̂ being the shock normal.
In the simplest treatment, the shock is regarded as a MHD discontinuity. A

conservation law, with the general form

∂Q

∂t
+∇ · F = 0, (1.4)

reduces to a relation between the normal components of the upstream and down-
stream flux of the conserved quantity:

F u · n̂ = F d · n̂ (1.5)

In this approximation, the conservation of mass, momentum, and energy, together
with the Maxwell equations lead to a set of relations between the upstream and the
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downstream quantities, known as the Rankine - Hugoniot relations (see Kivelson
and Russell 1995). They describe MHD discontinuities, including shocks.

A discontinuity is a shock if the normal flow component is finite and compression
and dissipation occur. The change in the magnetic field strength determines different
kinds of shocks. They correspond in the weak shock limit to small amplitude MHD
waves. The fast MHD waves are associated with the fast shock, where the field
strength increases together with the plasma pressure in the downstream region. The
slow MHD waves are associated with the slow shock, where the plasma pressure
increases while the strength of the magnetic field decreases. However, since the
plasma density is not affected by Alfvén waves, no compression can occur, thus this
type of waves are only associated with a rotational discontinuity, sometimes improper
called Alfvén shock. The most common observed shocks in the Solar System are fast
shocks.

An important parameter which determines the properties of the shock, is the
propagation angle, or the angle between the upstream magnetic field and the normal
to the shock, θBn. The importance of the shock propagation direction becomes clear
when we look at the particles orbits in the HTF. For a quasi-parallel shock (θBn

close to 0◦), the particles escape upstream from the shock relatively easy, gyrating
along the filed lines. The escaping particles bring the information horizon ahead of
the MHD shock increasing the scale of the shock. This mechanism is responsible for
the formation of the foreshock in collisionless plasma (Tsurutani and Stone 1985;
Stone and Tsurutani 1985). On the contrary, for a quasi-orthogonal shock (θBn close
to 90◦), the gyrating particles are quickly dragged together with the field lines into
the shock.

The shock angle varies along the Earth bowshock, from quasi-orthogonal close
to the point where the IMF is tangent to the shock (figure 1.1), to quasi-parallel.
The upstream region region populated by reflected particles from the shock is called
foreshock. The fast particles beams interact with the solar wind plasma and excite
waves in the foreshock (Tsurutani and Rodriguez 1981).

Since the energetic electrons escape easier than the ions, there is a region in the
foreshock where we can find back-streaming electrons but almost no reflected ions.
This is the electron foreshock. The waves predominantly excited in the electron
foreshock are Langmuir waves (Kasaba et al. 2000). The reflected ions form the
ion foreshock for θBn > 70◦. Here they couple with the solar wind plasma through
ion-cyclotron waves.

1.4 The magnetosheath and the cusp

Behind the bowshock, the compressed, heated, and turbulent solar wind plasma
wraps around the deformed dipole of the Earth magnetic field. This region, bounded
upstream by the bowshock and downstream by the magnetopause is known as the
magnetosheath. The magnetosheath is an entirely open system with a tremendous
influx of energy from the solar wind. This energy excites a large number of waves
and is dissipated through turbulence and wave-particle interactions. At the lowest
order, the overall properties of the magnetosheath are determined by gas dynamics.

9
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However, the conditions at both boundaries control the magnetosheath.

One of the factors influencing the magnetosheath is the shock geometry. A quasi-
orthogonal shock leads to a large temperature anisotropy due to the effect of field
compression and plasma depletion along field lines (Crooker and Siscoe 1977). This
provides free energy for mirror mode and for ion-cyclotron waves growth. A quasi-
parallel shock generates more turbulence both upstream and downstream of the
shock. Small changes in the upstream conditions are greatly amplified downstream.

The magnetosheath inner boundary, the magnetopause, was first proposed by
Chapman and Ferraro (1931, 1932, 1933). It is formed where the pressure of the
magnetosheath balances the magnetic pressure of the Earth dipole. At this location a
large scale duskward thin current sheet develops. This current, called the Chapman-
Ferraro current, cancels the Earth magnetic field outside the magnetopause. At the
same time, close to the magnetopause, the inside dipole field is increased to about
twice its nominal value. Similar currents flow around the tail to confine the Earth
magnetic field. The magnetic field created by these currents have an important
contribution to the total magnetic field at the Earth surface.

Inside the magnetosheath, the direction of the magnetic field changes from paral-
lel with the IMF in the outer region to draped around the magnetopause in the inner
region. The southward/northward character of the IMF reflects into the direction
of the magnetic field close to the magnetopause. This determines if reconnection
(Treumann and Baumjohann 1997) will take place or not in the day-side magne-
topause. The reconnection has a great impact on the magnetosheath flow and struc-
ture. Southward IMF triggers reconnection at the magnetopause which increases
the efficiency of plasma and magnetic field transport in the north-south direction.
A northward orientation of the IMF inhibits the reconnection. As a consequence,
magnetic field piles up in front of the sub-solar magnetopause. Pressure balance
than requires that the thermal pressure in this region has to decrease. The result
is a region of depleted density and increased magnetic field called plasma depletion
layer.

The topological region separating the close from the open magnetic field lines of
the Earth deformed dipole field determines the plasma sheet boundary layer on the
tail side and the two cusps on the day-side magnetosphere. The cusps are funnel
shaped regions which provide a direct entry of the magnetosheath plasma into the
magnetosphere. The entry region extends only about three hours in local time and
about one degree in latitude. The magnetosheath plasma penetrating into the low
altitude cusp is responsible for the day-side auroral precipitation. Not only plasma,
but also parallel propagating waves are focused by the converging field lines into the
cusps up to the ionosphere increasing the coupling between the magnetosheath and
the magnetosphere.

1.5 The magnetosphere proper

The Earth magnetic field standing against the solar wind is produced by a dynamo
mechanism inside its fluid iron core (Braginsky 1964). Close to the dynamo region,
the complex magnetic field topology is the result of the superposition of many mul-
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Figure 1.3: In the Earth dipolar field, the motion of a charged particle has three components:
Gyration around the magnetic field line, bounce between the mirror points and drift around the
Earth. The direction of the drift motion depends on the charge sign, therefore a ring current is
produced. Figure adapted from Iver Cairns (http://www.physics.usyd.edu.au)

tipol orders with comparable magnitudes. As the distance to the core increases, the
high order contributions fade out and the field becomes mostly dipolar at the Earth
surface. The small scale departures from dipolar field at the Earth surface are mainly
due to crust magnetization. At 2RE from the center of the Earth, the magnetic field
is almost a perfect dipole.

The strength and the orientation of the dipole field varies with time. On geolog-
ical time scales, the magnetic field reversals are well known phenomena. However,
the variation of the Earth magnetic field also takes place for much shorter time
scales. In the last 400 years, the strength has decreased by 20% and the north pole
has drifted 45◦ westward and 7◦ southward (Barton 1989). Currently, the magnetic
dipole axis is tilted with 11◦ from the Earth rotation axis and the dipole moment is
8 · 1015 Tm3.

The dipole configuration of the Earth magnetic field can trap charged particles.
The trapped particles bounce between the mirror points and are subject to a drift
induced by the gradient and the curvature of the magnetic field (see figure 1.3).
Since opposite charges result in opposite drift directions, an electric current flows
around the Earth. The intensity of this current depends on the number of trapped
particles and can increase dramatically if new charged particles are injected into
trapped orbits e.g. by the arrival of a CME or because of a solar flare. The increased
ring current creates a magnetic field disturbance at the surface of the Earth, called
magnetic storm.

While the ring current is carried mostly by hot particles with the energy of keV
order, the same mechanism also traps particles with much higher energies (up to
10MeV) into the radiation belts (Van Allen et al. 1958, 1959). The radiation belts
overlap the lower part of the ring current domain, from an altitude of 1000 km up
to 6RE. Due to the very low density, the particle loss rate in the radiation belts
is very low. Energetic particles from the Starfish nuclear bomb (Brown et al. 1963)
detonated 400 km over the Pacific, remained trapped for over 5 years in the Earth
radiation belts (Hess 1968).

The collisionless character of the magnetospheric plasma makes possible for the
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1 The magnetosphere

ring current and radiation belts particles to occupy the same space. Moreover, a
cold neutral population of hydrogen atoms extending up to 4-5RE exists in the
same space. Restricted towards the equatorial and mid latitudes, the plasmasphere
also overlaps with the radiation belts. The plasmasphere co-rotates with the Earth,
it contains cold (1 eV), dense (100 cm−1) plasma of primarily ionospheric origin, and
merges smoothly with the ionosphere.

The solar wind stretches the Earth dipole in the anti-solar direction creating
a magnetic tail extending thousands Earth radii, far beyond Moon’s orbit (64RE)
(Dungey 1965; Villante 1977). The tail consists of two lobes with opposing magnetic
fields, separated by a region with null magnetic field called the neutral sheet. Inside
the lobes the plasma density is extremely low, much under 0.1 cm−1, and the mag-
netic pressure is much larger than the plasma pressure. The tail lobes store huge
amounts of energy which is released during substorms.

To maintain the pressure balance, the region in between the tail lobes is filled
with hot and relatively dense plasma (up to 1 cm−1) called plasma sheet. The plasma
sheet is between 4 and 8RE thick and it maps to the auroral oval. During magnetic
substorms plasma from this region is injected into the Earth ionosphere causing
auroral activity.
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2.1 Introduction

2.1 Introduction

The Cluster mission (Escoubet et al. 1997), consisting from four identical spacecraft
flying in formation, is the first multi-spacecraft mission to study the Earth magneto-
sphere and the near Earth solar wind. Simultaneous multi-point measurements allow
for the first time to separate spatial from temporal variations and to investigate the
three-dimensional small scale structures in the Earth’s plasma environment.

On 4-th of June 1996, in Kourou, French Guiana, the maiden flight of Ariane 5,
loaded with the four Cluster spacecraft, ended in disaster due to an error in the
Flight Control System software inherited from Ariane 4 (Lions 1996). A software
exception was caused by the execution of a data conversion from 64-bit floating point
to 16-bit signed integer value. The variable in question was the horizontal velocity
which was considerably higher than for Ariane 4. The Flight Control System issued
a diagnostic pattern interpreted as flight data by the On-Board Computer which
erratically commanded full nozzle deflections of the solid boosters and the Vulcain
main engine. As a consequence, 37 seconds after lift-off, the launcher started to
disintegrate and the self-destruct system was triggered.

In April 1997, the ESA Science Programme Committee approved the recovery
mission. The four re-builded Cluster spacecraft were launched in pairs on 16 July
and 9 August 2000, with Soyuz rockets from the Baikonur Cosmodrome. After the
orbital manoeuvres have been completed, the spacecraft were placed on close polar
orbits with the perigee at 4RE, the apogee at 20RE, and the period equal to 57 hours.
Due to the slightly different orbital parameters, the spacecraft form a tetrahedron
with a characteristic size which can be varied during the mission time from 200 km
to 20000 km. Different tetrahedron sizes allow the investigation of different scales.

The scientific payload consists from 11 instruments which can be grouped into
three categories: magnetic and electric field investigation, plasma waves investiga-
tion, and charged particles investigation. These are, of course, not strict categories.

Two instruments belong to the first category: The FluxGate Magnetometer
(FGM) (Balogh et al. 1997) for measuring the magnetic field, and the Electron
Drift Instrument (EDI) which measures the electric field using an electron beam
to probe the spacecraft surroundings (Paschmann et al. 1997). In contrast to the
“wave” instruments, these instruments are capable to measure static and slowly
variable electric and magnetic fields.

The Wave Experiment Consortium (WEC) (Pedersen et al. 1997) employs five
experiments which investigate plasma waves: The Spatio-Temporal Analysis of Field
Fluctuation experiment (STAFF) (Cornilleau-Wehrlin et al. 1997) measures high
frequency magnetic waves using a search coil magnetometer. The Electric Field and
Wave experiment (EFW) consists from four Langmuir probes deployed with 50m
cables in the spin plane to study electrostatic waves in plasma. Waves of HIgh fre-
quency and Sounder for Probing of Electron density by Relaxation (WHISPER)
(Décréau et al. 1997) is an active experiment which emits short pulses to detect
plasma echoes. The Wide Band Data (WBD) receiver (Gurnett et al. 1997) pro-
vides high resolution electric field waveforms. The Digital Wave Processing (DWP)
(Woolliscroft et al. 1997) does on-board data processing and coordinates the WEC
instruments.
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2 Instrumentation

Figure 2.1: The second Cluster pair and the Fregat upper stage ready for integration into the
Soyuz fairing. Location: The Upper Composite Integration Facility, Baikonur, Kazakhstan. Cour-
tesy of ESA.

The charged particles are investigated by the remaining four instruments. The
Cluster Ion Spectroscopy (CIS) experiment (Rème et al. 2001) provides the full
three-dimensional distribution function for the major ion species. Two top-hat sen-
sors are used to reach a compromise between the mass per charge resolution and the
angular resolution. One sensor, the Composition and Distribution Function analyzer
(CODIF) provides mass per charge plasma composition with relatively low angular
resolution, while the second sensor, the Hot Ion Analyzer (HIA) has high angular
resolution but no mass per charge resolution.

Based on the same principle as CIS-HIA, the Plasma Electron and Current Ex-
periment (PEACE) (Johnstone et al. 1997) measures the full velocity distribution
of the electrons every half spin period thanks to its two sensors, the Low Energy
Electron Analyzer (LEEA), and the High Energy Electron Analyzer (HEEA).

The energetic particles are detected by the two sensors of the Research with
Adaptative Particle Imaging Detectors (RAPID) instrument (Wilken et al. 1997).
One sensor, the Imaging Ion Mass Spectrometer (IIMS) detects the different ener-
getic ion species, while the other, the Imaging Electron Spectrometer (IES) detects
the high energy electrons.

All measurements involving charged particles are extremely sensible to the space-
craft electrostatic potential. The control and stabilization of this is the duty of the
Active Spacecraft Potential Control (ASPOC) experiment (Riedler et al. 1997). The
control is exercised through emission of indium ions with a total current up to 50µA.

Data from two experiments is extensively used in this work: the magnetic field
measured by FGM, and the plasma density and bulk velocity provided by CIS.
Therefore a more detailed description of these instruments is given in the following
sections.
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2.2 The fluxgate magnetometer

Many types of magnetometers measure the magnetic field by using the potential
difference produced by a change in the magnetic flux (Acuña 2002):

U = −N
dφ

dt
(2.1)

where N is the number of windings of the measuring coil. If we associate the vector
A = A n̂A to the area enclosed by a winding, the flux can be written as

φ = A · B = µA · H (2.2)

and the potential difference is

U = −NB
dA⊥

dt︸ ︷︷ ︸
rotating coil

−NµA⊥
dH

dt︸ ︷︷ ︸
searching coil

−NA · H
dµ

dt︸ ︷︷ ︸
fluxgate

(2.3)

The first term in the above expression is due to the variation of the orientation of
the sensing coil relative to the ambient magnetic field. Rotating coil magnetometers
(Nettleton and Llewellyn 1930) are using this term to measure static magnetic fields.

The second term is due to the variation in time of the ambient magnetic field.
Searching coil magnetometers (Séran and Fergeau 2005) are using this term to mea-
sure time variable magnetic fields. A triaxial search coil magnetometer is part of the
STAFF experiment (Cornilleau-Wehrlin et al. 1997) on-board Cluster.

The third term is due to the variation of the relative permeability with the
intensity of the magnetic field. Fluxgate magnetometers (Primdahl 1979) are using
this effect to measure static or low frequency magnetic fields.

A sketch illustrating the construction of a fluxgate magnetometer is shown in
figure (2.2). A pick-up coil is wounded around two parallel ferromagnetic cores made
from high permeability material. The ferromagnetic cores are periodically driven
deep in and out saturation by the drive windings. The strong nonlinear coupling
due to core saturation results in harmonics of the driven frequency in the pick-up
coil. The amplitude of the even harmonics is proportional to the component of the
magnetic field parallel with the cores.

Aschenbrenner and Goubau (1936) constructed the first fluxgate magnetometer
in 1928 using a bundle of soft iron florist wire for the core. Their theoretical treatment
was based on a simple mathematical model which approximated the magnetization
curve of the iron core, neglecting the hysteresis, with a third order polynomial:

B = aH + bH3 (2.4)

Inside each coil, the total magnetic field is the sum of the external and the driven
magnetic field. Because the driven magnetic field directions in the two coils are
anti-parallel, we can write:

H± = He ±Hd (2.5)
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Figure 2.2: Sketch of a fluxgate magnetometer. The two high magnetic permeability cores are
driven in and out saturation. The driven magnetic field ads to, respectively subtracts from the
external magnetic field. This asymmetry reflects into the potential induced into the pick-up coil.

then the total magnetic field in each coil is made from a symmetric and an antisym-
metric part:

B± = He(a + bH2
e + 3bH2

d)±Hd(a + bH2
d + 3bH2

e ) (2.6)

Only the symmetric part contributes to the total flux through the pick-up coil:

φ = φ+ + φ− = 2AHe(a + bH2
e + 3bH2

d) (2.7)

Assuming time independent external magnetic field, the potential difference in the
sensing coil is proportional with the external field:

U = −12bNAHeHd
dHd

dt
(2.8)

For a sinusoidal driver current

Hd = c sin(ωt), (2.9)

the signal in the pick-up coil is the first harmonic of the driver frequency:

U = −6bc2ωNAHe sin(2ωt) (2.10)

The fluxgate magnetometers (Balogh et al. 1997) on-board Cluster use a variation
of the geometry shown in figure (2.2). The two cores are connected to form a ring
core sensor. This configuration results in a more stable and energy efficient sensor.

To minimize the effect of the magnetic field created by the other instruments and
to help the in-flight calibration, each spacecraft is equipped with a pair of triaxial
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Figure 2.3: Top-hat electrostatic analyzer. The potential difference between the inner and the
outer plate deflects and focuses the charged particles (red trajectories) on the position-sensitive
detector (green). Only particles with selected energy per mass are transmitted.

fluxgate magnetometers, one at the end of a 5m long radial boom, and the second
1.5m inboard from the tip of the boom. The (inter)calibration of the magnetome-
ters is very important since the essential phase information lies in the differences
between spacecraft. All eight fluxgate magnetometers have been calibrated at the
Magnetsrode facility (Lühr 1984) of the IGeP Braunschweig. The calibration was
done for the sensitivity factors, the offsets, the orthogonality, and the alignment of
the sensors.

The fluxgate magnetometers provide high sample rates (up to 67 vectors/s) at
high resolution (up to 8 pT). They also provide the measured magnetic field to other
instruments through the Inter-Experiment Link (IEL) to coordinate measurement
sequences.

2.3 The Cluster ion spectroscopy experiment

The Cluster Ion Spectroscopy (CIS) experiment (Rème et al. 2001) is designed to
obtain the full three-dimensional ion distributions with mass per charge composition
determination with time resolution of one spacecraft spin. It covers a wide dynamical
range using two top-hat electrostatic analyzers (DeSerio 1989): the Hot Ion Ana-
lyzer (HIA), and the Composition and Distribution Function (CODIF) analyzer. To
minimize the telemetry rate, moments of the distribution functions are computed
on-board by a sophisticated dual-processor instrument-control and Data Processing
System (DPS).

Top-hat electrostatic analyzers are symmetric optics instruments which provide
continuous and uniform phase space coverage. Figure (2.3) illustrates the principle
of a top-hat electrostatic analyzer. It consists from a small circular top cap which
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defines the entrance aperture, an outer hemispherical or toroidal plate with a circu-
lar opening, and an inner hemispherical or toroidal plate. The potential difference
applied between the inner and the outer plate selects only particles with a limited
range of energy per mass ratio to be transmitted. A parallel beam of ions suffers
a 90◦ deflection and is focused to a position-sensitive detector system (Sablik et al.
1988). The exit position reflects the incident polar angle. The spacecraft spin axis is
orthogonal on the analyzer symmetry axis which results in scanning of the azimuth
angle with the spacecraft twice the spin frequency. The rotational symmetry results
in a 360◦ polar angle field of view with uniform focusing characteristics.

HIA uses the spherical variant of the top-hat electrostatic analyzer (Carlson
et al. 1982) with micro-channel plate (MCP) electron multipliers and position en-
coding discrete anodes. It does not provide mass discrimination, instead it offers
high angular resolution, appropriate for the investigation of cold ion beams such
as the solar wind. To cope with highly variable plasma characteristics, it has two
180◦ field of view sections with different sensitivities. The low gain section uses
8×5.626◦+8×11.25◦ detecting sectors. Two sectors, each of 22.5◦, positioned close
to the rotation axis remain blank. The high gain section is equally divided into 8
sectors, each of 11.25◦. For each sensitivity section, a full 4π steradian scan is com-
pleted every spacecraft spin. The azimuth resolution of 5.625◦ is determined by the
64 times per spin voltage sweep rate. The instrument is capable to detect particles
with energies between 5 eV/e− and 30 keV/e−.

The CODIF experiment is based on the toroidal variant (Young et al. 1988) of
the top-hat electrostatic analyzer combined with a time-of-flight section in order to
provide mass resolution for the major ion species (H+, He+, He++, and O+). The
advantage of the toroidal design is the longer focal length needed to accommodate
the time of flight section. Similarly with HIA, CODIF also has two 180◦ field of view
sections with different sensitivities. This is accomplished by placing an attenuation
grid at the exit of the toroidal section. Half of the grid has a 1% transmission factor
while the other half has a 95% transmission factor. The polar range is equally divided
into 16 sectors, each spanning over 22.5◦. The energy sweep is performed 32 times
per spin, thus the azimuth resolution is 11.25◦. The energy range of the instrument
is from 15 eV/e− to 40 keV/e−, extended toward lower energies with the help of a
retarding potential analyzer.

CODIF uses a time-of-flight spectrometer (Möbius et al. 1985) to resolve the
different plasma species. This section lies between the exit from the deflection plates
and the solid state detector. The timing information is obtained by inserting a
thin (3µg/cm2) carbon foil 3 cm above the detecting micro channel plate. The start
signal is provided by the secondary electrons emitted from the carbon foil during
the passage of the ions. The detection of the ions at the MCP marks the stop time.
Knowing the velocity and the energy per charge of the detected ions, their mass per
charge can be deduced.

The full output from CIS exceeds by far the telemetry capabilities of Cluster.
Therefore, the on-board Data Processing System (DPS) computes moments and
reduced distributions from the full three dimensional distributions. The moments of
the distribution function, up to the third (i.e., the particle density, the flow velocity,
the pressure tensor, and the heat flux vector) are computed and transmitted with
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the spacecraft spin rate. To calculate the moments, the integrals over the velocity
space are approximated by sums over the count rates. Additionally, reduced two
dimensional pitch angle distributions and averaged snapshots of three dimensional
distributions are computed and transmitted in certain telemetry modes.

21





3

Virtual interference techniques

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Virtual interference and patterns . . . . . . . . . . . . . . 25

3.3 Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Capon technique . . . . . . . . . . . . . . . . . . . . . . . . 36





3.1 Introduction

3.1 Introduction

The use of sensor arrays is common in seismology and oceanography where powerful
methods have been developed in order to take maximum advantage on the informa-
tion provided. We are interested in a particular class of techniques which combine
multi-sensor measurements using appropriate weights (patterns) to determine the
properties of the wave field (Capon et al. 1967; Booth and Mohnkern 1994). We will
refer to these techniques as virtual interference techniques (VIT). These methods
have been mostly used for elastic waves in solids or fluids and for large number of
sensors (up to thousands). Nevertheless, the four Cluster spacecraft form an array
of sensors which provide us with measurements of plasma properties such as mag-
netic and electric field, hence adapting VIT for waves in space follows naturally
(Motschmann et al. 1995; Pinçon and Motschmann 1998; Glassmeier et al. 2001).

The most direct VIT, beamforming technique, has the advantage of simplic-
ity and is a good starting point for understanding how virtual interference works.
However, due to its limited resolution it cannot be used for data processing for
arrays with low number of sensors such as Cluster. Capon (1969) has optimized
this method developing a tool with much better resolution than the beamformer.
Under the assumption of plane waves, the Capon technique have been successfully
applied to Cluster data for finding the propagation direction of waves (Glassmeier
et al. 2001; Sahraoui et al. 2003) and in conjunction with a mode decomposition
technique (Motschmann et al. 1998) have been used to find the first experimental
dispersion relation in space (Narita et al. 2003).

In the general framework, no assumption is made about the wavefront geometry
of independent sources. However, most applications in space physics are using the
plane waves representation. There are situations in which more information can be
extracted by selecting another representation. It is the purpose of this chapter to
present the VIT in a general framework and to show how the methods are applied
in the particular case of plane waves representation. This is preparing the ground
for the next chapter, dedicated to the spherical waves representation.

3.2 Virtual interference and patterns

The central idea of VIT is to combine the measured values from an array of S
sensors X = (X1, . . . , XS)T with a test pattern w = (w1, . . . , wS)T depending on
the parameters q = (q1, . . . , qM)T in order to construct the output power P = P (q)
which should maximize when q coincides with the parameters of the wave field being
measured. The measured values X can correspond to any physical quantity which
obey a wave propagation law, such as displacement for seismic waves, pressure for
acoustic waves, electromagnetic field for radar or spacecraft observations. The test
pattern is chosen depending on the problem to study. It acts like a base for the
observed wave field and have to be normalized, i.e. ‖w‖ = 1. The way of construct-
ing the power differentiates between different VIT methods (beamforming, Capon
technique, etc)

With a proper choice of w, the values measured by the sensor positioned at rs
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in a wave field generated by N sources with the parameters q1, . . . , qN which we
group under the notation Q, can be written as:

Xs = X(Q, rs, t) =
N∑

n=1

cnw(qn, rs, t) (3.1)

In other words, the measured wave field is a superposition of elementary waves w
produced by N sources. We define the array output for the set of parameters q as
the projection of the measured values vector X on the test pattern w corresponding
to q 1

XA(q) = 〈w(q, r, t)|X(Q, r, t)〉r,t (3.2)

If w form an orthogonal system, i.e.

〈w(q, r, t)|w(q′, r, t)〉r,t = δ(q − q′) (3.3)

then

XA(q) =
N∑

n=1

cnδ(q − qn) (3.4)

We define the output power as the square of the norm of the array output

P (q) = ‖XA(q)‖2 (3.5)

The above defined power differs from zero only when the set of parameters q coin-
cides with the parameters of one of the sources. Assuming that each elementary wave
is associated with a source, the power corresponding to the source n, P (qn) = |cn|2,
represents the contribution of that source to the wave field. In principle all we have
to do is to scan the parameter space and look for peaks in in the power P . In practice
the scanning procedure uses finite steps in parameter space. This corresponds to a
reduction of the original set {w(q, r, t)} which normally covers an infinite number
of elementary waves to a finite set where only the scanned q values appear. This
changes the δ function in the orthogonality relation (3.3) into a finite function with
maxima at the sources parameter positions. For the definition of array power for
vector signals see Appendix (A.2).

The simplest pattern we can think of is the Fourier pattern (Glassmeier and
Motschmann 1995)

w(ω, t) =
1√
2π

e−iωt (3.6)

Of course, this pattern leads us to the usual Fourier analysis:

〈w(ω, t)|X(Ω, t)〉t = X̃(ω) (3.7)

P (ω) = ‖X̃(ω)‖2 (3.8)

The tilde sign denotes the Fourier transformation. In this case our array consists
from one single sensor and the parameter space {q} = {ω} is the one dimensional

1The meaning of 〈·|·〉 is defined in Appendix (A.1)
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(b)

(a)

(c) (d)

Figure 3.1: Example of patterns: (a) Fourier pattern, (b) Plane wave pattern, (c) Spherical wave
pattern and (d) Cylindrical wave pattern

frequency space. Therefore using Fourier analysis we can determine the frequencies
which are present in a wave field. The Fourier pattern satisfies the orthogonality
condition (3.3) if the measurements are extended over an infinite time interval:

〈w(ω, t)|w(ω′, t)〉t =
1

2π

∫ ∞

−∞
eiωte−iω′tdt = δ(ω − ω′) (3.9)

However, Fourier analysis is used for finite time intervals. If the wave field is gener-
ated by several sources with different frequencies we will find local power maxima
corresponding to those frequencies.

The next pattern in terms of complexity is the plane wave pattern

w(k, ω, rs, t) =
1

4π2
ei(k·rs−ωt) (3.10)

which leads us again to Fourier analysis, this time in four dimensions. The orthog-
onality relation (3.3) is in this case

〈w(k, ω, r, t)|w(k′, ω′, r, t)〉r,t = δ(k − k′)δ(ω − ω′) (3.11)

We note that the above orthogonality relation implies measurements over an
infinite period in time and with an infinite number of sensors. However, in practice
the integral in time changes to a sum over time samples and the integral in position
space changes to a sum over available sensor positions. To preserve the normalization
for the discrete case, the pattern is changed to

w(k, ω, rs, tj) =
1√

SNT

ei(k·rs−ωtj) = wsj(k, ω) (3.12)
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3 Virtual interference techniques

where NT is the number of time samples. Since (3.4) no longer holds for discrete
samples, the power is no longer represented by delta functions. However, even for a
small number of sensors we will still obtain local maxima. Plane wave representation
is by far the most common used for array sensing. This representation allows for
determining the frequency ω and the k vector.

Because spatial and temporal dependence of the pattern can be separated

w(k, ω, r, t) = w(k, r)w(ω, t), (3.13)

the array output (3.2) becomes:

XA(k, ω) =

S∑
s=1

w?(k, rs) 〈w(ω, t)|X(Q, rs, t)〉t =
S∑

s=1

w?
s(k)X̃s(Q, ω) =

w†(k)X̃(Q, ω) (3.14)

In practice this separation is very useful because allows us to treat differently the
spatial variations (for which we often have a limited number of sensors) from the
temporal variations (which can contain a fairly large number of measurements). An
effective method is to apply a fast Fourier transform in order to obtain X̃(Q, ω) for
the dominant frequencies and then compute the power P (k) over a k-domain for
these frequencies (Glassmeier et al. 2001).

Equation (3.14) gives us a direct way to find the dispersion relation for the
measured wave field. We only have to integrate the array output over all arrival
directions:

XA(k, ω) =

∫
XA(k, ω)dθkdϕk = w†(k)X̃(Q, ω) (3.15)

where

ws(k) =
2π√
S

∫ π/2

−π/2

eikrs cos θdθ (3.16)

The resulting power P (k, ω) will map the dispersion relation.
For patterns that can be separated in two factors, one containing the spatial

variables and the other the temporal ones w(qr, qt, r, t) = w(qr, r)w(qt, t) we define
the pattern dimension as the dimension of the vector qr. In this respect the Fourier
pattern is zero dimensional and the plane wave pattern is three dimensional. The
pattern dimension is a measure of the quantity of information we can extract by
using it. The computing time needed for mapping the power in the pattern parameter
space increases exponentially with the pattern dimension.

An example of a four dimensional pattern is the spherical pattern shown in the
figure (3.1 c).

w(rsource, k, ω, r, t) = w(ρ, k, ω, r, t) = C
1

ρ
ei(kρ−ωt) (3.17)

where C is a normalization coefficient. The dependence on the source and sensor
positions is hidden in ρ = ‖r − rsource‖ which is the distance source-sensor. The
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3.3 Beamformer

parameters on which this pattern depends are the source position, wave number
and frequency. Compared to the plane wave representation, the spherical wave rep-
resentation allows for the determination of the distance to the source in addition to
the propagation direction, wave number and frequency.

We can go further and define more complex patterns. For instance, for a mirror
wave field we could try a pattern like the one in the figure (3.1 d) which illustrates
the magnetic field configuration for a mirror structure in magnetohydrostatic equi-
librium (Constantinescu 2002). However, we still have to concern ourselves with the
orthogonality of the function set we choose to represent the pattern and to be aware
that increasing complexity means increasing the dimensionality of the parameter
space. The simplest cylindrical pattern is already six dimensional: three parameters
for position, one for the wave length and two parameters for the symmetry axis
orientation. Though it provides more information it also dramatically increase the
computing time. Moreover, as we move towards more complex patterns we lose gen-
erality and we need do justify their use. For identifying such complex patterns a
better approach might be to directly fit the model pattern on the measured data
(Constantinescu et al. 2003). We apply this method to Cluster magnetic field data
in section 5.4.

3.3 Beamformer

In this section we will discuss in detail the beamformer technique for plane waves
which is nothing more than Fourier analysis in four dimensions. However, Fourier
analysis assumes a sufficient number of samples for each dimension, providing a
system of functions which acts like a basis. The small number of sensors is what
makes our situation special. This discussion will serve as an introduction to the
Capon technique for plane and spherical waves in Section (3.4).

Our goal is to study a wave field composed by a superposition of N plane waves:

X(K,Ω, r, t) =
N∑

n=1

xne
i(kn·r−ωnt) (3.18)

where K contains the wave vectors kn of all sources and Ω contains the frequencies
ωn.

We will use the plane wave pattern defined by the equation (3.12) which we can
split into the position dependent part and the time dependent part:

wsj(k, ω) = ws(k)wj(ω) (3.19a)

ws(k) =
1√
S

eik·rs (3.19b)

wj(ω) =
1√
NT

e−iωtj (3.19c)

Therefore we could express the array power in terms of the Fourier components of
the measured field (equation 3.14). However, in order to illustrate the technique we
prefer not to separate the spatial part from the temporal one yet.
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3 Virtual interference techniques

These elementary waves are normalized but they do not form an complete or-
thogonal system because the time t and the components of the position vector r
take now discrete values.

To investigate the properties of the the power (3.5) we consider a wave field
composed only from one wave X(k′, ω′, r, t). The array output is

XA(k, ω) =
x√
SNT

S∑
s=1

NT∑
j=1

ei[(k′−k)·rs−(ω′−ω)tj ] (3.20)

The power reaches indeed its maximum when the the wave vector k matches the
wave vector k′ and the frequency ω matches ω′. 2

P (k, ω)
∣∣∣
k=k′
ω=ω′

= max = SNTx2 (3.21)

Unlike the power for the case when the pattern functions form an orthogonal system,
it does not vanish for “wrong” arguments.

P (k, ω)
∣∣∣k 6=k′

ω 6=ω′
6= 0 (3.22)

To see how the number of sensors affects the output power, let us consider an
one dimensional array of equally spaced sensors measuring a sine wave. The array
extends over about two wave lengths. Figure (3.2 b) represents the signal and the
sensor positions. The corresponding powers are shown in figure (3.2 a).

Indeed, the power spectrum is far from ideal. Moreover, it seems that apart from
shifting the Nyquist threshold toward higher wave numbers, increasing the number
of sensors alone does not improve the spectra around the frequency of interest. This
is because the broadness of the maximum depends on the number of oscillations in
the sample and we have only two oscillations in our example.

To illustrate the dependency of the Fourier power on number of oscillations
contained in the data interval we measure a sine wave with a wavelength λ = 1m
(k=6.28m−1) using 512 sensors equally distributed on intervals of lengths of 3, 10,
50 and 150 λ. The resulting power spectra are shown in figure (3.3). It can be seen
that the less oscillations are contained in the measured interval, the larger is the
deviation of the power from a delta function.

According to the Nyquist theorem the minimum wave length which can be mea-
sured is twice the distance between sensors. If we try to go under the Nyquist length,
we begin to see maxima corresponding to multiples of the real wave number. This
phenomenon is called aliasing and it limits drastically the k domain which can be
measured by the array. These additional maxima can be seen in the figures (3.2 a)
and (3.3) above the Nyquist thresholds. As a consequence of the Nyquist theorem
the interval which can be covered by an array of S sensors for a given wave length
λ cannot be larger than Sλ/2. In other words, the signal sample should not contain
more than S/2 oscillations. Hence the broadening of the main power maximum and
the apparition of side lobes are indirect consequences of the Nyquist theorem.

2It could be convenient to redefine the power as P = ‖XA‖2/SNT so its maximum would
depend only on the measured wave field
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Figure 3.2: The power of the same signal computed using different number of sensors equally
distributed over the same interval. The Nyquist thresholds for the arrays of 4 and 11 sensors are
represented by vertical lines in (a). For the 512 sensors array the Nyquist threshold falls far outside
the graph limits (3.14 m−1).

When more waves come into play, the main peaks will merge and the the presence
of side peaks will make the interpretation of the power spectrum very difficult if not
impossible especially if we allow for waves of different powers (Motschmann et al.
1995) unless the number of sensors is large enough. The solution will be discussed
in Section (3.4). For now we will limit ourselves to the one plane wave case.

3.3.1 Application to synthetic data: Plane waves

In what follows we will apply the beamformer technique for various sensor geometries
to synthetic data set representing a plane wave of frequency ω′ and wave vector k′.
For each sensor there are a number of 512 measurements taken with a frequency of
1Hz. All results are expressed in the array reference system which has its origin in
the center of mass of the sensor array. The z axis goes through the most distant
sensor from the center of mass and the next distant sensor belongs to the (z, y)
plane, y ≥ 0. The advantage of using this reference system is that is unique for a
given configuration (assuming that the sensors are not equally distanced from the
center of mass). We compute the power on a grid of dimensions 30× 30× 30× 30.
The first dimension is for the longitude of the wave vector, ranging from −180◦ to
180◦. The second dimension is for the latitude of k, from −90◦ to 90◦. The third
dimension is for the frequency ω ∈ (0, ωNyquist). The fourth and last dimension is for
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Figure 3.3: The power of the same signal computed using 512 sensors equally distributed over
3, 10, 50 and 150 λ. The Nyquist threshold for the longest interval is 10.71 m−1

the wave number k ∈ (0, kNyquist). The results for all array geometries used here are
summarized in table (3.1).

The first array we are using consists of a string of 50 equally spaced sensors
with a distance of 10 km between them. The z axis of the array reference system
is along the string direction and its origin is in the middle of the string. The plane
wave to be analyzed is launched at a latitude θ′ = 60◦ and a longitude ϕ′ = 40◦

having a frequency ν ′ = 0.2Hz and a wave length λ′ = 33 km. This gives about
100 wave periods and 15 wave lengths included into the measured interval which
should provide enough resolution both in space and in time for determining the
wave parameters. We are also on the safe side concerning the Nyquist thresholds:
ν ′ < νNyquist = 0.5 s, and λ′ > λNyquist = 20 km. In figure (3.4) we show sections
through the resulting output power. Each section contains the point of maximum
power. One feature to be noticed is the independence of the power on longitude.
This is due to the rotational symmetry of the sensor array. Obviously we cannot
determine the longitude of an incoming wave using a string array. What is not so
obvious is that we cannot determine neither the latitude nor the wave number.

The power maximizes when the exponent in eq. (3.20) becomes zero for all the
sensors at all times. For a string array, the position dependent part of the exponent
becomes

(
k′ cos(π/2 − θ′) − k cos(π/2 − θ)

)
rs. That means that the output power
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Figure 3.4: Beamformer output power for one plane wave detected with a string array consist-
ing of 50 sensors aligned with z axis. Note that only the latitude of the incoming wave can be
determined using this configuration.

maximizes for any combination (k, θ) which satisfies

k sin θ = k′ sin θ′ (3.23)

This can be clearly seen in the (k, latitude) section in the figure (3.4) where the
power reaches its maximum according to equation (3.23). We can still determine
from which hemisphere the wave comes (North or South) and we can determine a
minimum value for the wave number which is given by the power maximum at ±90◦

latitude.
k′ ≥ k

∣∣∣
latitude=±90◦
P=maximum

(3.24)

The string array fails to give a complete description of the wave field because
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Figure 3.5: Beamformer output power for one plane wave detected with a tetrahedron array.
While the resolution in frequency is good, the power maximum in the wave vector domain is very
broad.

it covers only one dimension in a three dimensional space. Similarly, a sensor array
with a planar configuration would be unable to provide an unambiguous image
of the measured field. Therefore, in order to determine the wave vector we need
the sensors arranged in a three dimensional configuration. The minimum number
of sensors needed for this is four. The output power from a regular tetrahedron
configuration with a distance of 10 km between sensors for a plane wave with same
parameters as used before is shown in the figure (3.5). This time we can determine
both the magnitude and the direction of the k vector with good accuracy. The power
maximum is sharp for the frequency but very broad for the k vector. This is due to
the small number of sensors we are using. The presence of an additional wave would
rise difficulties in interpreting the power spectrum.
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Figure 3.6: Beamformer output power for one plane wave detected with a cube cube array
consisting of 64 sensors. The resolution in the wave vector space is improved by increasing the
number of sensors. However, thousands of sensors are needed to resolve more than one wave
using this technique.

One way to get around this problem is to increase the number of sensors. In
the figure (3.6) we display the output power obtained using an array consisting
of 64 sensors arranged in a cube with a distance of 10 km between two adjacent
sensors. The parameters of the measured wave are the same as before except the
wave length which is now 29 km. A comparison with the figure (3.5) shows that
increasing the number of sensors sharpens the maxima in power which would make
the investigation of real multi-wave fields possible. Since at this time in space physics
the largest number of sensors which can be used as an array is four, we have to find
a way to make the power maxima sharper without increasing the number of sensors.
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3 Virtual interference techniques

String Tetrahedron Cube

data result data result data result

longitude (deg) 40 - 40 43 40 43

latitude (deg) 60 - 60 58 60 59

frequency (rad/s) 1.22 1.19 1.22 1.2 1.22 1.2

wave number (km−1) 0.19 >0.17 0.19 0.19 0.22 0.22

Table 3.1: Beamformer results for a single plane wave using various sensor array configurations.
To uniquely determine the wave vector, a three dimensional configuration consisting of at least four
sensors is required.

3.4 Capon technique

The weak point of the beamformer technique results from artificial contributions to
the power at points in the parameter space which do not correspond to any real
wave source. A remedy is to minimize these contributions while keeping the power
corresponding to the real wave sources unmodified. This is accomplished by Capon’s
minimum variance estimator (Capon et al. 1967).

We have to find a new set of elementary waves {h(q)} which satisfy the problem:

min‖XA‖2 = min
|h〉

〈h|X〉〈X|h〉 subject to 〈h|w〉 = 1 (3.25)

The new weights are found as

|h〉 =
(|X〉〈X|)−1

〈w| (|X〉〈X|)−1 |w〉
|w〉 (3.26)

which gives the new expression for the power:

P =
[
〈w| (|X〉〈X|)−1 |w〉

]−1
(3.27)

For the sake of simplicity we have limited ourselves to scalar fields. Nevertheless,
these considerations are easily extended to vector fields as well (see Appendix A.2).

3.4.1 Application to synthetic data: Plane waves

The expression (3.27) for the array power has been deduced independent on the
choice of the system of elementary waves {w}. Here we are going to show how the
Capon technique is applied in the particular case when the system {w} consists of
plane waves (equation 3.12).

For discrete position space the power can be written in a more familiar vector
notation:

P (ω, k) =
[
w†(k)M−1(ω)w(k)

]−1
(3.28)
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3.4 Capon technique

where

[M(ω)]ij = X̃?
i (ω)X̃j(ω) (3.29)

and

wj(k) =
1√
S

eik·rj (3.30)

The indexes i and j run over the position space i.e. over the sensors.
The separation of space and time in (3.28) is accomplished by applying the

time domain Fourier transformation (3.7) on the measured data. Our strategy is
to find the frequency ω0 of the dominant wave by analyzing the Fourier power
spectrum (3.8) for each sensor and then to compute the array power (3.28) for
ω0 fixed for each point of a grid in the three dimensional wave vector space. The
position in the k-space for which the resulting array power maximizes is giving the
wave vector k0 corresponding to the wave with frequency ω0. Of course, if there
are multiple waves with different frequencies discernible in the time domain Fourier
transformation, the procedure can be repeated for each of them since the wave
vector corresponding to a frequency ω1 will not influence in any way the array
power computed for a different frequency ω2. On the other hand, two waves having
frequencies closer than the resolution of the time domain Fourier transformation will
both appear in the computed array power, resulting in local maxima corresponding
to their wave vectors. Depending on the number of sensors in the array and on
their spatial configuration these maxima will or will be not resolved. Note that the
previous scenario does not include coherent waves. The resulting interference pattern
would render the method unusable.

On the invertibility of M

As can easily be seen from (3.29), the matrix M has elements of the form viv
?
j being

therefore singular. Nevertheless, we need to compute the array power (3.28). One
way to do this is to apply a regularization procedure.

Assume that we are interested in the frequency ω0. The time resolution of our
measured data is ∆t which gives a frequency resolution of ∆ω(N) = 2π/(N∆t)
where N is the number of samples in the data interval. We use the notation X̃|t2t1(ω)
for the result of the Fourier transformation applied to the data subinterval between
t1 and t2. The Fourier transform of one data interval, measured by the s sensor,
containing N ′ < N data points, shifted with pl data points from the moment t0 and
corresponding to a frequency shifted with m∆ω(N ′) from the frequency of interest
ω0, is:

X̃ lm
s (ω0) = X̃s

∣∣∣t0+(pl+N ′)∆t

t0+pl∆t

(
ω0 + m∆ω(N ′)

)
(3.31)

Then we construct the M matrix by averaging both in the time and in the frequency
domain:

[M(ω0)]ij =
1

L(2M + 1)

L−1∑
l=0
time

M∑
m=−M

frequency

[
X̃ lm

i (ω0)
]?

X̃ lm
j (ω0) (3.32)
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Figure 3.7: Model data for two plane waves. The first four panels illustrate the measured data,
the fifth shows the corresponding Fourier power spectra. The frequencies (ω′) of the waves are
100.2 rad/s, respectively 99.6 rad/s. Note that the two waves cannot be resolved by Fourier anal-
ysis even without averaging.

The M matrix obtained this way is no longer singular and can be inverted. The
price to be paid is a decreased frequency resolution. We loose resolution once by
mixing frequencies when we do the frequency averaging and second by applying the
Fourier transformation on a shorter interval (the number of samples is reduced from
N to N ′).

The scheme we use in practice to achieve good results with minimum of frequency
resolution loss is the following: We start with an interval containing N = 2n, n > 7
data samples. For the time averaging we use 16 overlapping intervals, each half the
dimension of the original interval i.e. N ′ = 2n−1 and L = 16. In order to use the
whole data available we have to choose p = 2n−5. This strategy also provides the
fast Fourier transformation algorithm used for processing the data with a power
of two number samples which is needed for maximum efficiency. For the frequency
averaging we choose M between 1 and 3 which adds between 2 and 6 neighboring
frequencies to the one for which the analysis is done.

Preparing the data

We are going to apply the Capon technique on synthetic data representing var-
ious wave fields measured with various sensor array configurations. Since we are
interested to find out how the method behaves when more waves with very close
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frequencies (indiscernible by the Fourier transformation but still not identical) are
simultaneously measured we simulate a random deviation from the given frequency
ω0:

ω′ = ω0

[
1 + εω rnd(−1, 1)

]
(3.33)

where rnd(x, y) is a random number between x and y, and εω represents the amount
of deviation from the given value. In what follows we usually analyze data intervals
with length of 100 wave periods. In an ideal case this would provide a frequency
resolution ∆ω = ω/100 but since we use the regularization technique previously
described the resolution in frequency domain is reduced under ω/50 due to time
averaging and even more due to frequency averaging. This is the value we choose
for εω to assure the waves will not be resolved by Fourier filtering. The frequency ω0

is chosen to be 100 rad/s and the data interval for one sensor consists of 512 time
samples.

The model field corresponding to one plane wave is

X(k′, ω′, r, t) = X0

[
<
(
exp{i(k′ · r − ω′t + ϕ)}

)
+ εX rnd(−1, 1)

]
(3.34)

The second term in the above expression represents the random noise with the level
specified by εX . We typically choose a value of 1/10 for this parameter.

The phase ϕ is also randomly chosen. To take into account errors in in positioning
of the sensors, rs is transformed into r′s:

r′s = rs + εrrnd(−1, 1) min
i,j

(|ri − rj|) (3.35)

The error magnitude is given by εr and for our model data is equal to 1/100. The final
model data is obtained by summing over the desired number of waves. An example of
such synthetic data representing two plane waves measured by four sensors arranged
in a regular tetrahedron configuration is shown in figure (3.7).

Wave vector determination

The first case we are going to investigate is one plane wave detected with a regular
tetrahedron sensor array. As shown in section (3.3.1) the tetrahedron configuration
requires the minimum number of sensors to uniquely determine the wave vector.
The distance between sensors is 10 km. As we did for the beamformer technique,
we use the array reference system. The model data was produced with a frequency
ω′ = 98.37 rad/s and a wave length λ′ = 26 km. The model wave propagates along a
direction given by 40◦ longitude and 60◦ latitude. We first Fourier analyze the whole
512 s model data to determine the wave frequency. The result is ω = 98 rad/s which
will be used as analysis frequency for the Capon technique. Following the procedure
described on page 37 we compute the M matrix averaged in time and frequency
domain. The matrix M now contains all the information about the measured data
which will be used in our analysis and no assumption yet about the wave field. Only
when we calculate the array power (3.28) using the plane waves (3.30) as elementary
waves do we treat the measured field as a superposition of plane waves.
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Figure 3.8: Array power for one wave detected with a regular tetrahedron array sensor. The
real location of the wave vector is represented by the plus sign. In the longitude – latitude plot the
sensor locations are represented by squares.

ω (rad/s) k (km−1) longitude (deg) latitude (deg)

data 98.4 0.240 40.0 60.0

result 98.0 0.242 40.4 60.6

Table 3.2: Capon technique results for one plane wave detected with a regular tetrahedron
sensor array. Both the frequency and the wave vector are well determined.

The array power computed on a grid of 50×50×50 points in a sphere with radius
kNyquist in the wave vector space is shown in figure (3.8). The power maximum lies
at the correct position and is not only much sharper than the maximum for the
beamformer using the same array configuration but is even much sharper than the
maximum for the beamformer using 64 sensors in figure (3.6). The wave vector
deduced from the position of the maximum array power and the input values used
for generating the model data are given in table (3.2).

We have seen in section (3.3.1) that the beamformer technique is unable to
analyze a wave field consisting from more than one wave when using a tetrahedron
sensor array. To find out if the Capon technique can deal with multiple waves with
close frequencies detected with a tetrahedron sensor array we analyze simulated
data which consists from two plane waves with the frequencies of 99.6 rad/s and

Wave 1 Wave 2

data result data result

longitude (deg) 40 40.4 -30 -33.1

latitude (deg) 60 60.6 20 16.5

frequency (rad/s) 99.6 100 100.2 100

wave number (km−1) 0.242 0.244 0.134 0.135

Table 3.3: Capon technique results for two plane waves detected with a regular tetrahedron
sensor array. Both waves are well recovered from the data.
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Figure 3.9: Array power for two waves detected with a regular tetrahedron array sensor. The
symbols have the same meaning as in figure (3.8). The power maxima become wider than for the
single wave case but they are still well defined.

100.2 rad/s. The 99.6 rad/s wave has the same wave vector as for the single wave
case (wave length: 26 km, longitude: 40◦, latitude: 60◦) while the 100.2 rad/s wave
has a wave length of 47 km and its propagation direction is given by a longitude of
−30◦ and a latitude of 20◦. Both waves have the same amplitude. We use the same
array configuration as we did for the single wave. The simulated data is shown in
the figure (3.7). The slightly different frequencies give rise to the beats visible in the
data panels but they are not resolved in the power spectra.

We compute the output power the same way as for the single wave and we are
able to identify two local maxima corresponding to the two waves modeled. The
figure (3.9) shows slices through the resulted output power. The wave vectors for
the both waves are accurately determined by the position of the power maxima, the
results being given in the table (3.3). This demonstrates that the Capon technique
can be used for wave vector determination with a tetrahedron array configuration
in real situations when more than one wave is detected.

If we simulate three or more waves having the same amplitude, the power maxima
become wider and begin to shift from the correct positions and to merge. Note that
this problem only occurs when the waves can not be resolved by Fourier analysis.
Nevertheless, if one of the waves dominates the others, its wave vector is still correctly
determined by the absolute maximum in the output power.

To resolve many waves with frequencies closer than Fourier analysis resolution
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Figure 3.10: Array power for four waves detected with a cube array consisting of 64 sensors.
The symbols have the same meaning as in figure (3.8).
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Wave 1 Wave 2 Wave 3 Wave 4

data result data result data result data result

long (deg) 40 40.4 -60 -62.4 100 99.2 -100 -99.2

lat (deg) 60 60.6 20 20.2 -40 -42.2 -70 -71.6

ω (rad/s) 100.9 100 99.8 100 100.2 100 101.5 100

k (km−1) 0.243 0.239 0.135 0.136 0.275 0.272 0.204 0.207

Table 3.4: Capon technique results for four plane waves detected with a cube array consisting
of 64 sensors. All the wave vectors are recovered with high accuracy.

Wave 1 Wave 2 Wave 3

data result data result data result

long (deg) 40 40.4 -60 -62.4 100 99.18

lat (deg) 60 60.6 20 20.2 -40 -38.57

ω (rad/s) 98.7 100 100 100 101.6 100

k (km−1) 0.253 0.252 0.275 0.271 0.234 0.232

Table 3.5: Capon technique results for three three dimensional vector waves detected with a
tetrahedron sensor array.

power we can increase the number of sensors in the array. As for an example, a
64 sensor array can easily resolve four waves as shown in the figure (3.10). The
simulated wave vectors and the recovered ones as well as the frequencies are given
in table (3.4).

If increasing the number of sensors is not possible there are other possibilities
to resolve more than two waves with close frequencies simultaneously detected. Re-
member, up to now we considered only scalar fields in our simulations. However,
this tool is intended to be used for analyzing Cluster data. Cluster provides vecto-
rial measurements for the magnetic and electric field and by analyzing only their
magnitudes we lose precious information. We can use all three components of either
magnetic or electric field measurements or we can combine both in a six component
vector. The array output power (3.28) computed as described in the appendix (A.2)
becomes

P (ω, k) = trace

([
W†(k)M−1(ω)W(k)

]−1
)

(3.36)

To illustrate how using the whole information contained in a vectorial field mea-
surement influences the resolution of the method we analyze a vector field consisting
of three components obeying the plane wave propagation law, each component being
described by equation (3.34). The resulted array output power is presented in figure
(3.11). From the figure is clear not only that the technique can now successfully
deal with multiple waves but it also have improved accuracy. The parameters of the
model waves, together with their recovered values are given in the table (3.5).
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Figure 3.11: Array power for three three dimensional vector waves detected with a tetrahedron
sensor array. Using all the three vector components increases the resolution of the method. The
symbols have the same meaning as in figure (3.8).

Physical constrains can be directly included into the expression of the output
power (Motschmann et al. 1998). Examples are relations between the electric and
the magnetic field (Tjulin et al. 2005), or properties of the measured field itself.
Imposing constrains helps to filter the measured signal which eliminates part of the
background power and further improves the resolution. The wave telescope technique
referred also as k-filtering analyzes the vectorial magnetic field signal and uses its
divergence free nature as a constrain.

For plane waves, i.e. B = B0 exp{i(k · r − ωt)}, the divergence of the magnetic
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field is proportional to the projection of the magnetic field on the wave vector:

∇ · B = ik · B = 0 (3.37)

This means that the magnetic B field can be replaced with B + (B · k̂)k̂ which is
equivalent with replacing it with V(k̂)B, where

V(k̂) = I + k̂k̂
T

(3.38)

The effect on the output power (3.36) is to replace W(k) with W(k)V(k̂) yielding

P (ω, k) = trace

([
V†(k̂)W†(k)M−1(ω)W(k)V(k̂)

]−1
)

(3.39)

Motschmann et al. (1995) show that the wave telescope is able to resolve up to
seven distinct plane waves using a tetrahedron configuration of the sensors.

Wave length validity domain

We have seen in section (3.3) that a sensor array can be used to determine the k
vector for waves with wave lengths only within a limited range. While the low limit
is clearly stated by Nyquist theorem, there is no upper limit in principle for the
wave length to be determined with a given sensor array. However, due to the finite
dimension of the sensor array, in practice we cannot determine arbitrary long wave
lengths.

Increasing the wave length decreases the resolution of the tool resulting in broader
power maxima. To investigate this phenomenon we use a regular tetrahedron sen-
sor array configuration to analyze artificial data representing two three-component
plane waves. The ratio between their wave lengths is 1.5 and the shortest wave
length takes increasing values: 10, 40, and 80 spacecraft separations. The results are
shown in figure (3.12).

Even for the least favorable case (λ1 = 800 km) both input waves are recovered.
However, the resolution decreases very much, and the power maxima become very
broad and begin to merge with each other. A safe limit for the upper wave length
value to be used in practice for a regular tetrahedron configuration seems to be
around 50 spacecraft separation distances. This limit might be different for differ-
ent array configurations. A possible working value for the validity domain for an
arbitrary configuration is λ ∈ (2dmax, 50dmin).

The finite wave length domain for a given sensor array configuration has impli-
cations in the design of multi spacecraft missions which investigate different scales
at the same time. If for each scale a group of minimum four spacecraft with sep-
arations characterizing the scale to be investigate is used, then it makes sense to
combine measurements from two different groups only if their validity domains are
overlapping and only for the wave lengths within the domain intersection.

Plane wave telescope applied to non-planar waves

The expression (3.27) is general but the choice (3.30) for the elementary waves {w}
implies a plane waves representation of the detected wave field. The system of plane
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Figure 3.12: Wave telescope applied to a two plane waves wave field at the long wave length
limit. The wave lengths in spacecraft separation units are from top to bottom: 10 and 15, 40 and
60, and 80 and 120. Only the power slices corresponding to the shortest wave length are shown.

waves (exp{i(k · r − ωt)}) is indeed a basis for the wave field space, i.e. any wave
field can be uniquely represented by a superposition of plane waves provided the
wave field is known at all points in space and all moments in time. As discussed
in section (3.3), since we have access only to a limited number of measurements in
space and time, the plane waves representation is no longer unique.

The wave telescope can at best represent the wave field for a given frequency by
several plane waves with different propagation directions and different wave lengths
and most of the times by only one plane wave. What happens when the measured
wave field truly consists from an infinite number of superposed plane waves with
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distance (km) 200 150 100 50 40 30 20 10 2

∆ϕ (deg) 0.41 0.41 7.75 0.41 6.94 7.75 37.1 21.6 51.0

∆θ (deg) 0.61 0.61 3.06 0.61 0.61 3.06 0.61 36.1 25.1

∆k × 103 (km−1) 0.75 0.75 0.75 0.75 5.64 7.22 0.75 13.7 65.2

Table 3.6: The deviation of determined wave vectors from the given ones for various distances
between the wave source and the center of a tetrahedron array with an average separation of
10 km. The grid resolution is 7.2◦ for the longitude (ϕ), 3.6◦ for the latitude (θ) and 6× 10−3 km−1

for the wave number.

comparable amplitudes? An example of such a wave field is the wave field produced
by a point source which is generating spherical waves. In this section we are going
to study the results of the wave telescope when applied to a wave field consisting
from spherical waves.

We generate synthetic data in a similar fashion as shown in the section (3.4.1).
The difference is that equation (3.34) is changed to represent now the component
j of a spherical wave coming from a point source located at the position r′ and
detected by the sensor s at position rs:

Xj(r
′, k′, ω′, rs, t) =

X0j

|rs − r′|

[
<
(
exp{i(k′|rs − r′| − ω′t + ϕj)}

)
+ εX rndj(−1, 1)

]
(3.40)

Let us begin by investigating the dependence of the array power on the curvature
of the detected wave fronts. In order to do so, we analyze the wave field produced by a
point source situated at a latitude of−60◦ and a longitude of−140◦ producing a wave
having a frequency of 100Hz and a wave length of 5.4 average spacecraft distances.
When the distance to the source tends to infinity the perturbation reaching the
sensor array tends a plane wave with the direction of propagation given by 40◦

longitude and 60◦ latitude. Different distances to the wave source give different local
curvatures of the wave fronts.

The array power computed using a tetrahedron sensor array with a separation
of 10 km detecting a wave generated by a source at distances of 200, 30, 10, and
2 km from the center of mass of the configuration is shown in the figure (3.13).
Results for more distances are listed in the table (3.6). We see that spherical waves
with reasonable curvatures are interpreted by the wave telescope as plane waves
propagating in a direction opposite to the direction to the wave source. The error
caused by the wave front curvature is under the grid resolution even for sources as
close as three average spacecraft separations. However, under this distance the tool
is not anymore able to give accurate results and of course it gets totally confused
when the source emits from inside the configuration.

The inability of the wave telescope to give accurate results when the wave source
is very close to the spacecraft configuration could raise difficulties in justifying its
application when the array is going through an active region where waves are gen-
erated at random places. To investigate the wave telescope behavior when crossing
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Figure 3.13: Results for a spherical wave detected with a tetrahedron sensor array. The dis-
tances between the wave source and the center of mass of the sensor configuration are from top
to bottom: 20, 3, 1, and 0.2 (source inside the array) average s/c distances.
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such a region we analyze synthetic data simulating a wave field generated by two
point sources, one at a fixed distance of five average spacecraft separations from the
configuration center and the other placed at various distances beginning from inside
the configuration up to 80 average spacecraft separations. We are interested to see
which wave is associated to the global array power maximum and how accurate its
wave vector is determined.

From the study of single source wave field we know that if alone, the fixed
distance source would be easily found by the wave telescope. Now it competes with
the variable distance source. We distinguish four different regimes depending on the
distance d to the variable distance source:

I. d < 40 km:
The array power maximum corresponds to the fixed distance source (remotest).

II. 40 km < d < 60 km:
The array power maximum is randomly associated with one of the sources.

III. 60 km < d < 700 km:
The array power maximum corresponds to the variable distance source (re-
motest).

IV. d > 700 km:
The array power maximum corresponds to the fixed distance source (closest).

Every time the wave vector is accurately recovered.
In the first interval the wave fronts from the variable distance source are very

curved and the wave amplitude is very different between sensors. This prevents the
wave telescope to recognize it as a plane wave. The array power maximum corre-
sponds to the fixed distance source. In the second interval the curvatures of both
wave fronts are comparable. The maximum array power has no definite preference
for either source. In the third interval the variable distance source gets far enough
to significantly lower the wave front curvature at the array location. The wave as-
sociated with is is now closer to a plane wave than the wave generated by the fixed
distance source. As a consequence the maximum array power corresponds now to
the variable distance source. This remains true up to very large distances even if
the radial decay greatly diminish the wave energy density compared to the fixed
distance source. Finally, in the fourth interval the variable distance source reaches
distances for which the planarity of the wave front is no longer sufficient to balance
the radial decay and the wave telescope switches back to the closer fixed distance
wave source.

The conclusion is that the wave telescope is extremely selective when wave fronts
with different curvatures are simultaneously detected. It strongly favors the wave
which is closest to a plane wave even when the energy density corresponding to the
plane wave is orders of magnitude lower then the energy density corresponding to
the non-planar wave. It follows that in fact the wave telescope can be safely used
even when waves are generated very close or even inside the sensor array with the
condition that reasonably distant sources participate as well to the generation of the
detected wave field.
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Figure 3.14: Array power for a wave field produced by two point sources detected with a tetra-
hedron array with an average separation of 10 km. The source producing the wave propagating
in the direction (long=−60◦, lat=40◦) is at a fixed distance of 50 km, from the configuration center.
The second source (long=20◦, lat=60◦) is placed at 2, 40, 60, and 70 km (top to bottom).
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The wave telescope is giving the far field view of the detected waves. The infor-
mation contained in the curvature of the wave fronts is disregarded. This is why the
wave telescope can say nothing about the distance to the wave sources. If we are to
use this information we have to give up the plane waves representation.
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4.1 Introduction

4.1 Introduction

We have seen in the previous chapter that using sensor arrays providing multi-point
measurements in space we can successfully determine the wave vectors of the dom-
inant waves of a measured wave field. This is achieved by expanding the measured
wave field into its plane wave components using the technique given by Capon et al.
(1967). The method works well even with as few as four sensors which represent the
minimum number of space samples required to recover a three dimensional quantity.
When applied to magnetic field using its divergence free nature as a constraint, the
method is known as the wave telescope technique. Using Cluster magnetic field data,
the wave telescope provided the first direct measurement of plasma wave vectors in
an extraterrestrial environment (Glassmeier et al. 2001).

While the plane waves representation has multiple advantages, it also limits
the applicability of the wave telescope to the far field case. As a result, this method
cannot directly answer fundamental questions related to the sources of the measured
field. Examples are finding the positions of the wave sources, their motion or their
geometrical characteristics. If these questions are to be answered, we have to give up
the plane waves representation in favor of a representation which takes into account
the distance to the wave source, such as the spherical waves representation.

In what follows, we discuss in detail the Capon technique using the spherical
waves representation, hereafter called source locator.

4.2 Source locator

In order to determine the sources locations we have to choose a system of elementary
waves which contains information about the distance to the source. The most natural
(and simple) choice is the spherical waves representation where the elementary waves
are characterized by q = (rsource, k, ω) = (r, k, ω) representing the position, wave
number, and frequency of the source. Thus for the sensor s at the position rs one
gets

w(r, k, ω, rs, t) = C
1

ρs

ei(kρs−ωt) (4.1)

where ρs = ρ(rs, r) = |rs − r| is the distance between the source and the sensor
s. The elementary wave associated to the sensor s becomes after separation of the
time dependent part

ws(r, k) = C
1

ρs

eikρs (4.2)

The normalization coefficient is:

C =

 S∑
s=1

sensors

1

ρ2
s


−1/2

(4.3)

Even if the single-sensor elementary wave ws depends only on the distance ρs be-
tween source and sensor, the vector w = (w1, . . . , wS)T depends on R = (ρ1, . . . , ρS)T
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4 Source locator

which is a function of the source position. As a consequence, the array power, which
has the same formal expression as for the wave telescope (equation 3.36), will also
depend on the source position.

P (ω, r, k) = trace

([
W†(r, k)M−1(ω)W(r, k)

]−1
)

(4.4)

In contrast to the three dimensional parameter space of the wave telescope {q} =
{k}, the parameter space of the source locator {q} = {rsource, k} is four dimensional.
As for the wave telescope, in order to find the source parameters we have to scan
the parameter space in order to determine the array power at each point of a grid
and identify the power maxima.

The scan domain in the position space can formally be extended to 0 < ρ < ∞,
but the more distant the source is, the more the observed wave will approach a
plane wave and the uncertainty in determining the distance will increase. For the
wavelength (k-number) space we shall take into consideration the Nyquist theorem
otherwise aliasing occurs. It is possible to define the maximum wave number as
a function of propagation direction (e.g. Neubauer and Glassmeier 1990; Pinçon
and Motschmann 1998; Glassmeier et al. 2001) but we chose the simple approach
k ≤ kNyquist = π/dmax, dmax being the maximum spacecraft separation.

The resulting array power is a local representation of the wave field. The position
r derived from the array power maximum represents the center of spherical shells
determined by the source locator by analyzing the local curvature of the wave fronts
and the spatial decay of the field. This position is associated with a virtual source
which generally differs from the real source. The two coincide only when the wave
isotropically propagates in an homogeneous medium. In order to relate the position
of the virtual source to the position of the real source we have to extrapolate our
local knowledge of the propagation medium and to take into account the mode in
which the waves propagate. This differs from case to case and no general recipe can
be given. As for an example for fast magnetosonic waves the position of the virtual
source is a good approximation of the position of the real source but this is not true
for an Alfvén wave. It follows that a complete source location analysis would consist
of two steps. First, determine the virtual source position using a general procedure,
second, link this position to the real wave source using wave mode analysis and
medium related considerations. Since it is already far from trivial, we only consider
in this chapter the case of isotropic propagation through an homogeneous medium.

4.3 Spherical waves and dynamic effects

By introducing the source point from which the wave originates, the spherical waves
representation loses the symmetry to spatial translations characterizing the plane
waves representation. While for the plane waves representation only the motion of
the Observer relative to the propagation medium was influencing the measurements
output through the Doppler effect, for the spherical waves representation the mo-
tion of the source comes also into play. It is the interplay between these three key
ingredients which determines the final outcome of the measurements. Before we go
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4.3 Spherical waves and dynamic effects

ρ0

v

sensor

sourceα
ρ

Figure 4.1: The sensor is moving with the velocity v . The measured frequency depends on the
angle α between the velocity and the direction to the source.

further with more detailed discussions on the source locator and its applications we
need to understand the effect of these motions.

The raw result of the source locator consists of the frequency ω, the local wave
length λ, and the position of the local wave front curvature center (virtual source),
r. This is equivalent with the set (ω, k, ρ) where k is the local wave vector and ρ
is the local curvature radius, i.e. the distance to the virtual source. We wish to see
how these quantities depend on the motions mentioned above. In what follows we
place ourselves into the wave source reference system. The Observer moves with the
velocity v and the medium moves with the velocity u relative to the source.

For a wave field described by the general expression

X(r, t, u) = X0e
iϕ(r,t,u) (4.5)

the local wave vector is given by the gradient of the phase ϕ

k(r, t, u) = ∇ϕ(r, t, u) (4.6)

which is determined by the phase spatial pattern at the moment t and does not
depend on the relative motion of the Observer, v. Since the wave front is defined
by constant phase, the wave vector is always orthogonal to the wave front and it
points to the local propagation direction. Note that the wave vector can depend on
the medium flow u due to the distortion of the wave fronts by the flow.

For the particular case of plane waves with ϕ(r, t) = k0 ·r−ω0t, the wave vector
is simply k0. For spherical waves (point source, u = 0) with ϕ(r, t) = k0ρ−ω0t, the
wave vector points in the opposite direction to the wave source: k(r) = k0êρ.

The measured frequency is given by the total time derivative of the phase ϕ

ω(t) = −dϕ

dt
= −∂ϕ

∂t
− v ·∇ϕ = ω0 − v · k (4.7)
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Figure 4.2: Doppler effect. The source frequency is 100 radians per second, the Observer speed
is one quarter of the wave phase speed. The top panel illustrates the measurements made by the
moving Observer. Note the visible change in both wave amplitude and frequency. The bottom
panel shows how the frequency shift appears in the Fourier analysis. The solid line represents the
measurements of the moving Observer in contrast with the measurements made by an Observer
at rest represented with the dashed line.

The term ω0 = −∂ϕ/∂t above represents the intrinsic time variation of the wave
field and the second term represents the variation seen by the Observer due to its
motion through the spatial structure of the phase. In the general case it depends
on both the Observer motion and on the propagation medium flow. Equation (4.7)
represents the Doppler effect. For plane waves it becomes ω = ω0 − (v − u) · k0.

It is important to realize that the two types of motion lead to fundamentally dif-
ferent effects. The Observer motion has a relative effect, only affecting the frequency
measured by him. By contrast, the medium flow has an absolute effect, distorting
the wave fronts and causing global changes to the wave vector field.

4.3.1 Moving Observer: Doppler effect

Let us concentrate on the simple case of a spherical wave detected by a moving
Observer as shown in figure (4.1). The wave source is at rest with respect to the
propagation medium.

The measured field becomes

X =
X0

ρ(t)
ei[k0ρ(t)−ω0t]. (4.8)
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4.3 Spherical waves and dynamic effects

which leads to a time dependent Doppler shifted frequency given by

ω(t) = ω0

[
1− v

c
cos α(t)

]
(4.9)

In the above relations ρ(t) is the distance between the sensor and the source,
v is the sensor velocity, α is the angle between the velocity and the sensor−source
direction and c = ω0/k is the wave phase velocity.

Figure (4.2) shows both the measurements made by a moving Observer and
the corresponding Fourier spectrum. Note that because the frequency depends on
time, a given frequency range corresponds to a certain time subinterval which in
turn corresponds to a certain position range of the Observer. For instance, the low
frequency peak centered around 75 radians per second corresponds to the last part
of the data interval measured while the Observer was already moving away from the
wave source. It follows that frequency filtering is equivalent with Observer position
filtering.

4.3.2 Medium flow: Wave length change

As we have seen in the previous section, when the Observer is moving with respect
to the wave source, the measured frequency is no longer fixed but the measured
wave length is the same as for the static situation. When the propagation medium
is flowing and the source is at rest in the Observer reference frame, the opposite
happens. The Observer will measure the same frequency as for the static case but
the wave length differs from the original one. In this section we concentrate on the
case of a point source emitting waves detected by an Observer at rest in a streaming
medium.

Figure (4.3) schematically represents the case for subsonic flow velocities. The
wave front emitted at the moment t = 0 by the source is drifting with the plasma
flow. By the time t = τ when the wave front reaches the Observer it will be a sphere
with a radius cτ and the center shifted at a distance uτ from the source in the flow
direction. The presence of the flow introduces a preferred direction in the medium.
The situation is equivalent with a change of the the wave phase velocity which now
depends on the angle with the preferred direction, i.e. is equivalent with anisotropic
propagation through the medium.

We call the center of the wave front tangent to the sensor, ghost source to
differentiate it from a virtual source which has a shifted position from the real
source due to “real” anisotropy of the medium. Note that the position of the ghost
source is not absolute. It depends on the position of the Observer. If the Observer
assumes that he detects a spherical wave isotropically propagating from a point
source then he will identify the ghost source as the originating place of the detected
wave. In particular, the source locator will give not the position of the real wave
source but the position of the ghost source. Therefore it is important to bring the
position of the ghost source into relation with the position of the real wave source.
From Figure (4.3) we have the following relation:

(cτ)2 = ρ2
g = (uτ)2 + ρ2 − 2uτρ cos α (4.10)
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ρg
τ c

uτ

source ghost

sensor

α

flow

ρ

Figure 4.3: Subsonic plasma flow. The sensor is measuring a spherical wave apparently orig-
inating from the ghost source position. The measured frequency is the same as for the static
case but the measured wave length depends on the angle α between the flow velocity and the
source - sensor direction.

from which we can express the distance between the ghost source and the Observer

ρg±(ρ, α, M) =
ρ

ξ±(M , α)
(4.11)

with the notation

ξ±(M , α) = M cos α±
√

1−M2 sin2 α, (4.12)

where M = u/c is the Mach number. Consequently, the arrival time defined as the
time needed for the wave to travel from the source to the Observer is

τ±(ρ, α, M) =
ρ

cξ±(M , α)
(4.13)

Once we know the arrival time, we can determine the position of the ghost source
as:

rghost± = rsource + uτ± (4.14)

The factor ξ± has a number of remarkable properties. One first aspect is that
ξ± is not always a real number. Indeed, for ξ± to be a real number, sin α has to be
smaller than 1/M . This is always true for subsonic flows (M < 1) but it gives a
limit angle αM = asin(1/M) for supersonic flows. The angle αM defines the Mach
cone outside which the wave never propagates.

The condition of reality for ξ± is not sufficient to assure that the distance ρg

in equation (4.10) represents a physical solution. It also has to be positive defined.
For subsonic flows only ξ+ is positive independent on the position of the Observer.

60



4.3 Spherical waves and dynamic effects

sensor

advanced
ghost retarded

ghost

flow

source

Figure 4.4: Supersonic flow. Both the advanced and retarded waves are measured by the
sensor. The ghost sources locations depend on the Mach number and on the position of the
sensor, therefore they are different from sensor to sensor.

For supersonic flows both ξ+ and ξ− are positively defined inside the Mach cone.
Two simultaneously valid solutions mean that the Observer sees two different ghost
sources which correspond to one and the same real source. This is sketched in figure
(4.4). The wave corresponding to the “+” sign arrives after a short time from the
moment of emission, traveling in the flow direction. We call this wave, advanced
wave. The wave corresponding to the “−” sign travels against the flow and arrives
after a longer time from its moment of emission (which is further in the past than
the moment of emission of the advanced wave – both waves arrive simultaneously
at the Observer). We call this wave retarded wave.

Other useful properties of ξ± are expressed by the following relations:

ξ±(M , α)
∣∣
M=0

= ±1 (4.15a)

ξ±(M , α)
∣∣
M=1

= (1± 1) cos α (4.15b)

ξ±(M , α)
∣∣
α=0

= M ± 1 (4.15c)

ξ±(M , α)
∣∣
α=αM

=
√

M2 − 1 (4.15d)

ξ±(M , α)ξ∓(M , α) = M2 − 1 (4.15e)

Some of these relations have direct physical interpretations. For instance, equation
(4.15a) means that the advanced ghost has the same position with the real wave
source in the absence of the flow. The retarded ghost is unphysical. Equation (4.15b)
describes the Mach equal one case: The advanced ghost is at finite distance inside
the Mach cone but as the Observer approaches the Mach cone surface, the advanced
ghost moves towards infinity. The retarded ghost is at infinite distance for any
Observer position. Equation (4.15c) gives the ghosts positions when the Observer is
on the flow line going through the wave source. Finally, equation (4.15d) corresponds
to the Observer being on the Mach cone surface. In this case, ξ+ = ξ− and the
retarded ghost has the same position as the advanced ghost.
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Figure 4.5: Diagram representing the ξ factors and the propagation directions of the advanced
and retarded waves. The circle has the radius equal to one and its center has the coordinates
(M, 0).

The wave field distorted by the flow takes the form:

X(ρ, α, M , t) =
X0

ρg(ρ, α, M)
ei[k0ρg(ρ,α,M)−ω0t] (4.16)

where k0 and ω0 are the wave number and the frequency in the absence of the flow.
Using equation (4.6) it is possible to derive the wave vector at the Observer’s

position:

k±(M , α) =
k0

ξ±
√

1−M2 sin2 α
êk± (4.17)

with the versor of the wave vector given by

êk± = ±(ξ±êρ −M êu) (4.18)

The diagram (4.5) conveniently illustrates relations between the ξ factors and
the wave propagation directions. Equations (4.15) have a geometrical correspondent
here. The unit circle in the diagram has the center situated at the coordinate x equal
to the Mach number and y = 0. The Mach cone angle αM is given by tangent through
the origin to the unit circle. For a given angle α between the flow direction and the
line of sight to the source the two ξ factors are equal to the distances from the origin
to the intersection points between the unit circle and the line corresponding to the
angle α. The propagation directions of the advanced and of the retarded waves are
defined by the directions from the intersection points to the center of the unit circle.

The wave vector (4.17) is orthogonal to the local wave front and it defines the
local wave length as λ± = 2π/k±. Note that the definition of the wave length as
the distance between two consecutive wave fronts is meaningful only for plane or
undisturbed spherical waves.

An interesting property of the wave vector is it’s independence on the distance
to the wave source at fixed α:

∂k±

∂ρ

∣∣∣
α
= 0 (4.19)
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Figure 4.6: Wave fronts (blue) and propagation rays (red) for a point source emitting in a medium
flowing with half the wave phase velocity. The rays are curved and tend to bundle up anti-parallel
to the flow in the upstream region

Hence the wave vector is the same along any straight line going through the wave
source.

The rays are defined as the curve family orthogonal to the wave fronts, or equiv-
alent, the field lines of the wave vector field – everywhere tangent to the wave
propagation direction. They are parallel lines for plane waves and strait lines orig-
inating from the wave source for undisturbed spherical waves. We wish to find the
wave rays in the presence of the flow. To achieve our goal we first rewrite the wave
vector in polar coordinates:

k±(M , α) =
k0

ξ±

(
êρ ±

M sin α√
1−M2 sin2 α

êα

)
(4.20)

Because the rays are always tangent to the direction of the local wave vector, their
equation in polar coordinates is given by

1

ρ

dρ

dα
=

kρ

kα

(4.21)

Solving this differential equation yields the parametric set of ray equations:

ρ±1
± (C, M , α) =

Cξ+√
2|1−M |

∣∣∣∣∣ξ+ − (M + 1) cos α

ξ+ − (M − 1) cos α

∣∣∣∣∣
1

2M

(4.22)

The integration constant C ∈ (0,∞) distinguishes between different rays.
In figures (4.6) and (4.7) we plotted both the wave fronts and the propagation

rays for subsonic and respectively supersonic flows. For subsonic flow they are curved
such way that they always point against the flow when the length along the ray is
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4 Source locator

Figure 4.7: Advanced (red) and retarded (blue) wave fronts and propagation rays for a point
source emitting in a medium flowing supersonically with M = 2.5. The rays are orthogonal to their
respective wave fronts and both families are orthogonal too the Mach cone surface.

long enough. In the case of supersonic flow there are two families of propagation
rays: One corresponds to the advanced wave fronts (red in figure (4.7)), originates
from the wave source and divergently travels towards the Mach cone surface. The
second corresponds to the retarded wave fronts (blue in figure (4.7)), originates from
the Mach cone surface and converges in the flow direction.

4.4 Application to synthetic data

Despite being the simplest case after the plane waves, the case of spherical waves
proves to be fairly complex once dynamical effects are taken into consideration. The
source locator technique assumes that the measured wave field is a superposition of
undisturbed spherical waves with determined frequencies as expressed by equation
(4.1). As soon as the dynamic effects discussed above intervene, these assumptions
cease to be true. Nevertheless, locally in time and space, the wave field is approx-
imated by a spherical wave with a fixed frequency, fact that allows us to use the
source locator even in these situations. Here, using synthetic data, we investigate a
number of possible scenarios. First we ask ourselves how far can a source be to still
be correctly identified as a spherical wave and not as a plane wave. Next we con-
centrate on the maximum number of sources that can be simultaneously recovered.
The effects of the sensor motion and of the propagation medium flow on the source
locator results are studied in detail. Finally we apply the source locator to a wave
field generated not by a point source but by a source which is extended in space.

The synthetic data are generated taking into account the noise and the random
variations of the frequency, phase, and the sensor positions in the same way as for
the wave telescope in section (3.4.1). Instead of representing plane waves, now the
artificial data have to model the measurements made by moving sensors of waves
produced by point sources in a flowing medium.

For a source at position r′ and for a sensor s at rs(t) = rs0+vt, the measurements
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distance (km) 200 150 100 50 40 30 20 10 2

∆ϕ (deg) 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76

∆θ (deg) 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03

∆k × 103 (km−1) 2.08 1.85 2.38 1.56 2.61 2.59 2.02 0.99 14.2

∆ρ (km) 10.1 20.1 13.1 2.50 4.06 3.21 1.83 0.41 0.07

Table 4.1: The deviation of determined source parameters from the given ones for various dis-
tances between the wave source and the center of a tetrahedron array with an average separation
of 10 km. The grid resolution is 7.2◦ for the longitude (ϕ), 3.6◦ for the latitude (θ) and 6×10−3 km−1

for the wave number. The ρ resolution is 17 km for the distance d = 200 km, 8 km for d between
150 and 10 km and 0.5 km for d = 2 km.

are given by:

X(r′, k′, ω′, rs, t) =

{
X+(r′, k′, ω′, rs, t) for M < 1

X+(r′, k′, ω′, rs, t) + X−(r′, k′, ω′, rs, t) for M > 1

(4.23)
where the subscripts + and − represent the advanced, respectively the retarded
component of the wave.

The component j of the vectorial wave field is

Xj±(r′, k′, ω′, rs, t) =
X0j

ρg±(|rs(t)− r′|, α, M)
·[

<
(
exp{i(k′ρg±(|rs(t)− r′|, α, M)− ω′t + ϕj)}

)
+ εX rndj(−1, 1)

]
(4.24)

with the distance ρg± to the advanced/retarded ghost given by the equation (4.11).
As before, the final wave field is the sum over the considered wave sources. A brief
description of the numerical code is given in the appendix (A.3).

4.4.1 Single static source

We start by applying the source locator to the very same data we use in section
(3.4.1) for the single spherical wave case (see figure 3.13). Both the wave source and
the sensor are at rest with respect to the propagation medium (v = 0 = u). In this
case the components of the wave field (4.23) reduce to the expression (3.40).

The source locator results are shown in figure (4.8). The complete set of results
is listed in the table (4.1). For any of the distances to the source considered here
(from 20 to 0.2 average spacecraft distances from the configuration center) the source
parameters are very well recovered by the source locator.

Comparing with the wave telescope results in figure (3.13) is easy to see that the
array power has much sharper maxima, resulting in much better precision for both
close and remote sources. However, while the precision of the recovered direction to
the wave source seems to be independent on the source distance, the precision for
the wave length slightly decreases when the source is inside the sensor array.
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Figure 4.8: The results of the source locator applied to the same data used with the wave
telescope in figure (3.13). The distances between the wave source and the center of mass of the
sensor configuration are from top to bottom: 20, 3, 1, and 0.2 (source inside the array) average
s/c distances.
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Source 1 Source 2 Source 3

data result data result data result

long (deg) 40 43.4 -60 -55.9 100 105

lat (deg) 60 59.0 20 21.7 -40 -40.3

ω (rad/s) 99.0 99.0 101.6 99.0 100.8 99.0

k (km−1) 0.275 0.281 0.181 0.173 0.234 0.238

ρ (km) 29.8 26.5 59.6 67.4 79.5 67.4

Table 4.2: Source locator results for three wave sources detected with a tetrahedron sensor
array.

Looking at the distance-k plot for d = 200 km we note that, even if the maximum
power lies at the right position, it has an elongated shape in the distance dimension
direction. This is due to the limited extent of the sensor array in the position space
compared to the distance to the source. Above this distance it becomes problematic
to distinguish between a spherical and a plane wave. The closer the source is, the
more localized the peak is.

4.4.2 Multiple static sources

As for the plane waves case, it is important that the source locator technique is
able to to provide the wave sources parameters when more waves with frequencies
indiscernible by the tool are simultaneously detected. To investigate this aspect we
model a wave field produced by three equal power sources at rest with respect to the
propagation medium. The sensors, also at rest, are placed into a regular tetrahedron
formation with 10 km side. The parameters of the wave sources as well as the values
recovered by the source locator are presented in table (4.2).

Figure (4.9) shows sections through the array power for the maxima correspond-
ing to each source. Most of the signal power comes from the closest source whose
parameters are best recovered. The weaker contribution of the more distant two
sources is enough to recover well the wave lengths and the respective propagation
directions but the effect of elongation in the radial direction is more evident than
for single sources at similar distances. Therefore, while the source associated with
the global maximum in the array power is well recovered and we can safely trust
the source locator, the resulted distances to the wave sources associated with the
second, third, and higher order maxima should be regarded with caution.

4.4.3 Sensor motion

We now allow for relative motion between the sensor array and the wave source
as discussed in section (4.3.1). The sensor motion introduces differences compared
to the static case. Not only the relative source position is changing over time but
also the apparent frequency is now depending on time. Moreover, each sensor will
measure slightly different frequencies. The sensors will record snapshots of the source
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Figure 4.9: Array power for three wave sources detected with a tetrahedron sensor array. The
maxima associated to the more distant sources are strongly elongated in the distance dimension.

position at the corresponding frequencies and the relative source motion will leave
a trace in the array power.

As an example we apply location analysis to synthetic data representing a source
with a frequency of 100 rad/s and a k-number of 0.11 km−1, initially positioned at a
distance of 70 km from the spacecraft configuration center, a latitude of 60◦ and a
longitude of 40◦. The sensors are moving with a velocity of 171 km/s (roughly half of
the wave phase velocity) in the direction (latitude = 55◦, longitude = 44◦). For this
velocity the maximum Doppler shift is ±19% of the source frequency. Because of
the Doppler effect, the Fourier power maximizes for a frequency of 110 rad/s which
corresponds to an angle α of about 122◦ between the direction of motion of the
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Figure 4.10: Array power when the sensors are moving with respect to the source. The array
power maximizes in the vicinity of the closest approach rather than at the initial source location.
The cross in the longitude-latitude plot represents the relative initial position of the wave source
and the line, the apparent source trajectory projection.

initial location found closest approach
distance 70 km 28 km 21 km
longitude 40◦ −93◦ −91◦

latitude 60◦ 34◦ 39◦

k 0.11 km−1 0.10 km−1 0.11 km−1

Table 4.3: Results of source location analysis when the sensors are moving with respect to the
source.

source and the sensor to source direction. We use this frequency for our analysis.
The closest approach is at a distance of 21 km at a longitude of −91◦ and a latitude
of 39◦. The distance-k and longitude-latitude cuts through the resulting array power
are shown in figure (4.10) and the results are summarized in table (4.3).

The symbols in figure (4.10) have the same meaning as the ones explained in
section (3.4), in addition we have represented with a continuous line the projection
of the apparent motion of the source in the longitude-latitude plot. For more details
of how a straight line trajectory is mapped on the longitude – latitude plot see
the appendix (A.4). Unlike for the static case, the maximum array power is not
localized but is now stretched along the source trajectory. This is due to frequency
mixing involved in computing the M matrix. Since a given frequency corresponds
to a definite position of the source relative to the sensor, a range of frequencies is
equivalent with a range of positions. In this case it corresponds to an angle between
the direction of motion of the sensor and the relative direction to the source ranging
from 48◦ to 132◦. We also note that the array power reaches its maximum in the
vicinity of the closest approach point and not near the initial position of the source
(see table 4.3). The characteristic signature of a moving source in the longitude-
latitude plot can be identified in order to distinguish between static and moving
sources. Together with equation (4.9), the source trace can in principle be used to
determine the source velocity vector.
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Figure 4.11: Array power when the plasma is flowing with 0.5 M with respect to the source.
There is no relative motion between source and sensor array. The plus sign represents the source
location, the diamonds the ghosts and the squares the sensors. The dotted line in the longitude-
latitude plot represents the flow line through the source.

real source found ghost
distance 70 km 68 km 48 km
longitude 40◦ 56◦ 58◦

latitude 60◦ 53◦ 55◦

k 0.11 km−1 0.08 km−1 0.08 km−1

Table 4.4: Results of source location analysis for flowing plasma. The sensors are not moving.
The ghost column shows averaged values over the sensors.

4.4.4 Subsonic flow

We apply the location analysis to synthetic data representing a source with the
same position and frequency as the static source detected by moving sensors in
section (4.4.3), with the difference that the propagation medium is now flowing with
a velocity of 0.5 M with respect to both the source and the sensor array. The flow
direction longitude is 175◦ and the latitude is −60◦.

We show the array power in figure (4.11) and the analysis results in table (4.4).
The dotted line in the longitude-latitude plot is representing the flow line going
through the source and the diamonds are representing the ghost sources.

As expected, the source locator is now detecting the ghost sources instead of the
real wave source. Because the arrival time (4.13) is different from sensor to sensor,
each sensor is linked to a different ghost. The real wave source and the ghosts are
all along the same flow line. As the flow velocity increases, the ghosts are sliding
away from the wave source and from each other. Nevertheless, for subsonic flows,
they remain grouped enough for the source locator to correctly identify them. If the
flow velocity is known, equation (4.14) allows us to recover the direction to the real
source.

The direction to the ghosts as well as the distorted wave length are accurately
determined. However, the distance delivered by the source locator does not fit either
the distance to the wave source nor the distance to the ghosts, most of the times it
falls somewhere between the two. The explanation for this phenomenon lies in the
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Figure 4.12: Array power when the plasma is flowing with 1.4 M with respect to the source and
the sensor array is moving with a speed of 0.1 phase velocity. The plus sign represents the initial
source location, the diamonds the advanced ghosts, and the triangles the retarded ghosts. The
dotted line in the longitude-latitude plot represents the flow line through the source, the solid lines
are the apparent advanced ghosts trajectories and the dashed lines are the apparent retarded
ghosts trajectories.

expression (4.24) of the distorted wave field. To find the distance, the source locator
has to find the spherical wave which best fits locally the measured distorted wave.
The distance to the source determines two main quantities for a spherical wave:
the curvature of the wave fronts and the radial decay of the wave amplitude. The
source locator solves the inverse problem: the detected curvature and spatial decay
are used to determine the distance o the source. The curvature corresponds to the
distance to the ghost source, ρg±, but the wave amplitude has a totally different
spatial distribution. The distance corresponding to the local spatial decay is given
by the gradient of the amplitude of the detected wave:

1

ρ2
decay±

=
∣∣∣∇ 1

ρg±

∣∣∣ =
ξ±(M , α)

ρ2

√
1 + M2 cos2 α

1−M2 sin2 α
(4.25)

The array power produced by the source locator reflects this mix by maximizing
somewhere in between these two values.

4.4.5 Supersonic flow and sensor motion

When the flow becomes supersonic the sensor array will detect waves apparently
coming from two different sources: the advanced ghost and the retarded ghost. If
the array is at rest with respect to the wave source, the measured frequency of the
two ghost sources will be the same. The two ghost sources will behave as coherent
sources and the performance of the source locator is much degraded. However, as
soon as the sensor array begins to move, thanks to the Doppler effect, the measured
frequency of the retarded ghost becomes different from the measured frequency of
the advanced ghost, allowing the source locator to discern between them.

Figure (4.12) shows the array power determined from data simulating the mea-
surements made by a regular tetrahedron formation of sensors moving through a
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Figure 4.13: Array power for a static linear extended source. The source represented by the line
in the longitude-latitude plot has a length of 30 km and is placed at 60 km away from the sensor
array center.

wave field produced by a point source in a supersonically flowing medium. The sen-
sor velocity is one tenth of the wave phase speed and the Mach number for the
flowing medium is 1.4. The advanced ghosts are taking the place of the real source
in section (4.4.3) leaving their trail in the array power. The retarded ghosts do not
influence the array power because their Doppler shifted frequency is different from
the advanced ghosts frequency. The dependence of the k number on the source po-
sition (4.17) is illustrated in the distance – k number plot. The solid lines are for
the advanced ghosts and the dashed lines are for the retarded ghosts.

4.4.6 Extended Source

Assume now the wave field is produced by a source having spatial extension and not
being a point source. According to Huygens principle, the wave field produced by
an extended source is the same as the wave field produced by a collection of point
sources uniformly distributed over the space occupied by the original source. This
means that we should be able to identify an extended source and to gain information
about its location and geometrical characteristics with the help of the source locator.

In order to check this hypothesis we apply location analysis to synthetic data
representing a wave field generated by a standing linear source with a length of 30
average spacecraft separation distances, oriented along a longitude of 100◦ and a
latitude of 15◦ and placed at a distance of 6 average spacecraft separation distances.
The emitted power is uniformly distributed along the source.

As it can be seen in figure (4.13) the source locator is indeed able to recover the
original source. The position of the array power maximum as well as the position of
the source center are given for comparison in table (4.5).

When the sensor array is moving, the array output might not represent anymore
the source geometry if the source is moving fast and close to the array. If we apply
location analysis to the same extended source as in the previous example but with
a non zero sensor velocity, instead of recovering the source geometry we get an
array power maximum which is elongated in the direction of motion. As a matter
of fact, we see a trace of the source point closest to the sensor array. We show the
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source center found
distance 60 km 57 km
longitude 40◦ 43◦

latitude 60◦ 59◦

k 0.11 km−1 0.11 km−1

Table 4.5: Results of source location analysis for a static linear extended source.
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Figure 4.14: Array power for a linear extended source. The sensors are moving with a velocity of
171 km/s in the direction of 35◦ longitude and 79◦ latitude. The apparent motion of the middle and
end points of the source are represented by the thin lines while the source itself is represented by
the thick line in the longitude-latitude plot.

corresponding array power in figure (4.14). The thick line represents the source, the
thin lines represent the motion of the middle and end points of the extended source.

If plasma flow is present, the source locator will recover in a similar fashion the
position of the ghost source but if the sensor array is also moving, the results cannot
unambiguously be interpreted.

4.5 Discussion

We have seen that the source locator can give us information about the sources which
are generating the measured wave field for various scenarios. However, when we have
to analyze real data, the difficulty lies in differentiating between these situations.

Physical insight and a priori assumptions can be used to rule out some scenarios.
As for an example, if we assume we are measuring a field produced by a magnetic
structure frozen into the plasma we can rule out the scenario in section (4.3.2)
describing the plasma flow in respect to the source.

On the other hand, the signatures of the array power in the section plots can give
us a hint about which situation we are in. The shape of the power maximum in the
k-angle plots is a measure of the dependence of the wave number on the direction. In
other words, a symmetrical shape of the power maximum in the k-angle plots means
that the wave isotropically propagates through the medium and it probably comes
from a source at rest with respect to the plasma frame. An asymmetrical shape in a
k-angle plot tells us that either the propagation pattern of the wave is not isotropic,
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Figure 4.15: Source location results for the same data representing a single static source using
different grid resolutions. The upper panels show the 15 × 15 × 15 × 15 and lower ones the
100 × 100 × 100 × 100 grid resolution results. The results in section 4.4 are obtained with a
30× 30× 30× 30 grid resolution.

the source is moving with respect to plasma background, or we are dealing with an
extended source.

The array power for moving sensors or for linear sources have very distinctive
signatures in the latitude-longitude plots. These signatures resemble a sine-function
and are the projection of a straight line on the longitude-latitude map (see appendix
A.4). The ambiguity appears because we are dealing with an inverse problem, i.e.
an unique set of measurements can correspond to several physical situations. For
instance, the sine-function signature might also be produced by an homogeneous
distribution of wave sources if the waves are only propagating orthogonal to a given
direction. This is why the interpretation of the source locator results needs a careful
analysis. To differentiate between a linear and a moving point source we can for
example apply the source locator to the same data interval for different frequencies.
If the field is produced by a moving source, because of the Doppler effect, different
frequencies will represent the source on different positions on its trajectory. Also,
comparing the orientation of the longitude-latitude trace with relevant directions
like the local flow velocity or the background magnetic field direction can prove to
be useful.

We should also keep in mind that the output of the source locator represents a
virtual source, which still has to be related to the real source by analyzing the wave
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propagation mode.

The accuracy of the source locator is affected by the same factors affecting the
accuracy of the wave telescope. One source of errors is the violation of the station-
arity and homogeneity conditions. Statistical errors in the field measurements also
affect the accuracy of the tool, leading to a decreased resolution but are not affect-
ing the positions of the maxima. The scales to be investigated (wave lengths, source
distance) have to be of the same order as the characteristic spacecraft separation.
Otherwise spatial aliasing occurs for scales smaller than the configuration scale or
the resolution decreases substantially for larger scales. One important factor is the
array geometry. Large deviations from a three dimensional configuration – measured
by the configuration quality index (von Stein et al. 1992, 1993; Robert et al. 1998)
– such as a very elongated or very flat array configurations affect the quality of
the results. Pinçon and Lefeuvre (1992) discussed in detail the effects of the array
geometry as well as of the errors in time synchronization and spacecraft position on
the reliability of the wave telescope.

Of course, the resolution of the tool cannot be higher than the scanning grid
resolution. If the grid is too loose and the source is very localized (i.e. the wave
energy is concentrated in a very small domain in the (k, r) space) the tool will not
accurately locate the wave source. This is illustrated in figure 4.15 where we show
the results of a location analysis performed with different grid resolutions on the
same synthetic data data modeling a single stationary source .

The grid resolution 15 × 15 × 15 × 15 is too small and the error in locating
the source is even larger than the grid resolution. However, the high resolution
100× 100× 100× 100 gives basically the same results as the 30× 30× 30× 30. Both
the shape and location of the maximum are only minimally affected by increasing
the grid resolution over 30× 30× 30× 30.

The grid resolution strongly affects the CPU time and computer memory needed
for the analysis. These are proportional to the number of grid points used which
have a power law dependence on the parameter space dimension (3 for the wave
telescope, 4 for the source locator).

4.6 Application to Cluster data

This section illustrates two applications of the source locator to Cluster magnetic
field data. The first application is a case study of a localized wave source. The shape
of the power maximum at different frequencies and its alignment with the plasma
flow direction and with the magnetic field direction gives important clues about the
nature of the wave source. The second application is a statistical study of the waves
detected during one magnetosheath crossing. Particular attention is paid to the ratio
between close and remote sources and to the angle of propagation with respect to
the background magnetic field. For details of how the Cluster data is numerically
handled see the appendix (A.3).

As discussed above, the source locator determines a virtual source defined as the
local curvature center of the measured wave fronts. To derive the position of the
real source from the position of the virtual one, a wave mode analysis is necessary.
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Figure 4.16: Cluster orbit between February 26 2002 18:00 and February 27 2002 02:00.
The formation was moving from the solar wind into the magnetosphere, crossing the bow-shock
around 22 hrs. Plot produced with OVT (http://ovt.irfu.se).

However, despite the fact that it generally has different position in space, the virtual
source is an image of the real source and properties like close – remote, static –
moving, point source – extended source region are common for the two. Therefore,
when we refer to these properties we identify the virtual source with the real source.

4.6.1 Localized source

To illustrate the potential of the source locator we analyze the magnetic field mag-
nitude measured by the FluxGate Magnetometer (FGM) instrument (Balogh et al.
1997) on-board Cluster during a 512 seconds interval just after an inbound shock
crossing on February 26 2002 between 22:03 and 22:11 UT (see figure 4.17). The
Fourier spectrum reveals multiple peaks offering the opportunity to apply the loca-
tion analysis tool for different frequencies.

During this time the shock regime was quasi-parallel and the spacecraft for-
mation was close to a regular tetrahedron with a minimum spacecraft separation
of 87 km and a maximum separation of 135 km. The average plasma flow velocity
inferred from the proton bulk velocity measured by the Cluster Ion Spectrometry
(CIS) instrument (Rème et al. 1997) was 140 km/s having an orientation of −45◦

in latitude and −171◦ in longitude. The average magnetic field was 21 nT, with a
direction given by 31◦ latitude and −89◦ longitude (when not otherwise specified, we
use the GSE coordinate system). The maximum variance direction of the magnetic
field was closely aligned with the mean magnetic field direction which implies large
compressional fluctuations during the selected interval. This justifies the use of the
magnetic field magnitude instead of its components for this case study.

The results of location analysis for five different frequencies are listed in ta-
ble (4.6). The array power spectra for ω = 181, 91, and 66mHz are shown in fig-
ure (4.18). We have represented the projections of the flow line and of the magnetic
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Figure 4.17: Upper panel: Magnetic field magnitude observed by Cluster in the magnetosheath
shortly after an inbound shock crossing on 26 February 2002 between 22:03 and 22:11 UT. An
overview plot with the interest interval marked with a red box is shown in the cassette. Lower panel:
Frequency power spectrum for the analyzed data interval. The vertical dashed lines indicate the
frequencies for which location analysis was performed.

field line passing through the identified virtual source position by the dashed, respec-
tively continuous lines in the longitude-latitude plots. The triangles in these plots
represent the point of minimum distance between the center of the spacecraft for-
mation and the flow line, respectively the magnetic field line. The squares represent
the spacecraft positions. As it can be seen from the k-distance plots, the source is
close for the frequency of 66mHz but is distant – in other words seen as a plane wave
by the source locator – for the higher frequencies of 91mHz and 181mHz. The grid
on which the array power was computed has the same dimensions as for synthetic
data, i.e. 30 × 30 × 30 × 30 for the dimensions distance, latitude, longitude, wave
number.

Because of the Doppler effect (equation 4.9) the measured source frequency is
changing as the source moves on its trajectory. If the source comes toward the sensor
array, the measured frequency is highest when the source is at the maximum distance
and is continuously moving towards lower frequencies as the source is approaching.
This means that location analysis performed for different frequencies on the same
data interval will reveal different locations of the source corresponding to its motion,
allowing us to trace the evolution of the source in time.

In figure (4.18) the plot for ω = 181mHz, the highest frequency in the sequence,
shows the power maximum clearly aligned with the magnetic field. The wave source
could be a point source moving along the magnetic field but the results from the other
frequencies suggest that the measured wave comes rather from a source strongly
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Figure 4.18: Array power for the magnetic field magnitude measured by Cluster. Location anal-
ysis is applied to the same 512 seconds data interval for the frequencies (from top to bottom) 181,
91, and 66 mHz. The squares in the longitude-latitude plot represent the spacecraft positions,
the continuous lines are the projections of the magnetic field lines passing through the maximum
power point. Similarly, the dashed lines represent the plasma flow lines. The triangles on the lines
are the points where the distance from the configuration center to the respective line reaches
minimum.

elongated in the magnetic field direction.

When we move towards lower frequencies, the power maximum changes its shape
and aligns itself with the plasma flow direction. At the same time the distance to
the virtual source decreases from more than 2000 km to about 500 km. The source
seems to move with the plasma flow, approaching the spacecraft formation. This is
also consistent with the change in the angle α between the line of sight to the virtual
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ω distance k × 103 longitude latitude α
(mHz) (km) (km−1) (deg) (deg) (deg)

181 > 2000 11.4 -45 10 57
126 > 2000 11.0 -39 4 59
91 > 2000 6.3 -27 7 49
79 759 6.3 -27 -10 65
66 538 5.5 -27 -13 68

Table 4.6: Results of source location analysis for different frequencies. α is the angle between
the line of sight and the plasma flow direction.

source and the plasma flow direction.
A possible explanation for the change in the alignment of the power maximum

is the change in the apparent angular velocity of the source. When the source is
far away, its angular velocity is small and it has more time to emit energy from
an apparently fixed position. This makes the source to behave more like the static
source in figure (4.13) and we can resolve its shape. As the source approaches, its
angular velocity increases and the source locator will register just the trace of the
”brightest” point of the source like in figure (4.14).

Quantitatively, the ratio between the angular velocity corresponding to the angles
between line of sight and direction of motion α1 and α2 is:

vang(α1)

vang(α2)
=

1 + tan2 α2

1 + tan2 α1

(4.26)

Applying the above relation we find that the angular velocity corresponding to
ω = 66mHz is more than twice larger than for ω = 181mHz.

We draw the conclusion that we are tracing one and the same source during its
evolution. The measurements are consistent with a source elongated in the magnetic
field direction and moving with the plasma flow at close distance to the spacecraft
formation.

4.6.2 Magnetosheath crossing: Sources distribution

Numerous studies had been dedicated to the origin and nature of the plasma waves
in the magnetosheath and its adjacent regions. Song et al. (1990, 1992a,b) showed
evidence of a standing slow mode wave in front of the magnetopause, over which
higher frequency mirror modes convected with the magnetosheath flow are super-
posed. Schwartz et al. (1996) gave a comprehensive overview of low frequency waves
in the magnetosheath, pointing out the difficulties and complications faced by wave
mode identification. Their conclusion is that Alfvén/ion-cyclotron (AIC) and mirror
modes are dominant throughout the magnetosheath. They are rarely pure modes
but most of the times mixed between them and with other wave modes. Hubert
et al. (1998) suggests that the depth of the magnetosheath is a key parameter de-
termining the plasma waves nature. During a crossing of the Earth’s magnetosheath
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Figure 4.19: View from the GSE y axis of the Cluster orbit between 02:00 and 12:00 on Febru-
ary 18, 2002. The spacecraft formation was moving from the cusp region, through the outer
magnetosphere and the day side magnetosheath, into the solar wind. Plot produced with OVT
(http://ovt.irfu.se).

they found compressive and AIC modes in the oblique foreshock, pure AIC waves in
the outer magnetosheath, a mixture of AIC and mirror modes in the middle magne-
tosheath and pure mirror modes in the inner magnetosheath. Narita and Glassmeier
(2005) used magnetic field data from Cluster to determine the wave vectors across
the magnetosheath. The multi-point measurements allowed for Doppler correction
and for the determination of the dispersion relation, facilitating the wave mode
identification. They found a mixture of ion-cyclotron and mirror modes close to the
shock, then a region where mirror modes were dominating and finally, close to the
magnetopause they found distorted mirror modes.

The source locator is an ideal tool to investigate the distribution of wave sources
across the magnetosheath.

Experimental data

We analyze a ten hours data interval in which Cluster goes from within the cusp
region into the solar wind, crossing the outer day side magnetosphere and the mag-
netosheath (see figure 4.19). During the magnetosheath crossing, the interplane-
tary magnetic field pointed northward and the average shock angle was around 17◦

(Narita and Glassmeier 2005). The tetrahedron configuration changes during this
time interval but remains reasonably close to a regular tetrahedron with a charac-
teristic separation distance of about 100 km.

An overview of the plasma and field parameters over this time can be seen in
figure (4.21) adapted from the Cluster Active Archive. The different regions crossed
by the Cluster constellation are marked by the colored rectangles. They are as
follows:
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Figure 4.20: Sketch of two foreshock configurations encountered by Cluster during the February
18 2002 foreshock crossing. The drawing on the left illustrates the configuration between 08 and
10 UT when Cluster came out of the magnetosphere, traversed the ion foreshock (labeled (I) in the
text) and entered the electron foreshock. Then, a change in the IMF direction occurred, producing
the foreshock configuration drown on the right. In the new configuration, the spacecraft are again
in the ion foreshock (labeled (II) in the text).

02:00 – 02:10 Magnetosphere

02:10 – 03:30 Cusp

03:30 – 05:00 Magnetosphere

05:00 – 07:45 Magnetosheath

07:45 – 09:00 Ion foreshock (I)

09:00 – 10:15 Electron foreshock

10:15 – 12:00 Ion foreshock (II)

The enhancement of the high energy electrons density seen in the PEACE (John-
stone et al. 1997) data as well as the small decrease in the magnetic field amplitude
visible in the FGM data around 03:10 indicate the cusp traversal. The high level of
continuum noise below 30 kHz in the WHISPER (Décréau et al. 1997) spectrogram
from 03:30 to 05:00UT is likely due to trapped particles in the magnetosphere be-
tween cusp and magnetosheath. The transition between the magnetosphere and the
magnetosheath and between the magnetosheath and the foreshock can easily be seen
both in the ion CIS (Rème et al. 2001) data and in the electron PEACE data. In the
WHISPER data we identify electrostatic Langmuir waves through almost the whole
interval. Their frequency is proportional to the square root of the electron density:
between 15 and 30 kHz in the cusp and magnetosphere regions, around 60 kHz in
the magnetosheath and around 40 kHz in the foreshock.

The electron foreshock is indicated by the increase in the Langmuir wave activity
and by the presence of waves with twice the electron plasma frequency, the so-called
2fp emissions (see Tsurutani and Rodriguez 1981; Kasaba et al. 2000).

The incursion into the electron foreshock and back to the ion foreshock is due to
changes in the interplanetary magnetic field direction (see figure 4.20). During the
ion foreshock (I) interval, the presence of weak Langmuir and 2fp waves suggests
that the constellation was already close to the electron foreshock. Between the ion
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Figure 4.22: The magnetic field in spherical GSE coordinates measured by Cluster 1 on Febru-
ary 18, 2002. Different regions are marked by colored rectangles.

foreshock (I) and the electron foreshock interval, the angle between the mean mag-
netic field and the xGSE axis changes only with 10◦, from 50◦ to 60◦. It is not clear if
this slight change in the magnetic field direction determined the electron foreshock
to move over the spacecraft or if the spacecraft entered the electron foreshock due to
its own motion. However, about one hour later, a more dramatic change from 60◦ to
20◦ alters the foreshock configuration in such way that the spacecraft is once again
immersed in the ion foreshock plasma, this time further away from the foreshock
boundary. As we will see later, the larger distance to the foreshock boundary makes
the two ion foreshock intervals to have different properties.

We have chosen this time interval because parts of it already have been analyzed
in several papers giving us an opportunity for comparison. Using the k-filtering
technique Sahraoui et al. (2003) investigates a magnetic field data interval of 164
seconds in lengths, in the inner magnetosheath, starting from from 05:34UT. The
power spectrum for frequencies between 350 and 12500 mHz suggests a turbulence
cascade and more wave modes are found for each given frequency. They find that
mirror mode propagating at an angle around 60◦ to the background magnetic field
dominates, but there are also contributions from Alfvén, slow, and cyclotron wave
modes. For the same data interval but for lower frequencies Sahraoui et al. (2004)
find similar results, with the mirror modes propagating closer to the orthogonal
direction at 80◦. Tjulin et al. (2005) confirm the presence of mirror modes for the
same interval by analyzing the electric field fluctuations after using both magnetic
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and electric field as input for the k-filtering. Walker et al. (2004) compare the results
obtained via k-filtering with those obtained via phase differencing method (Balikhin
et al. 1997) applied to the same 164 seconds data interval. They find a mixture
of slow, Alfvén, and mirror waves with their wave vectors close to the orthogonal
direction to the average magnetic field. They stress the “highly changeable” na-
ture of the waves present in this interval. At low frequencies, the mirror mode is
found to be dominating. Finally, Narita and Glassmeier (2005) analyze four differ-
ent intervals for this crossing: one in the inner magnetosheath, one in the middle
magnetosheath, one in the outer magnetosheath and one in the ion foreshock (I)
region. They use the wave telescope technique to determine the wave vectors which
are then used to find the experimental dispersion relation. In the foreshock they
find waves propagating slightly oblique (20◦−30◦) to the background magnetic field
and a minority population of orthogonal propagating waves. From the interpreta-
tion of the dispersion relation they suggest the detected waves in the foreshock are
ion-whistler and beam-resonant mode. The waves in the outer magnetosheath have
various propagation angles from oblique to orthogonal and it is suggested that they
are mirror modes with small contribution from other modes, perhaps ion-cyclotron.
In the middle magnetosheath they find orthogonal propagating, linear polarized
waves interpreted as mirror modes which are convected with the plasma flow into
the inner magnetosheath region where they coexist with the slow mode (MIAOW
waves).

Typical samples

Before we discuss the statistics of waves detected during the selected time interval,
we shall have a look at typical array power plots for each of the magnetospheric re-
gions crossed. Figure (4.23) shows the array power as derived by the source locator
for sample intervals in the ion foreshock (II), electron foreshock and ion foreshock (I).
Figure (4.24) completes the picture with power plots from the magnetosheath, mag-
netosphere, and cusp samples. Besides the guiding elements already introduced in
section 4.6.1 (the magnetic field line through the source is represented by the solid
line, the plasma flow line through the source is represented by the dashed line, the
closest approach points of these lines to the configuration center are represented
by the triangles, and the spacecraft positions are represented by the squares), in
the latitude-longitude plots are displayed some new guiding elements: the red cross
represents the background magnetic field direction, the yellow cross represents the
direction anti-parallel with the background magnetic field and the dotted line rep-
resents all directions making the same angle with the background magnetic field as
the line of sight to the source. For more details see appendix A.4.

In the ion foreshock (II) sample the source locator detects a plane wave (remote
source) with a frequency of 83mHz in the spacecraft frame, a wave length around
3000 km and an angle of 148◦ with the background magnetic field. The frequency in
the plasma rest frame is found using equation (4.9) to be −20mHz. The negative
frequency means that in the plasma rest frame the wave propagates in the opposite
direction as detected in the spacecraft frame (k → −k). The wave propagates against
the solar wind but because of the relatively low phase speed (around 60 km/s) it is
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Figure 4.23: Array power for data samples in different magnetospheric regions. From top to bot-
tom: ion foreshock (II), electron foreshock, ion foreshock (I). For a detailed explanation of the plot
elements see appendix A.4. The ion foreshock (II) wave propagates oblique from a remote source.
The local generated electron foreshock wave propagates orthogonal to the mean magnetic field.
In the ion foreshock (I) a parallel propagating plane wave is detected.

convected by the flow.

As opposed to the ion foreshock (II) sample, the electron foreshock sample re-
veals a a close source positioned at only 244 km from the array center. This suggest
that waves are locally generated in this region. The wave propagates orthogonal to
the magnetic field (θ = 96◦) with a spacecraft frame frequency of 124mHz. If we
assume the wave source is convected with the plasma flow, after the Doppler cor-
rection the frequency becomes −46mHz. The phase speed is the same as for the ion
foreshock (II) sample, 60 km/s.
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Figure 4.24: Array power for data samples in different magnetospheric regions: From top to
bottom: magnetosheath, magnetosphere, and cusp region. The magnetosheath wave propagates
almost orthogonal to the mean magnetic field. This wave comes from a remote source. A remote
source of orthogonal propagating waves is detected in the magnetosphere. Note the increased
power along the “90 degrees line”. The cusp wave also propagates along the orthogonal direction
to the mean magnetic field. Most of the power comes from a close source. However, there is an
important contribution from an orthogonal propagating waves background.

With an angle of 167◦ to the background magnetic field, the ion foreshock (I)
wave is propagating almost parallel to the ambient magnetic field. The source is re-
mote and the latitude-longitude plot is very clean, indicating a wave with a well de-
fined propagation direction. The Doppler correction changes the detected frequency
of 48mHz to a negative rest frame frequency of −20mHz. Taking into account the
wave length of about 3500 km, the phase speed is 70 km/s.
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The wave detected in the magnetosheath sample propagates with an angle of
105◦ to the average magnetic field. It is also a plane wave, the distance to the source
being larger than 30 times the inter-spacecraft distance. The detected frequency of
109mHz becomes −13mHz in the plasma rest frame. With a wave length of about
1000 km this yields a phase speed of just 12 km/s.

After the crossing of the magnetopause we detect a remote source emitting a
wave with a wave length of around 700 km, a frequency of 25mHz in the spacecraft
frame, propagating at an angle of 93◦ with the mean magnetic field. The plasma
flows almost orthogonal to the line of sight to the source, minimizing the Doppler
effect. The plasma rest frame frequency of this wave is 12mHz. The phase speed is
as low as 8 km/s.

In the cusp sample, the source locator detects once more a close wave source
about 400 km away from the configuration center, emitting a wave which propagates
orthogonal to the background magnetic field (θ = 91◦). The wave length is around
1000 km and the frequency in the spacecraft frame is 72mHz. Because the plasma
flows with lower velocities in the cusp and the wave propagation direction is almost
orthogonal to the plasma flow, the Doppler corrected frequency remains positive,
taking a value of 45mHz. The corresponding phase speed is 47 km/s.

A striking feature of the latitude-longitude plot for both the cusp and the mag-
netosphere sample is the almost perfect alignment of the array power maximum
with the line marking all directions orthogonal to the background magnetic field.
This means the source locator detects waves propagating in all directions in a plane
orthogonal to the mean magnetic field. The wave field consists of a dominating
wave coming from the identified close source, superposed on a more or less isotropic
background field of orthogonal propagating waves. Such wave field suggests that the
Cluster constellation is immersed in an active region of homogeneously distributed
sources generating orthogonal propagating waves. In our statistical analysis we have
encountered many similar situations especially in the cusp and the outer magneto-
sphere regions. We call the wave field gyrotropic when the array power maximizes
for all directions making a certain angle with the background magnetic field.

Statistical study

We now apply the source locator to 52 data intervals, each 512 seconds in length,
with a time resolution of 1 s, distributed over the time period 02:00 – 12:00UT
on February 18, 2002. Each interval is Fourier analyzed and the source locator is
applied for several frequencies for which the wave power maximizes. In total there
are 264 samples for various time intervals and frequencies, giving an average of five
frequency samples for each data interval.

In the figure (4.25 a) we show the wave lengths as determined by the source
locator. The colored boxes mark the different magnetospheric regions in the same
way as in figure (4.22). For each data interval, the percent of the sources detected
close to the spacecraft array is shown in figure (4.25 b). The percent of samples
exhibiting gyrotropic wave fields is shown in figure (4.25 c). Averages over each
region are given in table (4.7).

Figure (4.26) displays the wave propagation angle with respect to the background
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Figure 4.25: The wave number (a), the percent of close sources (b), and the percent of samples
showing gyrotropic wave fields (c). The statistics are based on a total number of 264 samples
distributed over 52 time intervals.

magnetic field for the 264 considered samples, the correlation between the magnetic
field and the plasma density, and the temperature anisotropy (A = T⊥/T||).

We detect distinct (as opposed to gyrotropic wave field) long wave length plane
waves in the ion foreshock (II). Most waves propagate oblique, at an angle around
30◦ to the average magnetic field. A minority of orthogonal propagating waves is
also present. The magnetic field variations are in phase with the plasma density and
the anisotropy is variable showing values both above and below one. These waves
might be fast mode waves.

The character of the waves changes dramatically in the electron foreshock. Now
a few waves with short wave lengths are mixed with the long wave lengths waves
and more than half of the waves comes from close sources. A slight indication of
gyrotropy suggest an increased spatial density of the wave sources. The waves have
scattered propagation directions with a majority of orthogonal propagating waves.
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Figure 4.26: The propagation angle with respect to the background magnetic field (a), the
correlation between the magnetic field magnitude and the plasma density (b), and the proton
temperature anisotropy (c). The anisotropy plot shows both the 4 seconds resolution anisotropy
(scattered black dots) and the 10 minutes running average (red line).

close sources gyrotropic waves
(%) (%)

ion foreshock (II) 0 0
electron foreshock 55 5
ion foreshock (I) 22 0
magnetosheath 25 18
magnetosphere 40 94
cusp 57 89

Table 4.7: The average number of close sources and the average number of gyrotropic samples
for each magnetospheric interval.
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The magnetic field becomes anti-correlated with the plasma density and the tem-
perature anisotropy rises up to a value of 1.5 from a low of 0.5. The waves here
might be slow or mirror modes mixed with a minority of AIC waves.

In the ion foreshock (I) we encounter different wave characteristics again. Even
though there are fewer close sources than in the electron foreshock, their contribution
is still significant. Waves are generated near to, as well as remote from the spacecraft
configuration. The propagation is once again oblique, with an average angle of 20◦

to the mean magnetic field. The magnetic field is now highly correlated with the
particle density and the plasma temperature is almost isotropic. The AIC and fast
mode are compatible with these wave properties.

About one quarter of the magnetosheath waves are generated within a distance
of 2000 km from the spacecraft configuration center. More samples show gyrotropic
fields, indicating more stable waves than in the foreshock. The average wave length
increases as we move from the shock towards the magnetopause. A transition is
also observed in the waves propagation direction. Close to the shock we detect
waves propagating at various angles to the background magnetic field. This angle
distribution smoothly changes to orthogonal propagation in the vicinity of the mag-
netopause. The correlation between the magnetic field and the plasma density has
a descending trend, from values indicating no significant correlation in the outer
magnetosheath, to negative values indicating anti-correlation in the inner magne-
tosheath. The plasma temperature anisotropy is variable during the magnetosheath
crossing. First it fluctuates around 1.3 in the outer magnetosheath, it decreases close
to unity in the middle magnetosheath, and fluctuates around a value of 1.1 in the
inner magnetosheath. These properties are consistent with mirror mode growing
while being convected by the plasma flow. The waves close to the shock might be a
mixture of AIC and mirror modes, gradually changing to a mixture of mirror and
slow modes close to the magnetopause.

The waves in the outer magnetosphere have a broader distribution of the wave
lengths and propagate orthogonal to the mean magnetic field. Almost half of them
originate from close sources and over 90 % of the wave fields measured here are
gyrotropic. No clear correlation between the plasma density and the magnetic field
is observed close to the magnetopause. Toward the cusp, the magnetic field tends
to be anti-correlated with the plasma density. The temperature anisotropy indicates
possible mirror mode activity.

The cusp waves are highly gyrotropic and more than half of them come from close
sources. Both features are consistent with a region where waves are locally produced
by a homogeneous distribution of point sources. The waves propagation directions
remain orthogonal to the mean magnetic field while the correlation between the
magnetic field and the plasma density is mostly negative with occasional positive
values. The plasma temperature in the cusp region is nearly isotropic with a slight
decreasing tendency towards the end of the time subinterval. These facts suggest
that slow mode waves are generated in, and populating the cusp.

The distribution of the distances to the sources for a magnetospheric region
carries information about the spatial distribution of the wave sources within that
region. For instance, if we assume the sources are uniformly distributed in space, then
the distribution of the distances to the sources given by the source locator will reflect
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Figure 4.27: Distances to the sources. Top panel: distances to the wave sources for all detected
waves during the interval. Only the sources closer than 2000 km are considered in the bottom
panel. Bottom panel: Histogram of the distances to the sources for the entire data interval and for
specific regions.

the distribution of the distance between a wave source and its first order neighbor.
The top panel in figure (4.27) shows the distance to each source detected by the
source locator. The points gathered at large distances aligned at the top of this figure
are remote sources. For these sources the array power maximized at the maximum
distance in the scan domain, indicating that the distance to these sources is too large
to be determined by the source locator. The bottom panel of the figure (4.27) shows
a histogram of the distribution of the distances to sources. Gray colour is for the
whole data interval while coloured bars are for different magnetospheric regions. If
we assume uniform distribution of wave sources across each magnetospheric region,
from the cusp histogram we find the source characteristic distance (defined as the
most probable distance between two sources) in the cusp to be 250 km. Similarly,
the source characteristic distance in the magnetosheath is 750 km. The electron
foreshock histogram seems to be splitted between the cusp and the magnetosheath
characteristic distances, suggesting two different regimes in the electron foreshock.
The other magnetospheric regions histograms are not concludent.

Discussion

The interpretation of the statistical results presented above is not always straight-
forward. For instance, it would be tempting to interpret the ratio between close and
remote sources in the figure (4.25 b) as representing the wave sources density. It does,
but not in an absolute way. A strong damping of the waves would increase this ratio
because the remote sources would simply become “lost in the fog” and the source
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locator would only detect close sources. The same is valid for the gyrotropy. High
gyrotropy can be achieved either through high density of wave sources or through
low damping of the waves. The transition of waves from one mode to another would
decrease the wave field gyrotropy. However, combining the statistical information
about the close-remote ratio, the gyrotropy, and the source characteristic distance
gives us sufficient confidence in our interpretation.

The highly changeable nature of the waves for this particular interval was noticed
by Walker et al. (2004). The nature of the waves differs from interval to interval
and from frequency to frequency for a given interval. Though we did not investigate
the secondary power maxima, there is evidence (Sahraoui et al. 2003) that even for
a given interval and given frequency there is a significant mixing of wave modes.
As pointed out by Sahraoui et al., this results in a mix of polarizations creating
difficulties in wave mode identification.

The spatial distribution of the wave sources allows one to differentiate between
active regions where waves are locally generated and passive ones where the de-
tected waves are just propagating through. All the magnetospheric regions covered
here show a certain degree of activity. The cusp and the outer magnetosphere seem
to be particularly active regions with high spatial density of wave sources. The
magnetosheath is as well very active but the characteristic distance between wave
sources is larger here. The characteristic distance for the foreshock is uncertain.
Nevertheless, the high percentage of close sources found in the electron foreshock
suggest that the electron foreshock is as well very active. Interestingly, we find only
few close sources of low frequency waves in the ion foreshock and only close to the
electron foreshock. This is contrary to what we expect. The counter-streaming ions
should locally generate waves through the beam instability. Are there quiet regions
in the ion foreshock? Is this a temporal effect indicating intermittence in the wave
generation? Is this an isolated case which occurred just for this particular crossing?
Or maybe the ion beam instability only determines mode conversion and further
grow of the already present small amplitude waves propagating from the electron
foreshock. We favor the last possibility but we cannot exclude any of the above cases.

A possible scenario of the solar wind - magnetosphere interaction for the con-
sidered interval is: The solar wind flow encounters the counter-streaming reflected
electrons in the electron foreshock region as a first sign of the shock ahead. The re-
sulting interaction excites small amplitude mirror mode and AIC waves. When the
electron foreshock waves penetrate into the ion foreshock, mode conversions trig-
gered by the ion beam instability occur. High amplitude AIC and fast magnetosonic
waves populate this region. Most of them originate in and close to the electron fore-
shock. They continuously gain energy from the reflected ions as they travel across the
ion foreshock. After the solar wind crosses the bowshock, the wave lengths become
gradually larger, waves are locally generated, and the AIC population extinguishes
in favor of the mirror structures. Behind the magnetopause, mirror waves fill the
more homogeneous region of the magnetosphere between the magnetosheath and
the cusp. Slow mode waves are generated close to each other in the cusp region.

The above scenario is in good agreement with previous studies (Song et al. 1990;
Schwartz et al. 1996; Hubert et al. 1998) which describe the magnetosheath waves
as a mixture of AIC and mirror modes evolving in favor of the mirror modes as they
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are convected with the flow toward the magnetopause.
The study of Narita and Glassmeier (2005) focused on the ion foreshock (I) -

magnetosheath part of the interval presented in this work, mostly agrees with our
findings. It is only the inner magnetosheath region where slightly different conclu-
sions are reached. While our analysis suggests a steady evolution to more mirror-like
waves toward the magnetopause, Narita and Glassmeier (2005) find that the waves
in the middle magnetosheath are closer to mirror modes than the waves in the inner
magnetosheath. They regard this as a consequence of the interaction with the mag-
netopause which is distorting the mirror structures. There are two possible reasons
for this minor discrepancy we can think of. First, the way of sample selection differs.
Narita and Glassmeier (2005) are treating the power spectrum as a turbulent-like
spectrum. Consequently, they do not select the frequencies based on their relative
contribution to the wave field. On the contrary, we always select frequencies for
which the power presents local peaks. Since indeed, most of the time there are not
outstanding local maxima in the Fourier spectrum, but rather small local maxima
(an exception being the foreshock region), this difference in samples selection should
not influence much the statistical results. However, there is a fundamental difference
between the plane waves representation of the wave telescope used by Narita and
Glassmeier (2005) and the spherical waves representation of the source locator. We
have seen in section 3.4.1 that the plane wave telescope filters out the close sources
giving the far field view of the wave field. This means that instead of detecting young
waves from close sources, the plane wave telescope is detecting the evolved mirror
structures convected from upstream regions of the magnetosheath. These structures
might have indeed reach a nonlinear regime and be distorted. In conclusion, the
discrepancy is only apparent, the two tools are detecting different sets of waves.

An issue which can raise questions is the different interpretation of the maximum
power shape in section 4.6.1 where for 91 and 66mHz could be as well interpreted as
an indication of gyrotropy and not of source motion. This is true, but since the array
power has completely different alignment for 181mHz and since the five different
frequency samples which were considered are consistent with a moving source, we
believe the interpretation given in the section 4.6.1 is the correct one.
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5.1 Introduction

5.1 Introduction

In section 4.6.2 mirror modes have been detected almost in every magnetospheric
region covered by the crossing we analyzed. Indeed, they frequently occur in space
plasmas. The mirror instability requires increased orthogonal plasma temperature
(T⊥ > T||) which builds up in regions where magnetized plasma interacts with an
obstacle (Crooker and Siscoe 1977). Such regions are common in the Universe, from
cometary environments to supernovae shocks. Evidence of mirror structures have
been provided by a multitude of spacecraft observations in the solar wind (see, e.g.
Winterhalter et al. 1994; Fränz et al. 2003), the terrestrial magnetosheath (e.g.,
Tsurutani et al. 1982; Hubert et al. 1998; Lucek et al. 1999; Lucek et al. 2001) and
magnetosphere (e.g., Treumann et al. 1990), cometary environments (e.g., Glass-
meier et al. 1993; Tsurutani et al. 1999) and other planetary magnetospheres (e.g.,
Russell et al. 1999; Huddleston et al. 1999).

As the lowest frequency mode and typically having large amplitudes, mirror
modes serve as one of the dominant energy inputs into plasma. Moreover, low paral-
lel energy particles can be trapped in mirror modes and redistribute energy (cf. for
instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave
emission known under the name of lion roars and indicating that the mirror modes
contain a trapped particle component while leading to the splitting of particle distri-
butions (Southwood and Kivelson 1993; Kivelson and Southwood 1996; Baumjohann
et al. 1999) into trapped and passing particles.

Since the mirror modes play such an important role, they deserve a detailed
study. The geometry of the magnetic field inside the mirror structures determine
their features. Assuming magnetohydrostatic equilibrium a model for mirror struc-
tures can be inferred (Constantinescu 2002). Besides the features directly derivable
from the model, such as the magnetic field or the plasma temperature and density,
once the magnetic field geometry is known, various other aspects can be investi-
gated. For instance the particle distribution function inside magnetic mirrors can
be studied via computer simulations or the magnetic field geometry can be used to
identify the magnetic mirrors in spacecraft data.

In the light of chapter 3, the magnetic field provided by the model can be used to
construct a set of elementary waves {w} for a minimum variance technique similar
with the wave telescope or to the source locator. We have seen in chapter 4 how
much the complexity of the tool increases when the simple system of plane waves
is replaced by a system of spherical waves. The step toward the cylindrical waves
describing the mirror structures proves to be impractical. However, a direct fit of
the model magnetic field on the measured data can both help to identify the mirror
structures and to determine their geometrical parameters such as size, shape and
orientation.

5.2 A model for mirror structures

In this section we present a self-consistent model of mirror structures based on a
perturbative magnetohydrostatic approach (Constantinescu 2002). Such treatment
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is justified by the vanishing phase velocity which turns the mirror modes in non-
propagating structures in the plasma frame.

In the absence of the perturbation the magnetic field will be considered uniform
and parallel with the z axis. The magnetic field perturbation will be chosen to be
symmetrical in respect to the z axis in the meridian plane. For our simple model
the plasma will be a mixture of electrons and protons at equilibrium: n(e) = n(p) =
1/2n; T (e) = T (p) = T .

The pressure equilibrium in the plasma reference frame is written

∇
(

p⊥ +
B2

2µ0

)
+∇

[(
p‖ − p⊥ −

B2

µ0

)
B
B2

]
= 0 (5.1)

where µ0 is susceptibility, B magnetic field strength, B is a tensor with elements
(B)ij = BiBj, and p‖ and p⊥ are plasma pressure components.

We assume bi-Maxwellian distribution function of the plasma. For two dimen-
sions the anisotropy in a bi-Maxwellian plasma is (see, Lee et al. 1987)

A(r) =
T⊥(r)

T‖(r)
=

[
1−

(
1− 1

A0

)
B0

B(r)

]−1

(5.2)

where A(r) and B(r) are the final anisotropy and magnetic field, and A0 and B0

are unperturbed anisotropy and magnetic field.
We need to derive the temperature anisotropy for three dimensions. We do so in

the following section and show that equation (5.2) holds both for two and for three
dimensions.

5.2.1 The anisotropy for bi-Maxwellian distribution

We consider the plasma obeying a bi-Maxwellian distribution both before and after
the perturbation is applied. The unperturbed distribution function for electrons and
protons is:

F
(s)
0 (v⊥0, v‖0) =

n
(s)
0

T⊥0T
1
2

‖0

(
m(s)

2πkB

) 3
2

exp

{
−m(s)v2

⊥0

2kBT⊥0

−
m(s)v2

‖0

2kBT‖0

}
(5.3)

The superscript (s) distinguishes between electrons and protons. The kinetic energy
and the magnetic moment of each particle are invariants:

W (s) =
m(s)

2
(v2
‖ + v2

⊥) (5.4)

µ(s) =
m(s)

2

v2
⊥

B
(5.5)

The argument of the exponential factor in the distribution function can be expressed
in terms of these invariants:

− W (s)

kBT‖0
− µ(s)B

α0kBT‖0
(5.6)
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In the previous relation we have denoted α0 = 1
T‖0
T⊥0

−1
.

Owing to the invariance of W (s) and µ(s) (the number of particles with certain
energy and magnetic moment must remain the same), the distribution function
expressed in cylindrical coordinates (ρ, ϕ, z) after applying the perturbation is:

F(s)(v⊥, v‖, ρ, z) =

n
(s)
0

T⊥0T
1
2

‖0

(
m(s)

2πkB

) 3
2

exp

{
−

W (s)(v⊥, v‖, ρ, z)

kBT‖0
−

B0µ
(s)(v⊥, v‖, ρ, z)

α0kBT‖0

}
=

n
(s)
0

T⊥0T
1
2

‖0

(
m(s)

2πkB

) 3
2

exp

{
− m(s)

2πkBT‖0

[
v2
‖ + v2

⊥

(
1 +

1

α0

B0

B(ρ, z)

)]}
(5.7)

The final number density can be fond through the integration of the distribution
function:

n(s)(ρ, z) =

∫ 2π

0

dϕ

∫ ∞

−∞
dv‖

∫ ∞

0

v⊥dv⊥F(s)(v⊥, v‖, ρ, z)

= n
(s)
0

(
1 +

1

α0

)(
1 +

1

α0

B0

B(ρ, z)

)−1

(5.8)

We can now express the distribution function in terms of the final number density:

F(s)(v⊥, v‖, ρ, z) =
n(s)(ρ, z)

T
1
2

‖0τ

(
m(s)

2πkB

) 3
2

exp

{
−

m(s)v2
‖

2kBT‖0
− m(s)v2

⊥
2kBτ

}
(5.9)

Above we have denoted by τ the following quantity:

τ = T‖0

(
1 +

1

α0

B0

B(ρ, z)

)−1

(5.10)

Because we ask the distribution function to remain bi-Maxwellian after the per-
turbation is applied, from equation (5.9) we find the final orthogonal and parallel
temperatures:

T‖(ρ, z) = T‖0 (5.11a)

T⊥(ρ, z) = τ(ρ, z) (5.11b)

These relations lead us to the temperature anisotropy equation (5.2) of the perturbed
plasma.

5.2.2 The Magnetic Field

The magnetic field in the first order of the perturbation theory is:

B(ρ, z) = B0êz + δB(ρ, z) (5.12)

Bϕ = 0 (5.13)
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and the pressure is:
P = p⊥I + (p‖ − p⊥)EB (5.14)

where I is the unity tensor and (EB)ij = (êB)i(êB)j. In a local field aligned coordi-
nate system the pressure becomes:

P =

p⊥ 0 0
0 p⊥ 0
0 0 p‖

 (5.15)

The parallel and the orthogonal components of the pressure are:

p⊥(ρ, z) = p0⊥ + δp⊥(ρ, z) (5.16a)

p‖(ρ, z) = p0‖ + δp‖(ρ, z) (5.16b)

From equation (5.2) the pressure perturbation in the parallel direction is:

δp‖(ρ, z) = (p0⊥ − p0‖)
δBz(ρ, z)

B0

+ p0‖
δp⊥(ρ, z)

p0⊥
(5.17)

Substituting the first order expressions of the magnetic field (equations 5.12 and
5.13) and of the pressure (equations 5.16 and 5.17) in the equation (5.1) of the
magnetohydrostatic equilibrium and taking into account the divergence-less condi-
tion for the magnetic field (∇B = 0) we obtain the following system of coupled
differential equations:

∂

∂ρ
δp⊥ +

B0

µ0

∂

∂ρ
δBz +

1

B0

(
p0‖ − p0⊥ −

B2
0

µ0

)
∂

∂z
δBρ = 0 (5.18a)

p0‖

p0⊥

∂

∂z
δp⊥ +

2

B0

(
p0⊥ − p0‖

) ∂

∂z
δBz = 0 (5.18b)

1

ρ

∂

∂ρ
(ρδBρ) +

∂

∂z
δBz = 0 (5.18c)

The magnetic field and the plasma pressure are periodical in respect to z coordinate
(B(ρ, z + 2L) = B(ρ, z) and P(ρ, z + 2L) = P(ρ, z)) therefore we can expand them
in Fourier series:

δBρ(ρ, z) =
∞∑

n=−∞

δBn
ρ (ρ)e−in πz

L (5.19a)

δBz(ρ, z) =
∞∑

n=−∞

δBn
z (ρ)e−in πz

L (5.19b)

δp⊥(ρ, z) =
∞∑

n=−∞

δpn
⊥(ρ)e−in πz

L (5.19c)

Substituting these Fourier expansions into the system (5.18) we get a set of
Bessel equations, one for each Fourier order of the ρ-component of the magnetic
field perturbation:

ρ2 d2

dρ2
δBn

ρ + ρ
d

dρ
δBn

ρ +

[(nαρ

L

)2

− 1

]
δBn

ρ = 0 (5.20)
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Figure 5.1: The α2 parameter versus the unperturbed anisotropy for β0⊥ = 3.47. For aniso-
tropies less than unity the perturbation is firehose type, while for anisotropies grater than unity a
mirror structure develops. In the highlighted region (α2 < 0) no axi-symmetrical magnetic pertur-
bation can be in equilibrium with the plasma pressure.

where α is a dimensionless parameter:

α = π

√√√√ 1
2

(
1− 1

A0

)
+ 1

β0⊥

A0 − 1− 1
β0⊥

(5.21)

and β0⊥ is the plasma parameter, i.e. the ratio between the orthogonal plasma

pressure, p0⊥ and the magnetic pressure,
B2

0

2µ0
.

The non-divergent solution of equation (5.20) is:

δBn
ρ (ρ) =

iπ

α
CnJ1

(nαρ

L

)
(5.22)

This solution is non-divergent only if the argument of the Bessel function J1 is a real
number. Hence, α2 > 0 is an existence condition. In terms of the initial anisotropy
and plasma β this is equivalent to:

A0 > 1 +
1

β0⊥
(5.23a)

or

A0 <
β0⊥

β0⊥ + 2
(5.23b)

The first inequality is the same as the mirror instability condition derived from
the kinetic theory while the second one is the instability condition for the firehose
mode (Treumann and Baumjohann 1997). The properties of the magnetic structure
depend on which of the above conditions are satisfied. If inequation (5.23a) is satis-
fied, then the structure will be a classical magnetic mirror and the magnetic field will
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Figure 5.2: The magnetic field perturbation for the main structure. The perturbation on the axis
has been chosen to be Gaussian: δBz(0, z) = δBz(0, 0) exp(−z2/a2), a = L/3, the initial anisotropy
is A0 = 1.3, the unperturbed magnetic field is B0 = 20 nT, the perturbation in the middle of the
bottle is δBz(0, 0) = −2 nT, the unperturbed density of the electrons is n0 = 40e−/cm3, the length
of the bottle is 2L = 20 km and the initial orthogonal temperature is T0⊥ = 106 K. With these
parameters the radius of the main structure is R = 2.09 km, β0⊥ = 3.47 and α = 18.35.

be anti-correlated with the plasma density. On the other hand, if inequation (5.23b)
is satisfied then the magnetic field will be correlated with the plasma density.

The Fourier components of the z-component of the magnetic field perturbation
are:

δBn
z (ρ) = CnJ0

(nαρ

L

)
(5.24)

and the Fourier components of the orthogonal pressure are:

δpn
⊥(ρ, z) = −2p0⊥(A0 − 1)

δBn
z (ρ)

B0

(5.25)

The magnetic field has to be real. In order to ensure this, the coefficients Cn

must satisfy the relation:

C−n = C?
n (5.26)

The boundary condition used to establish the Cn coefficients is the perturbation
of the magnetic field on the z-axis. Taking into consideration the orthogonality of
the system {exp(in)} and equation (5.26) we find:

Cn =
1

2L

∫ L

−L

dzδBz(0, z) exp
(
i
nπz

L

)
(5.27)

The components of the magnetic field perturbation become:

δBρ(ρ, z) =
2π

α

∞∑
n=1

J1

(nαρ

L

) [
an sin

(nπz

L

)
− bn cos

(nπz

L

)]
(5.28a)

δBz(ρ, z) = 2
∞∑

n=1

J0

(nαρ

L

) [
an cos

(nπz

L

)
+ bn sin

(nπz

L

)]
(5.28b)
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Figure 5.3: The surfaces defined by the field lines for the first Fourier component of the magnetic
field perturbation. The main structure has the well known bottle shape. As we move away from
the axis, we encounter other structures with similar symmetry, wrapping up each other.

The quantities an and bn are the real and the imaginary part of the coefficients
Cn. The components of the magnetic field perturbation for a Gaussian boundary
condition are shown in the figure (5.2).

A closer look at the Fourier components in equations (5.28) reveals for each
of them a complex geometry that is depicted in figure (5.3). The main structure
(closest to the symmetry axis) has the well known bottle shape. As we move away
from the axis, we encounter other structures with similar symmetry, wrapping up
each other. For values of ρ for which J1(ρ) = 0, the field lines become straight lines
on the surface of the cylinder, defining the border between two layers of opposite
curvature. The position of the first border, which defines the main structure is given
by the ratio of radius to length of the central bubble

nαR

L
= 3.832 (5.29)

and α thus determines the elongation of the bubble.
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Figure 5.4: The magnetic field lines for the central structure in the first Fourier order. The
distance units are arbitrary. The magnetic field intensity is color coded. Note the magnetic field
depression in the center surrounded by increased magnetic field. The field intensity is especially
high in the neck region of the bottle.

The first order perturbations of the anisotropy and plasma pressure are:

δp⊥(ρ, z) = −2p0⊥(A0 − 1)
δBz(ρ, z)

B0

(5.30a)

δp‖(ρ, z) = −p0‖(A0 − 1)
δBz(ρ, z)

B0

(5.30b)

δA(ρ, z) = −A0(A0 − 1)
δBz(ρ, z)

B0

(5.30c)

These last three relations have also been obtained from the kinetic theory (Hasegawa
1969). Note that the in phase – out of phase with the magnetic field character of
the pressure and anisotropy variations changes between mirror like (A0 > 1) and
firehose like (A0 < 1) structures.

5.2.3 The Instability Mechanism

Both the internal energy perturbation of the plasma and the field energy perturba-
tion are proportional with δBz. Because of the symmetry of δBz the global energy
perturbation is zero ∫

Vbottle

drδBz(ρ, z) = 0 (5.31)

This would suggest that the magnetic structure given by the model is always in
indifferent equilibrium. However, the electrical currents inside the magnetic mirror
can influence its stability.

From the Ampère’s law we can find the electric current density that should exist
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Figure 5.5: The ring current density jB in µA/m2. All currents inside the mirror structure flow
around the symmetry axis and form current rings with alternate flow directions. Here it can be
seen a central ring current bordered upon opposite sense ring currents.

inside the mirror structure:

jA(ρ, z) =
1

µ0

∇×B =

2π2

µ0αL

[
1 +

(α

π

)2
] ∞∑

n=1

nJ1

(nαρ

L

) [
an cos

(nπz

L

)
+ bn sin

(nπz

L

)]
êϕ (5.32)

This ring current is illustrated in figure (5.5).
The actual current density jd existing into the mirror structure can be calculated

from the gradient-curvature drift. The drift velocity a particle will gain because of
the magnetic field gradient is:

v
(s)
G = −µ(s)

q(s)

(∇B)×B

B2
=

m(s)v
(s)
0⊥

2

2B0

1

q(s)

µ0

2B0

(
α
π

)2
1 +

(
α
π

)2 jA (5.33)

The drift current density for species s associated with the magnetic field gradient is

obtained from the average of v
(s)
G . The average of v

(s)
0⊥

2
will be expressed using the

unperturbed temperature T0⊥.

j
(s)
G = n(s)(ρ, z)q(s)〈v(s)

G 〉 =
β

(s)
0⊥
4

(
α
π

)2
1 +

(
α
π

)2 jA (5.34)

The curvature drift velocity is:

v
(s)
C = −

2W
(s)
‖

q(s)B4
[(B∇)B]×B =

m(s)v
(s)
0‖

2

2

µ0

q(s)B2
0

1

1 +
(

α
π

)2 jA (5.35)

The drift current density associated with the magnetic field curvature is found in
the same way as j

(s)
G .

j
(s)
C = n(s)(ρ, z)q(s)〈v(s)

C 〉 =
β

(s)
0‖

4

1

1 +
(

α
π

)2 jA (5.36)
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Figure 5.6: The existence and instability domains in the (A0, β0⊥)-plane. In the pink region
the existence condition is not fulfilled. Below the straight line the perturbation grows, above the
straight line the perturbation is damped. The structures are mirror like in the upper green area and
firehose like in the lower green area.

The combined gradient-curvature current density is:

jd =
1

4

3β0⊥ + 2

2A0 + 1
jA (5.37)

At equilibrium jd = jA. In this case the magnetic field perturbation produces
a drift current which in turn sustains the perturbation. Depending on A0 and β0⊥
the drift current might be larger or smaller then the current jA required to sustain
the magnetic field perturbation. If jd > jA then the perturbation induced by the
drift current will be larger then the original perturbation, consequently the drift
current intensity will increase. In this situation the mirror structure is unstable.
Similarly, if jd < jA the magnetic field perturbation will decrease. Therefore the
instability condition for the magnetic mirrors in the linear and magnetohydrostatic
approximation is:

A0 <
1

4

(
3

2
β0⊥ − 1

)
(5.38)

Making use of equation (5.38) and of the inequations (5.23) we have plotted the
existence and instability domains for the magnetic mirrors in figure (5.6).

5.3 Particle kinetics and distribution function

In section 5.2.3 we have seen that the drift motion of the charged particles gives
rise to a pattern of ring currents which are essential for the stability of the magnetic
mirror structure. However, to compute these currents we used the gyro-center motion
assuming the particle gyro-radius is much smaller than the scale of the magnetic field
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spatial variations. Of course, when we deal with a statistical ensemble of particles,
this approximation is valid only for a subset of the particles in the ensemble.

We wish to investigate in detail the motion of charged particles inside the mag-
netic mirror structures. We do this by numerically integrating the equation of mo-
tion. Depending on the particle initial velocity and on the magnetic field configura-
tion, the particle motion can be either regular or chaotic. The regular (also called
adiabatic) motion is well described in the gyro-center approximation and itself can
be subdivided into trapped motion (the particle is reflected at the mirror points
and always remains inside one “bottle”) and escaping motion (the particle migrates
along the magnetic field lines). Both trapped and escaping particles contribute to
the ring current system. The chaotic motion obeys to deterministic chaos, the par-
ticle gyro-radius significantly changes within one orbit and the particle randomly
jumps between neighboring bottles. The chaotic particles do not contribute to the
ring current.

After single particle motion has been studied, the next logical step is to inves-
tigate how a statistical ensemble of particles described by a distribution function
evolves in time and what is its final equilibrium state. We will see that each particle
population has its own specific behaviour and equilibrium distribution function.

5.3.1 Single particle evolution

We analyze single particle motion inside a mirror structure given by the model in
section 5.2 by direct numeric integration of the equation of motion:

m
∂2r

∂t2
= q

(
∂r

∂t
×B

)
(5.39)

The mass of the particle is m, the charge is q, r is the position vector, t is the time,
and B is the magnetic field. We do not take into account any electrostatic field.

Equation (5.39) is solved using the fifth order Runge-Kutta method with adaptive
step size control (see Press et al. 2002, Ch. 16.2.). This integration method has the
advantage of being very fast and accurate. The maximum acceptable error is given
as an input parameter and the algorithm makes frequent changes in its step-size such
as is most efficient for the requested accuracy. A way to check the overall accuracy
is to verify the energy conservation which for our case is the conservation of the
velocity magnitude. Most of the cases, even for long integration times, the difference
between the initial and final energy is well below one percent.

Types of orbits

A typical example of trapped particle orbit is given in figure (5.7). The magnetic
field obeys the first order equations (5.28) for the length L = 1000 km, a1 = −14 nT,
b1 = 0nT, an unperturbed field B0 = 15nT and plasma characterized by α = 3.
The resulted radius of the main structure is R = 1277 km. The particle whose track
is followed for 1.2 s is an electron launched with an initial velocity v0 = (20, 0, 4)×
103 km/s from an initial position r0 = (200, 0,−100) km. The particle gyrates around
the magnetic field and moves along the line until it reaches the mirror point where
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Figure 5.7: A typical orbit for an electron trapped into a magnetic mirror with the magnetic
field configuration given by equations (5.28) in the first order with the parameters L = 1000 km,
a1 = −14 nT, b1 = 0 nT, B0 = 15 nT, and α = 3. The electron initial position is marked by the
magenta points and the final position by the green points.

it suffers a reflection (Baumjohann and Treumann 1996). Because of the magnetic
field gradient and of the curvature of the magnetic field lines a drift around the
structure axis is induced. The gyro motion, the bounce motion and the drift around
the symmetry axis are well decoupled and clearly visible.

If we increase the z-component of the initial velocity, the particle will eventually
penetrate into the the neighboring structure. The bounce motion disappears being
replaced by a forward (or backward ) motion along z-axis. However, the gyro motion
and the drift around the mirror axis remain and are still decoupled.

Both trapped and escaping particles have regular motions for which the gyro-
center motion approximation makes sense. But not all charged particles follow reg-
ular motions within the mirror magnetic field. If the particle encounters weak mag-
netic field, its gyro-radius increases and if it becomes comparable with the magnetic
field spatial variation scale, the motion of the particle can become chaotic.

To illustrate the different kinds of orbits we follow the motion of 18 particles
with random initial velocities and random initial positions inside the main mirror
structure. The model parameters are the same as for the trapped particle above. The
result is shown in figure (5.8). Unlike figure (5.7) where we concentrate on the central
part of the main structure, here we “zoom out” to encompass the periodicity of the
mirror structure along its symmetry axis. Even if in reality the mirror structures
cannot be strictly periodic, it is important to realize that particles flow in and out
of the mirror structure along the magnetic field lines. Because the particles do not
diffuse in the radial direction we did not include the outer shells of the structure.
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Figure 5.8: Various particle orbits inside a mirror structure. The magnetic field is the same
as in figure (5.7) but the simulation time is shorter. The different coloured areas represent the
periodicity along the z-axis. At the simulation start the particles are randomly placed inside the
main structure (bordered with red) and they are given random speeds.

In order not to overload the plot, the simulation time is much shorter than the
simulation time for the particle in figure (5.7). Because of this, the drift around the
symmetry axis is much less visible.

The particles distribute themselves more or less equally between the three types.
There are seven escaping particles with green orbits in the figure (5.8), they travel
along the magnetic field without being reflected. At equilibrium there should be an
equal number of particles leaving and entering the structure in this manner.

The five trapped particles with blue orbits reveal that it is possible for particles
to be trapped not only inside the main mirror bottle but also in other regions where
a weak magnetic field is surrounded by strong magnetic field. In this particular case
is the toroidal region around the neck of the bottle. These particles have opposite
drift direction with the particles trapped inside the main bottle.

Finally, there are six particles with chaotic orbits drawn in red in figure (5.8).
Their trajectories are irregular and they seem to linger around the weak field regions
occasionally passing through strong field regions. The chaotic character of the motion
of these particles emerge from nonlinear resonances between the bounce and the
gyro-motion.

Chaotic particles

Buechner and Zelenyi (1989) had shown that the particle dynamics is controlled
by the curvature parameter determined by the ratio between the minimum curva-
ture radius of the magnetic field lines and the maximum curvature radius of the
particle orbit: κ2 = Rfield-minimum/ρparticle-maximum. For κ much larger than one, the
magnetic moment (equation 5.5) is a first order invariant of motion and the particles
follow regular trajectories. When κ decreases, the magnetic moment ceases to be an
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Figure 5.9: Magnetic moment conservation as a function of the magnetic field in the center of
the mirror structure. δµ = (µi − µf)/µi remains close to 0 for the adiabatic particle but it wildly
oscillates for the chaotic particle.

invariant and the motion become chaotic.

To illustrate the relation between the conservation of the particle magnetic mo-
ment and the field curvature we compare the magnetic moment at the initial moment
with the magnetic moment after about one hundred gyro-periods in different field
configurations for a chaotic as well as for an adiabatic particle. The magnetic field
models a structure with L = 1000 km within a plasma with α = 3. The unperturbed
magnetic field B0 is 5 nT and the perturbation a1 takes 10000 values between −5 nT
and −4 nT (corresponding to a magnetic field in the center of the structure between
0 and 1 nT). All other aj and bj coefficients are zero. For each value of a1 two parti-
cles are launched and let to evolve for 0.714 seconds corresponding to 100 gyrations
in the unperturbed field.

The first particle is launched from the position r = (236, 624,−257) km with a
velocity v = (−5045,−24421, 2037) km/s. In the figure (5.9) we plot with red colour
the quantity δµ = (µinitial−µfinal)/µinitial as a function of the magnetic field intensity
in the center of the bottle which is a measure of the maximum curvature of the
magnetic field. The lower the magnetic field in the center, the higher the curvature.
δµ remains close to 0 showing that the magnetic moment of this particle is conserved
for all values of the perturbation. In fact, if we look at this particle orbit (not shown)
we see that it is a trapped particle.

Not the same is true for the second particle launched from r = (−122, 171, 41) km
with a velocity v = (18436,−3334, 6497) km/s. The black dots in figure (5.9) repre-
sent δµ for this particle. If we read the plot from left to right, we observe oscillations
in the magnetic moment as the intensity of the magnetic field decreases (curvature
increases). Suddenly, as the magnetic field intensity in the center reaches the criti-
cal value of 0.47 nT, the oscillations become erratic. This second particle exhibits a
chaotic orbit.
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When the magnetic mirror structure is filled with plasma, the collective be-
haviour of each type of particle (trapped, escaping, chaotic) will be different and
will have different effects. The particle distribution function at equilibrium offers
the richest information available to investigate these effects.

5.3.2 Distribution function evolution

In this section we study a statistical ensemble of charged particles under the influ-
ence of the mirror structure magnetic field. We use the test particles approximation,
meaning that we only consider the action of the magnetic field on the particles and
ignore the action of the charged particles motion on the magnetic field and their
mutual interaction. In other words, we assume a given magnetic field configura-
tion sustained by some external means in which charged particles are free to move
independently from each other.

To simulate the natural evolution of a mirror structure we start with an uniform
magnetic field immersed into an uniform density bi-Maxwellian plasma. We let the
particles evolve and gradually deform the magnetic field toward its final mirror
configuration. The magnetic field change is slow enough so it can be considered
static at any time, i.e. no induced electric fields alter the particles motion. After
the final magnetic field configuration has been reached, the particles are still let to
evolve for a short time to allow for equilibrium.

A direct approach would be to freeze the system and examine the final phase-
space density of the particle ensemble by dividing the phase-space into a grid and
counting the particles in each cell. However, better statistics are obtained by letting
the system to further evolve and assign to each cell a density obtained by the average
number of particles which had cross the cell, weighted by the time each particle has
spent inside the cell.

Preparation of the initial state

We have to generate the initial state of the particle set. There are numerical al-
gorithms capable to produce pseudo-random numbers uniformly distributed over a
given interval. The resulted sequence can be directly used for the generation of the
initial particles positions in the simulation box but not for their initial velocities.
The initial velocities should follow a given initial distribution function, in our case
the bi-Maxwellian distribution (5.3) which is a product of three one dimensional
Maxwell distributions:

f(v) =

(
m

2πkBT

)1/2

exp

{
−m(v − u)2

2kBT

}
(5.40)

We need a function v, which when applied to an uniform distributed set of
numbers {s ∈ (0, 1)} to give a set of numbers following the Maxwell distribution f in
equation (5.40). For a Maxwellian ensemble of N particles, the number of particles
with the component j of the velocity between v and (v + dv) is

dn(v) = N f(v)dv (5.41)

111



5 Magnetic mirrors

-200 -100 0 100 200
0

1000

2000

3000

4000

-200 -100 0 100 200
0

100

200

300

400

-200 -100 0 100 200
0

10

20

30

40

-200 -100 0 100 200
0

5

10

15

20

25

30

100000 10000

1000 100nu
m

be
r o

f p
ar

tic
le

s

velocity (km/s)

Figure 5.10: Numerical generated (dots) versus theoretical (red line) Maxwellian distribution
for ensembles of N = 102, 103, 104 and 105 electrons at a temperature T = 100 K. To represent
the generated velocity distributions we divided the resulted velocity interval into 10 bins for the
N = 100 set and into 100 bins for the other sets and counted the particles for each bin.

This number has to be the same when expressed in terms of the new, uniformly
distributed, variable s.

dn
(
v(s)

)
= Ng(s)ds = Nds (5.42)

It follows that
f(v)dv = ds (5.43)

We integrate this equation from −∞ to the velocity v to obtain the function v:

v(s) = u +

(
2kBT

m

)1/2

erf−1(1− 2s) (5.44)

Here erf(z) is the inverse error function (Abramowitz and Stegun 1972) defined as

erf(z) =
2

π

∫ z

0

e−t2dt (5.45)

The initial velocity distribution for N test particles is numerically generated by
applying the function v on a set of N pseudo-random numbers uniformly distributed
over the interval (0, 1).

Figure (5.10) illustrates the resulted velocity distribution compared with the
theoretical Maxwellian distribution for sets with different numbers N of particles.
The statistical deviations are large for the ensembles with low number of particles
(N = 100 and N = 1000). Thermodynamic concepts like temperature and pressure
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Figure 5.11: Initial phase-space density expressed in number of particles per cell. Left: bi-
Maxwellian (v⊥ = 2v||) velocity-space density, Right: uniform position-space density. The z coor-
dinate runs from −1000 to 1000 km and the x coordinate from −1277 to 1277 km.

have questionable meanings for such small ensembles. To investigate the evolution
of the distribution function we have to use statistical ensembles at least of N = 104

particles.

We generate an initial bi-Maxwellian set of 105 electrons using equation (5.44)
with T input

⊥ = 10 million degrees Kelvin and T input
|| = 5 million degrees Kelvin.

Because this is a relatively small statistical ensemble, a difference between the above
input temperatures and the true kinetic temperatures occurs.

The kinetic temperature is a measure of the particles mean kinetic energy. The
equipartition theorem allows us to write the parallel and the orthogonal tempera-
tures as

T|| =
m

NkB

N∑
j=1

v2
j|| (5.46a)

T⊥ =
m

2NkB

N∑
j=1

v2
j⊥ (5.46b)

If we use the above relations to determine the temperature of our statistical ensemble
for the initial state we find T initial

⊥ = 10.99MK and T initial
|| = 5.20MK. The corre-

sponding anisotropy is Ainitial = 2.11. These are the reference values to be compared
with the final state.

The particles cannot escape in the radial direction across the magnetic field but
they will move along the magnetic field outside the initial space domain. At the
simulation end a modulo 2L operation is applied to their z coordinate to bring
them back into the initial domain. The simulated system is three-dimensional with
a corresponding six-dimensional phase-space. However, owing to the symmetry of
the system, we can reduce the phase-space dimension to four without losing any
statistical information. The new dimensions correspond to the spatial coordinates ρ
and z and to velocity-space coordinates v|| and v⊥. We construct the grid by dividing
each dimension into 20 equal intervals. The magnetic structure is symmetrical in the
z dimension allowing us to further compress the final phase-space domain by taking
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Figure 5.12: Final phase-space density. The velocity distribution remains bi-Maxwellian with an
anisotropy reduced to 1.5. The particles density indicates a trapped population and shows kinetic
effects such as particle depletion near the symmetry axis.

the absolute value of the z coordinate. Consequently the grid spans in position-
space between 0 and L on the axial dimension and between 0 and R on the radial
dimension. The limits in the velocity-space are given by the extreme orthogonal and
parallel velocities.

The initial phase-space density is represented in figure (5.11). On the left is
the two-dimensional velocity-space density obtained through integration over the
whole position-space. The anisotropic bi-Maxwellian distribution yields a velocity-
space density elongated in the orthogonal velocity dimension. On the right is the
two-dimensional position-space density obtained through integration over the whole
velocity-space. The small fluctuations are due to the random position assignment to
the particles inside the simulation domain.

The final state

The initial uniform magnetic field B0 = 1.5 nT is perturbed to a final mirror struc-
ture with a semi-length L = 1000 km, a radius R = 1277 km and a magnetic field
intensity in the center B0 − a1 = 0.1 nT. The time elapsed from the simulation
start to the moment the final magnetic configuration is attained is 20 unperturbed
field gyro-periods. The particle set continue to evolve for another 10 gyro-periods.
The ratio between the particles total kinetic energy at the initial and final moment
Ekinetic

initial /Ekinetic
final is 0.996 showing a good energy conservation. The last 10 gyro-periods

are used for averaging.

The final phase space density is shown in figure (5.12). The velocity distribution
is less elongated indicating a more isotropic distribution. Indeed, the final orthogonal
temperature slightly decreases to 10.16MK while the parallel temperature increases
to 6.77MK giving a reduced anisotropy Afinal = 1.5. These values can be used to
cross-check the energy conservation. From the equations (5.46), the weight of the
orthogonal temperature is twice the weight of the parallel temperature in the energy
balance. This lead us to the very same ratio of 0.997 between the total final and
initial kinetic energy of the particles.

To visualize the deviation of the final velocity distribution from an ideal Max-
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Figure 5.13: Orthogonal and parallel velocity distributions for initial state, final state and subsets
of the simulated particle ensemble (plus signs) compared with ideal Maxwell distributions (solid
lines). While the initial and the final states are well represented by bi-Maxwellians, in general the
subsets are not. This is especially true for the adiabatic and for the chaotic subsets which develop
a splitting in their parallel velocities distributions.

wellian distribution we plot in figure (5.13) the one-dimensional velocity densities
obtained as the sum over all other dimensions of the phase space density of our par-
ticle ensemble versus the same velocity densities of ideal Maxwell ensembles. The
plus signs represent our ensemble while the lines represent Maxwell distributions
corresponding to the kinetic temperature of our ensemble. Both the initial and final
state of our ensemble are well represented by bi-Maxwellian distributions. To be
more exact we can compute the deviation as

ζ =
1

2N

∫
|n(v)− nMaxwell(v)|dv (5.47)

For the discrete case this becomes the normalized sum of the differences between
the actual number of particles in each velocity space cell and the ideal Maxwellian
number of particles

ζ =
1

2N

Ncells∑
j=1

|nj − nMaxwell
j | (5.48)

This gives deviations of about only one percent for both initial and final state and
for both parallel and orthogonal velocities distributions. The virtually no deviation
of the final state from a bi-Maxwellian distribution is an a posteriori justification
for the anisotropy calculation in section 5.2.

Coming back to figure (5.12) we concentrate on the final position-space density.
As expected, the particles density is roughly anti-correlated with the magnetic field
intensity, the particles being trapped in the middle o the magnetic bottle and being
expelled from the necks where the field magnitude is high. However, a quick visual
comparison with the magnetic field magnitude in figure (5.4) shows that the anti-
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Figure 5.14: The final anisotropy is mostly correlated with the magnetic field magnitude. How-
ever, the correlation turns into anti-correlation close to z = ±L. A relatively wide region around the
symmetry axis is populated by isotropic particles.

correlation is not perfect, not to mention the particle depletion along the structure
axis seen in figure (5.12).

The anti-correlation between the field intensity and the particle density for the
mirror structure is a MHD approximation, the deviation we found is a kinetic effect.
The magnetic field variation seen by a particle gyrating along a field line is largest
close to the structure axis. This makes the particle to be reflected sooner than if it
would have if it would have gyrate further from the axis. The consequence is the
characteristic erythrocyte shaped density in figure (5.12). If the particle gyrates very
close to the axis, it will eventually encounter the very weak field in the center. The
gyration radius will increase and the particle will start a chaotic motion spending
most of the time away from the axis. This mechanism takes place only when the
magnetic field perturbation is close to the unperturbed field magnitude and is re-
sponsible for the particles depletion along the structure axis. Of course, for a real
structure the void of particles will determine an increase in the magnetic field mag-
nitude, this makes the neighboring field lines to move in together with the particles
gyrating around them and fill the void.

Equation (5.30c) derived from the mirror structure model shows that the ani-
sotropy is correlated with the magnetic field intensity in the MHD approximation.
Even though the number of particles per positions-space cell does not exceed 700
and can be as low as 100, we still can find the temperature anisotropy for each
cell by computing the corresponding kinetic temperatures. The result is displayed
in the figure (5.14). As for the particles density, the model only approximates the
anisotropy. The anisotropy decreases indeed with the magnetic field in the central
region of the structure and increases in the high intensity field at the edge of the
bottle close to z = 0 plane. However, it has a behaviour opposite to the predicted
one close to z = ±L. The anisotropy along and in the vicinity of the symmetry axis
is close to one. This might be caused by the mainly isotropic chaotic part of the
population which has its highest density in the vicinity of the axis (see figure 5.16).
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Figure 5.15: Trapped (top) and escaping (bottom) populations. Both velocity distributions devi-
ate from bi-Maxwellians. The effect is stronger for the escaping part where a two beam splitting
can be seen. Most of particles are trapped in the center of the bottle, surrounded by a shell of
counter-streaming escaping particles.

Particle populations

We can differentiate between trapped and escaping particles by looking for changes
in the sign of the velocity component along the magnetic field. If such changes occur,
then the particle has suffered a reflection, if in addition, the particle has a regular
motion than it will be trapped indefinitely in the low field region, otherwise it will
be trapped only for a finite time interval. If the component along the magnetic
field of the particle velocity does not change sign than chances are that the particle
is an escaping particle. Because of the finite simulation time this definition is not
completely accurate but is good enough for our purposes.

About three quarters of the total number of particles are trapped, the rest of
one quarter escaping along the field lines. They form two statistical ensembles with
different kinetic temperatures and distribution functions illustrated in figure (5.15).
Most particles are trapped in the central bottle but an increase in the trapped
particles density can also be seen in the toroidal regions around the bottle necks.
The trapped population is hotter than the total population in both the orthogonal
and the parallel direction. The anisotropy reaching a value close to 2 shows only
a slight decrease from the initial value. The velocity distribution of the trapped
particles deviates about 10 percent from a Maxwellian distribution for both the
parallel and the orthogonal components. A look at figure (5.13) shows that the
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N T⊥ (MK) T|| (MK) A ζ⊥ × 100 ζ|| × 100

initial 100000 10.99 5.20 2.11 0.9 0.6
trapped 75967 11.5 6.20 1.86 8.5 9.8
escaping 24033 5.76 8.57 0.67 14.4 32.7
chaotic 19743 11.2 10.4 1.08 4.4 9.8
adiabatic 80257 9.99 5.88 1.68 1.9 1.0
total 100000 10.16 7.77 1.5 1.1 1.5

Table 5.1: Simulation results for an initial bi-Maxwellian ensemble of 105 particles. Particles are
grouped into trapped and escaping, and into chaotic and adiabatic. The final distribution is also
bi-Maxwellian but it has reduced anisotropy. The distribution function for the individual particle
groups generally differs from bi-Maxwellian.

distribution of parallel velocities is narrower than the Maxwellian correspondent
and the distribution of orthogonal velocities is both narrower and shifted toward
higher velocities. This translates in an excess of slow particles for the parallel part
and an excess of fast particles for the orthogonal part of the distribution.

The escaping population seems to be concentrated in a shell inside the mirror
structure. The magnitude variation along the field lines decreases with the distance
to the structure axis until it reaches a minimum value and then increases again.
The minimum variance field line corresponds to the shell of high density escaping
particles. Particles gyrating in this region see little variation in the field magnitude
and have a large probability to penetrate into the neighboring structure.

There can be seen a density increase in the high field magnitude regions close
to the z = 0 plane. There are two causes leading to effect: Firstly, the escaping
particles have smaller orthogonal velocities, consequently smaller gyro radii so they
follow closer the field lines. Because the field lines become closer in the high field
regions, the particles following them are pushed together. Secondly, as the particle
advances into the high intensity region, its gyration center moves slower along the
line so the particle spends more time in these regions, also leading to an increase of
the density.

The orthogonal temperature of the escaping particles ensemble is close to half the
orthogonal temperature of the total ensemble. In contrast, the parallel temperature
is about one third higher. The resulted anisotropy is about 2/3.

The subset of particles disturbing the Maxwellian character of the trapped par-
ticles has to be taken from the escaping particles ensemble. Since the number of
escaping particles is only one third of the number of trapped particles, the devia-
tions from Maxwellian distribution are more serious here. They are about 15 percent
for the orthogonal velocities and 30 percent for the parallel velocities. The orthogonal
velocity distribution is shifted towards lower speeds while the parallel velocity dis-
tribution splits into two counter-streaming beams with speeds around 10000 km/s.
This is visible both in the figure (5.13) (the green plus signs) and in the velocity dis-
tribution illustrated in figure (5.15). The last shows that the splitting in the parallel
velocities is more pronounced for particles with high orthogonal speeds.

We use the conservation of the magnetic moment as a selection criterion for the
chaotic particles. This way we split the final state particle set into a set of about
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Figure 5.16: Chaotic (top) and adiabatic (bottom) populations. While the velocity distribution
of the adiabatic particles is close to bi-Maxwellian, the distribution of chaotic particles deviates
from am bi-Maxwellian, especially for the parallel velocities. The chaotic particles spend most of
their time in the central region of the bottle. Most of the adiabatic particles are inside a torus
surrounding the chaotic particles .

20000 chaotic particles and a set of about 80000 adiabatic particles. Their phase-
space densities are shown in figure (5.16).

The deviations of the adiabatic set from a bi-Maxwellian ensemble are around
only two percent for the orthogonal velocities and one percent for the parallel veloc-
ities. However, the chaotic component exhibits larger deviations. A slight narrowing
of the orthogonal velocity distribution of the chaotic particles seen in figure (5.13)
is responsible for about 4 percent deviation from the ideal Maxwellian distribution.
More important is the 10 percent deviation caused by a splitting of the parallel ve-
locity distribution. Unlike the splitting observed in the parallel velocity distribution
of the escaping particles, for the chaotic particles the splitting is more apparent at
low orthogonal velocities (see figure 5.16).

While the temperatures and the anisotropies of the adiabatic particles are close
to those of the total final ensemble, the chaotic particles are hotter and almost
isotropic with a temperature around 10MK. The principal characteristics of the
different ensembles are summarized in table (5.1).

From the spatial distribution of the chaotic and adiabatic particles we can see
that there are virtually no adiabatic particles in the vicinity of the symmetry axis,
most of the particles populating this area being chaotic. This is in accord with the
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Figure 5.17: The dependence of the ratio of different particles populations on the strength of
the magnetic field perturbation. The total number of particles is 1000, the orthogonal temperature
is 10 MK, the parallel temperature is 5 MK and the unperturbed magnetic field is 1.5 nT.

above proposed mechanism to explain the particle depletion along the symmetry
axis.

For given initial temperatures and unperturbed magnetic field, the ratio between
the different particle populations depends on the perturbation strength. When the
perturbation is zero, all particles are adiabatic and escaping. As soon as the field is
perturbed some particles will be trapped. Much fewer particles will become chaotic
for small perturbation of the magnetic field. They need to have high velocities in the
distant tail of the distribution in order to have gyro-radii comparable with the field
curvature radius. Increasing the perturbation increases both the trapped and the
chaotic particles number. This is illustrated in figure (5.17). When the perturbation
is half the initial field, about half of the particles are trapped and still no significant
number of chaotic particles. One quarter of the total number of particles become
chaotic when the perturbation becomes equal to the initial field.

5.4 Application to Cluster data

The model of mirror modes presented in section 5.2 provides the large scale geometry
of the magnetic field inside these structures under the assumption of magnetohydro-
static equilibrium. Fitting the model field to measured mirror magnetic field allows
for the determination of the dimensions of a mirror bubble in equilibrium and the
determination of the bubble structure. For two reasons the measured mirror field
signature is unlikely to contain a significant contribution from more distant layers.
Firstly, the amplitude of the Bessel functions decays rapidly with increasing radial
distance; and secondly the magnetic field at larger distances from the core of the
structure is likely to be affected by the interaction of neighboring mirror modes. A
mirror structure is identified when the fit is successful. Once the parameters char-
acterizing the mirror structure are known, the magnetic field configuration for the
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entire structure can be reconstructed.
Because the magnetic field given by the equations (5.28) exhibits a complex three

dimensional structure, single point measurements are not enough for unambiguously
identify mirror structures. To eliminate the ambiguity, multi point measurements
have to be used. The additional measurements can be exploited by different strate-
gies. For instance we can compare the model field resulted from single point mea-
surements with the magnetic field detected by the other (witness) spacecraft. If the
correlation is high than we have increased confidence in the fit results. Of course, a
better solution is to simultaneously fit multi point data. This has also the advantage
of increasing the numerical stability of the fit procedure which can easily become
unstable due to the many parameters involved.

This section is presenting the details of the fitting procedure and an application
to Cluster magnetic field data.

5.4.1 Fit technique

Fitting the model magnetic field on the measured data is not a trivial task. Even
if single spacecraft fit produces questionable results, the fit algorithm is the same
as for multiple spacecraft. Therefore, for sake of clarity, we begin by presenting the
single spacecraft fit procedure followed the next subsection by the multi spacecraft
fit procedure actually used in our case study.

Single spacecraft fit

Application of the method requires the introduction of a normal coordinate sys-
tem {h, d, γ, s} (see figure 5.18) in which the spacecraft track is parallel to the
(y, z)-plane. In these coordinates the spacecraft trajectory can be defined by three
parameters: the angle γ ∈ [0, π/2] between spacecraft path and the axis of the mir-
ror structure; the distance d ∈ [0,∞) between spacecraft path and the structure
axis; and the distance h ∈ (−L, L] between the center of the structure and point
A in figure (5.18). The position of the spacecraft relative to the mirror structure
is then specified by one additional coordinate: s ∈ (−∞, +∞), which is the dis-
tance between the point B in figure (5.18) and the spacecraft. The usual cylindrical
coordinates can be expressed straightforward in terms of normal coordinates:

ρ =
√

d2 + s2 sin γ (5.49)

z = h + s cos γ (5.50)

The parameters used for fitting a data set are:

(1-3) the trajectory normal coordinates (h, d, γ)

(4) the initial position of the spacecraft on his path (s0)

(5) the length of the magnetic mirror (L)

(6) the unperturbed magnetic field intensity (B0)
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Figure 5.18: The normal coordinates. The dashed line is the spacecraft path which inter-
sects the (x, z) plane of the magnetic mirror system in the point B (d, 0, h) and is parallel with
the (y, z) plane. The angle between the trajectory and the z axis is γ and the distance between
the spacecraft and the point B is s.

(7) the α plasma parameter

(8-n) the Fourier coefficients aj and bj

In order to identify the mirror structures and to determine if the minimization
procedure is stable, we scan the magnetic field data using overlapping intervals.
From an interval of about 6000 data points (corresponding to about 5 minutes of
measurements) we subtract a subinterval [i, i+200] corresponding to about 9 seconds
or 7000 km. Depending on L and α values (equation 5.29) this corresponds to several
layers of the mirror structure. For L = 1500 km the spacecraft will pass through 1-2
layers for α = 1 and through 6-7 layer for α = 5.

On the selected subinterval we perform the minimization of the chi-square func-
tion:

χ2(f , p) =
n∑

k=1

[
fk

model(p)− fk
data

]2
σ2

k

(5.51)

where p is the vector of free parameters, fk
model(p) is the value derived from the

model, fk
data represents the value derived from the measurements and σk are the

uncertainties. Depending on the stage of the minimization, f will either be the
magnitude of the magnetic field or the angle between the spacecraft path and the
magnetic field.
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Figure 5.19: Scan example for 1500 200-points 99% overlapping intervals. L is represented by
red crosses and s by black circles. The grouping of the parameters is evident. Even if L groups
are not horizontal lines, the motion of the spacecraft transpare very clear from the s groups.

Because the magnetic field magnitude along the spacecraft path presents a very
strong dependence on the angle γ, the minimization for the magnetic field magnitude
with γ being a free parameter does not converge. To avoid this problem we perform
a minimization for both magnetic field magnitude and angle, i.e χ2 = χ2(B, p) +
χ2(u, p), where u = cos−1(B · v/Bv), v is the spacecraft velocity. Now we have a
reasonable value for γ and we can perform the minimization for the magnetic field
magnitude using the previous found parameters and keeping γ constant.

We expect that only the central structure and 2-3 layers around it will survive
due to the decay of Bessel function and to the presence of other structures in the
vicinity. Depending on the thickness of the layers, there could be the case that
the data subinterval includes too many layers which no longer obey the model.
To circumvent this problem and obtain more reliable parameters we modify the
uncertainties:

σk = 1 + 4

1− exp

(
− sk

RJ (n)L
α

)8
 ≈ {1 if sk is inside the first n layers

5 if sk is outside
(5.52)

RJ(n) is the n-th zero of the first Bessel function. Using these uncertainties the
contribution from the outside layers will be very small.

The minimization procedure will produce a set of parameters for the data subin-
terval [i, i + 200]. If the minimization have converged and the parameters have rea-
sonable (physical) values they will be used as start parameters for the next data
subinterval [i + n, i + n + 200], otherwise the default values will be used. We usually
take n = 2 (99% overlapping intervals).

After scanning the whole data interval we will have about 3000 sets of parameters
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Figure 5.20: The reference spacecraft (blue) and one of the others spacecrafts (green) at the
moment t=0. Dotted is represented the second possible position of the mirror structure.

(one set for each subinterval). These can be visually inspected representing the
parameters versus the number (i) of the data subinterval which have produced them.

If the scan was successful we expect to see the parameters grouped close to
each other for each region where a magnetic mirror was present in the data. All
parameters but s should be grouped around constant values corresponding to their
average values so the shapes of their groups should suggest horizontal lines. The s
groups should also be linear but with the same positive slope, reflecting the motion
of the spacecraft (see figure 5.19). These characteristics have been observed when
the above procedure was applied to Cluster data.

However, single point measurements cannot unambiguously determine a three
dimensional structure. We have to use multi point measurements.

Multiple spacecraft fit

To be able to express the model magnetic field at the other three spacecraft locations
we need the transformation matrix from the local GSE system (GSE translated at
point B in (figure 5.18)) to the magnetic mirror system.

A vector in the local GSE reference system can be expressed in the mirror system
using the transformation:

w(mirror) = T +Rz(θ)Ry(a)Rx(b)w(GSE) (5.53)
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By T we have denoted the translation vector and by Rxj(ϕ) the rotation matrix
with angle ϕ around the versor x̂j.

The rotation Ry(a)Rx(b) aligns the z axis with the average magnetic field:

w′ = Ry(a)Rx(b)w(GSE) (5.54) 0
0
B

 = Ry(a)Rx(b)B(GSE) (5.55)

The a and b angles are given by:

tan b = −By

Bz

(5.56)

tan a =
Bx

Bz cos b + By sin b
(5.57)

The last rotation, Rz(θ) brings the (y, z) plane parallel with the spacecraft tra-
jectories:

w′′ = Rz(θ)w′ (5.58) 0
v′′y
v′′z

 = Rz(θ)v′ (5.59)

The angle θ is given by:

tan θ = −v′x
v′y

(5.60)

and the translation vector is:

T =

dref

0
href

 (5.61)

Knowing the normal coordinates for the reference spacecraft we have to find the
normal coordinates for the other spacecraft. Let us define the origin of time as the
moment when the reference spacecraft intersects the (x, z) plane of the MM system:
sref(t = 0) = 0. There are different time lags for the other spacecrafts:

sj(τ j) = 0 (5.62)

Using the above coordinate transformations we can find these time lags:xj′′(τ j)
0

zj′′(τ j)

 =

xj′′(0)
yj′′(0)
zj′′(0)

+

 0
v′′y
v′′z

 τ j (5.63)

τ j = −yj′′(0)

v′′y
(5.64)

The s coordinate for each spacecraft is:

sj(t) = v(t− τ j) (5.65)

125



5 Magnetic mirrors

For our time scale, the trajectories are parallel with each other therefore the angle
γ is the same for all spacecrafts. The other two normal coordinates are the x and z
coordinates in the mirror system at t = τ j:dj

0
hj

 = T + rj′′(0) + v′′τ j (5.66)

Because of the symmetry there are two possible positions of the mirror structure
once we know the normal coordinates for the reference spacecraft (figure 5.20). This
implies two sets of normal coordinates for each non-reference spacecraft: {dj, hj, sj, γ}
and {2dref − dj, hj, sj, γ}.

Given a mirror structure characterized by the set of parameters {hreference, dreference,
γ, sreference, L, B0, α, aj, bj}, we are now in position to compute the model magnetic
field along all spacecraft tracks (model propagation).

The simplest application of model propagation is to use it as a quality indicator
for single spacecraft fit. Once a mirror structure is found by fitting the data from
one spacecraft selected as reference spacecraft, we calculate the normal coordinates
for the other (witness) spacecraft and propagate the model magnetic field to their
locations. By comparing the predicted magnetic field with the magnetic field mea-
sured by the witness spacecraft the quality of the fit can be tested. However, even if
by comparing the propagated magnetic field with the measured data we gain more
confidence in the fit results, due to the large number of parameters involved, the
numerical code is still unstable to small changes in the initial parameters.

To really take advantage of the multi point measurements we have to simultane-
ously fit the data from all spacecraft. For the reference spacecraft we choose some
starting guess parameters and we calculate the starting guess normal coordinates
for the other three spacecraft. Having the normal coordinates we simultaneously fit
the data from all spacecraft by minimizing the sum of χ2 (equation 5.51) over all
spacecraft. A scanning procedure similar with the one described in (sec.5.4.1) can
be implemented.

It is also possible to combine these approaches: Simultaneously fit the data from
1 < n ≤ 4 spacecraft. With the resulted parameters calculate the model magnetic
field for the remaining 4−n witness spacecraft and compute the correlations between
the measured magnetic field and the fit/propagation model magnetic field.

5.4.2 A case study

In the way described above, we analyzed an interval of strong mirror wave activity
(Lucek et al. 2001) from November 10, 2000 (Day 315) 08:20-08:25 UT. Cluster
was in the dusk side magnetosheath with a typical spacecraft separation of 1000 km,
moving with a velocity in the GSE frame of about 1 km/s. Using correlation analysis,
corroborated with Wind observations, Lucek et al. (2001) concluded that the plasma
flow velocity was of 815 km/s in the direction C1 – C3 (see figure 5.21).

Magnetic field data at a resolution of 22 vectors per second were analyzed using
a fitting window with a width of 200 data points, corresponding to about 9 s or
7000 km. Depending on the values of L and α (equation 5.29) this corresponded to
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Figure 5.21: Cluster tetrahedron configuration on November 10, 2000, 08:20:00. The formation
was close to a regular tetrahedron with 1000 km separation between spacecraft. The C1 – C3
direction was aligned with the plasma flow.

dref = 1490 km a1 = 4.5 b1 = 16.7
href = 383 km a2 = 11.3 b2 = 33.3
γ = 73.9o a3 = -24.8 b3 = -0.7
L = 6186 km a4 = -19.8 b4 = -13.4
B0 = 52.2 nT
α = 11.5

Table 5.2: Normal coordinates and model parameters as resulted from the fit for the identified
mirror structure.

several layers of the mirror structure. Assuming that L = 5000 km, the spacecraft
would have passed through 1-2 layers for α = 5, and through 3-4 layers for α = 10.
In order to identify subintervals where the fit procedure was stable with respect
to small changes in the data selected for analysis, a sliding window technique was
applied and the variability in the resulting parameters examined.

The subinterval [08:20:00, 08:20:10] is shown in detail. Here agreement between
the model and the witness spacecraft was very good. The reference spacecraft C1
and spacecraft C2 were chosen to participate in the fit. C3 and C4 were chosen as
witness spacecraft. C1 and C2 had a large separation in the direction orthogonal to
the average magnetic field, and were expected to sample different mirror structure
layers. The velocity vector was aligned with the C1 – C3 separation vector (Lucek
et al. 2001), and so the magnetic field measured by C3 was very similar to the
magnetic field measured by C1. As a consequence, the magnetic field measured by
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Figure 5.22: Measured (black lines) and model (colored lines) magnetic field intensity for the
four Cluster spacecraft. C1 and C2 were participating in the fit, C3 and C4 were witness space-
craft. The vertical orange lines represent the intersection with (x, z) plane (i.e. s = 0) and the
vertical black lines separates different layers of the mirror structure.

C3 did not contribute any additional information to the fit. A comparison between
the measured and model magnetic field intensity for each spacecraft produced the
following cross correlation coefficients: C1 = 0.81, C2 = 0.83, C3 = 0.78, C4 = 0.64.
The fitting parameters are given in table (5.2). The radius of the main structure
was found to be R = 2061 km.

Figure (5.22) shows the measured and model magnetic field intensities. The ver-
tical orange lines mark the intersection with the (x, z) plane, i.e. the time when
the distance (d) between spacecraft and the axis of the mirror structure was mini-
mum. The vertical black lines mark the boundaries between different layers. Multiple
minima result from passing through different regions of the same magnetic mirror
structure. This can also be seen from figure (5.23), which shows the way in which
the spacecraft passes through the layers of the structure.

Figure (5.24) shows the reconstructed magnetic field (x − z) plane. This figure
reveals that C1, C3 and C4 passed through a central uniform field region of the
structure yielding plateaus in figure (5.22). C2 was much closer to the axis measuring
large changes in the magnetic field inside the central structure.

Generally, the quality of the parameters can be improved by performing new fits,
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Figure 5.23: The projections of the spacecraft trajectories in the (x-y) plane (horizontal straight
lines) and the magnetic field measured by C1 (gray curve). The circles represent the boundaries
between different layers.
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Figure 5.24: The magnetic field lines derived from the model. The straight lines are the pro-
jections of the spacecraft trajectories on the (x-z) plane. The triangles are the points where the
spacecraft paths intersect the (x-z) plane.

using data from all four spacecraft and the previous parameters as start parameters.
For this particular event, however, we found that no improvement could be achieved.

129



5 Magnetic mirrors

5.5 Remarks

The applications in this chapter are based on the mirror structure model presented
in section 5.2. We have to be aware that this is a perturbative (first order) mag-
netohydrostatic model and it is only an approximation. Because of the interaction
with other magnetic structures in the vicinity, and of the radial decay of the per-
turbation we expect the outer layers of the mirror structures measured in situ to
deviate from our model. Rotational symmetry and periodicity are, of course, only
approximations. Nonlinear (Kivelson and Southwood 1996) as well as kinetic effects
can be significant and they can lead to large deviations from our model. Some kinetic
effects were pointed out in section 5.3.2. A much more detailed discussion of kinetic
effects is given by Pokhotelov et al. (2001a,b, 2003, 2004).

However, the model presented here describes well many observed properties of
the mirror structures. It gives an insight into the physics of the mirror structures and
can be used for simulations and for better understanding in situ magnetometric and
particle data. To our knowledge, the model presented in section 5.2 is the first model
which provides a three-dimensional geometry of the mirror structures magnetic field.
It is also the first to give an estimation for the electrical current density distribution
inside the mirror structures.
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Waves are ubiquitous in space plasmas. In particular they play a central role in the
transfer of energy and momentum from the solar wind to the Earth’s magnetosphere.
The advent of the Cluster constellation opened up for the first time the possibility
to determine three dimensional characteristics of these waves.

This thesis presents several techniques which take full advantage on the simulta-
neous multi-point measurements in space offered by Cluster. These techniques are
applied to study the plasma waves in the near Earth space environment.

The beamformer technique requests too large number of sensors to have practi-
cal application in the foreseeable future in space science. The solution is the Capon
technique which has been successfully applied to Cluster data. We investigated its
limits in the wave length domain and showed that for a tetrahedron configuration it
can be safely applied from the Nyquist wave length up to tens of average spacecraft
separations. We also showed that it can accurately detect non-planar waves as long
as the local curvature radius of the wave front is at least several times larger than
the average spacecraft distance. An interesting finding is that the wave telescope is
very selective regarding the planarity of the wave fronts. If two waves with different
curvatures are simultaneously detected, the wave telescope strongly favors the wave
closer to a plane wave. A consequence is that the waves detected by the wave tele-
scope in Cluster data represent most probably the far field view, even if stronger,
local generated waves are present.

By giving up the plane wave representation and adopting a spherical wave repre-
sentation, the source locator is able to investigate waves generated in the immediate
vicinity of the sensor array. Making use of synthetic data we showed that up to three
waves with close frequencies can be simultaneously detected by the source locator.
It has been demonstrated that the source locator is able to distinguish between
plane and spherical waves for sources up to tens of inter-spacecraft separations. We
have carefully examined the effects caused by the motion of the source and of the
observer relative to the propagation medium. They can be very complex as they
not only change the observed frequency but they also deform the wave fronts. The
deformed wave fronts do not have any longer neither unique curvature center, nor
unique wave length. These become local quantities. Nevertheless, we showed how
to manage these cases and how useful information can still be extracted from the
source locator output.

A case study on Cluster magnetic field data, revealing an apparently elongated
source region drifting with the plasma flow has been presented. A longer data interval
has been used to statistically investigate plasma wave sources across the foreshock,
magnetosheath, outer magnetosphere, and cusp region. The source locator allowed
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the determination of the propagation directions and of the average distance between
sources for each magnetospheric region. The electron foreshock and the cusp seem
to be very active regions where waves are continuously generated at close distances.

A perturbative model, based on the equilibrium between the magnetic field and
the plasma pressure has been developed to describe the static mirror structures.
To our knowledge it is the first model able to give the three dimensional magnetic
field configuration of mirror structures. The orbits of charged particles inside the
magnetic field given by the model can follow regular trapped or escaping paths,
or can follow irregular motions. The motion becomes irregular when the curvature
radius of the orbit becomes comparable or larger than the curvature radius of the
magnetic field lines. The evolution of an entire particles ensemble, from an initial
uniform density bi-Maxwellian state to the equilibrium state, shows a decrease in the
pressure anisotropy and slight departures from the density - magnetic field strength
anti-correlation. Even if the total distribution function remains bi-Maxwellian, the
different particle populations can largely deviate from bi-Maxwellian distributions.

A scan and fit procedure has been developed to identify magnetic mirror struc-
tures using multi-point magnetic field measurements. A case study, showing a mirror
structure identified in the dusk side magnetosheath has been presented.
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A.1 Notation Conventions

A.1 Notation Conventions

The conventions used in this thesis are as follows:

• Complex conjugation is denoted by a star superscript: z?

• The real part of a complex number is denoted by <(z)

• The imaginary part of a complex number is denoted by =(z)

• Vectors are represented with boldface symbols such as V =


V1
...

Vn


– the corresponding raw vectors are V T =

(
V1, . . . , Vn

)
– The hermitian conjugates are V † =

(
V T
)?

– The scalar product of two column vectors is V · W or V TW

– The result of V W Tis a matrix with elements ViWj

– The vector product is V ×W

– The Euclidean norm of a vector is ‖V ‖ =
(∑

j V 2
j

)1/2

– Unit vectors are written as n̂.

• Matrices and tensors are indicated by calligraphic characters such as M. As
for the vectors, the transpose is MT and the hermitian conjugate is M†.

• The inner product of two functions f(α) and g(α) is

〈f(α)|g(α)〉α =

{∫
f ?(α)g(α)dα if α takes continuous values,∑
j f ?(αj)g(αj) if α takes discrete values.

The integral or sum are taken over all possible values of α.

• The Fourier transform of a function g(t) is

g̃(ω) =
1

2π

〈
eiωt|g(t)

〉
t

List of symbols

symbol description page

α . . . . . . . – line of sight angle . . . . (59)
– α parameter . . . . . . . . (101)

β . . . . . . . plasma β parameter . . . (101)

δ(·) . . . . . Dirac function . . . . . . . . . (26)

χ(·) . . . . .χ function . . . . . . . . . . . . (122)

ε . . . . . . . .random deviation . . . . . . (39)

ϕ . . . . . . . – wave phase . . . . . . . . . . . (39)
– spherical coordinate . . (28)
– cylindrical coordinate (99)

φ . . . . . . . magnetic flux . . . . . . . . . . (17)

κ . . . . . . . curvature parameter . . (109)

λ . . . . . . . wave length . . . . . . . . . . . . (30)
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µ . . . . . . . – magnetic moment . . . . (98)
– magnetic permittivity (98)

ν . . . . . . . frequency (s−1) . . . . . . . . (32)

ω . . . . . . . pulsation (rad/s) . . . . . . . (26)

ρ . . . . . . . distance source - sensor (55)

τ± . . . . . . arrival time . . . . . . . . . . . . (60)

ξ± . . . . . . ξ factor . . . . . . . . . . . . . . . . (60)

ζ . . . . . . . statistical deviation . . . (115)

A . . . . . . . - temperature anisotropy (98)
- area . . . . . . . . . . . . . . . . . . (17)

aj, bj . . . .Fourier coefficients . . . . (103)

c . . . . . . . wave phase speed . . . . . . (59)

d . . . . . . . – distance to wave source (49)
– normal coordinate . . . (121)

F(·) . . . . .bi-Maxwellian distribution
function . . . . . . . . . . . . . . . . (98)

f(·) . . . . . one-dimensional Maxwell dis-
tribution function . . . . . (111)

G . . . . . . .gravitational constant . . . (5)

Jn(·) . . . .Bessel function . . . . . . . . (101)

kB . . . . . . Boltzmann constant . . . . (98)

L . . . . . . .mirror structure length (100)

M . . . . . . Mach number . . . . . . . . . . (60)

M� . . . . .mass of the Sun . . . . . . . . . (5)

m . . . . . . mass . . . . . . . . . . . . . . . . . . . (98)

N . . . . . . – number of wave sources (26)
– number of particles . .(111)

NT . . . . . number of time samples (28)

n(s) . . . . . number density . . . . . . . . (98)

P (q) . . . .array output power . . . . .(25)

p . . . . . . . pressure . . . . . . . . . . . . . . . . (98)

q(s) . . . . . electric charge . . . . . . . . (105)

R . . . . . . .mirror structure radius (103)

S . . . . . . . number of sensors . . . . . . (25)

T . . . . . . . temperature . . . . . . . . . . . . (98)

t . . . . . . . . time . . . . . . . . . . . . . . . . . . . (26)

U . . . . . . .potential difference . . . . . (17)

W . . . . . . kinetic energy . . . . . . . . . . (98)

w, h . . . . elementary waves . . . (25, 36)

XA(q) . . array output . . . . . . . . . . . (26)

(ρ, θ, ϕ) . spherical coordinates . . . (28)

(ρ, ϕ, z) . cylindrical coordinates . (99)

(x, y, z) . chartesian coordinates .(107)

(h, d, γ, s) normal coordinates . . . . (121)

B . . . . . . magnetic field vector . . . (44)

E . . . . . . electric field vector . . . . . . (8)

j . . . . . . . electric current density (105)

k . . . . . . . wave vector . . . . . . . . . . . . (27)

n̂ . . . . . . . normal vector . . . . . . . . . . (17)

Q . . . . . . wave field parameters . . (26)
q . . . . . . . elementary wave parameters

. . . . . . . . . . . . . . .(25)

r . . . . . . . position vector . . . . . . . . . (26)

u . . . . . . . flow velocity . . . . . . . . . . . (57)

v . . . . . . . – sensor velocity . . . . . . . (57)
– particle velocity . . . . . . (98)

X . . . . . . array measured values . . (25)

I . . . . . . . unit matrix . . . . . . . . . . . . (45)

M . . . . . .measurements matrix . . (37)

P . . . . . . .pressure dyad . . . . . . . . . (100)

R . . . . . . rotation matrix . . . . . . . (124)

W . . . . . . elementary wave matrix (43)

Acronyms

AIC Alfvén – Ion-Cyclotron wave
ASPOC Active Spacecraft Potential Control (Cluster)
AU Astronomical Unit
CAA Cluster Active Archive
CIS Cluster Ion Spectrometry experiment (Cluster)
CODIF Composition and Distribution Function analyzer (CIS component)
CSDS Cluster Science Data Center
CME Coronal Mass Ejection
DPS Data Processing System (CIS component)
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DWP Digital Wave Processing experiment (Cluster)
EDI Electron Drift Instrument (Cluster)
EFW Electric Field and Wave experiment (Cluster)
FFT Fast Fourier Transform
FGM FluxGate Magnetometer (Cluster)
GSE Geocentric Solar Ecliptic reference system
HEEA High Energy Electron Analyzer (PEACE component)
HIA Hot Ion Analyzer (CIS component)
HTF de Hoffman – Teller Frame
IEL Inter-Experiment Link (Cluster)
IES Imaging Electron Spectrometer (RAPID component)
IGeP Institut für Geophysik und extraterrestrische Physik
IIMS Imaging Ion Mass Spectrometer (RAPID component)
IMF Interplanetary Magnetic Field
LEEA Low Energy Electron Analyzer (PEACE component)
MCP Micro-Channel Plate
MHD MagnetoHidroDynamic
MIAOW MIrror And slOW waves
MM Magnetic Mirror
OVT Orbit Visualization Tool
PEACE Plasma Electron And Current Experiment (Cluster)
RAPID Research with Adaptive Particle Imaging Detectors (Cluster)
STAFF Spatio-Temporal Analysis of Field Fluctuation experiment (Cluster)
UT Universal Time
VIT Virtual Interference Techniques
WBD Wide Band Data experiment (Cluster)
WHISPER Waves of HIgh frequency and Sounder for Probing of Electron density

by Relaxation (Cluster)

A.2 Array output for vector signals

Suppose that the sensor at position rs measures a vector field. We can even combine
measurements from two or more sensors at same position, e.g. magnetic and electric

field into one vector: Xs(Q, t) = X(Q, rs, t) =
(
X1

s , . . . , XL
s

)T
.

We can express the measurements in terms of the pattern functions in the same
way as we did in Section (3.2):

Xs(Q, t) =
N∑

n=1

cnw(qn, rs, t)

where cn is a constant vector with the same dimension as Xs. The array output can
be written as:

XA(q) = 〈W(q, r, t)|X(Q, r, t)〉r,t =
N∑

n=1

cnδ(qn − q)
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Figure A.1: Flowchart for the source locator. The Perl script extract.pl prepares the data for
the main program, minvar.pro which produces the array power. Finally this is processed by ana-
lyze.pro in order to obtain the source parameters and to visualize the results.

where we have defined the L × L matrix W as the unity matrix multiplied by the
pattern function: |W(q, r, t)〉 = I |w(q, r, t)〉. The power is defined now as

P (q) = trace
(
XA(q)X†

A(q)
)
=

N∑
n=1

‖cn‖2δ(qn − q)

When we take into consideration the finite number of sensors, W becomes a
LS × L matrix and X a LS dimension vector

W(q, t) =
(
W1(q, t), . . . ,WS(q, t)

)T
X(Q, t) =

(
XT

1 (Q, t), . . . ,XT
S(Q, t)

)T
Using vector signals have the advantage of increasing the resolution for the same

number of sensors by using more information about the detected wave field.

A.3 Source locator numerical implementation

To apply the source locator technique to Cluster magnetic field data we use a three
step approach shown in figure (A.1). This modular structure allows us to take ad-
vantage of the strengths of different programming languages for different tasks. It
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also separates the lengthy process of computing the power from the mere analysis
of the power and visualization of the results.

First, the desired time interval is supplied via command line to the Perl script
extract.pl which fetches the magnetic field data from the IGeP data archive,
checks it for gaps, prepares and saves it locally. The script then connects to the
Cluster Science Data System (CSDS), acquires and saves the plasma flow velocity
data locally. The “quick plots” – general views of the magnetospheric conditions and
and of the orbit – provided as gif files by CSDS are displayed for the user.

The next step is the proper computing of the array power. This is done by the
IDL code minvar.pro. The flowchart of this code is given in figure (A.2). First
the magnetic field data previously prepared by extract.pl is presented to the
user. Typically this comprises of one to two hours of 1 s resolution magnetic field
data. A smaller window of user defined length (typically 512 or 1024 data points –
9 to 16 minutes) can be interactively slided through the data to select the desired
subinterval. At all times the contents of the sliding window is enlarged for inspection.
After the user selects the data subinterval a Fast Fourier Transform (FFT) is applied
to the data and the next interactive stage is reached. The Fourier spectrum is shown
to the user and the first local maximum is marked. The user can browse through
local peaks automatically identified by the code or can input an arbitrary choice.
Once the choice is made, the code moves to its main task, computing the array
power.

As discussed in section (3.4.1) the array output matrix M is singular. To regu-
larise it we perform an average both in time and in frequency. The average in time
is done by the loop at line 158 and consists in computing the average over 16 half-
length equally distributed intervals. The inside loop at line 160 performs the average
over neighbored frequencies.

With the M matrix computed, between lines 172 and 195 the code computes
the power at each point of the grid defined at lines 80 – 87 and saves it to a file.

The last step is the processing of the array power by analyze.pro. This identi-
fies the maximum of the four dimensional power and saves the corresponding source
parameters to a file. It also produces the plots representing slices through the array
power shown in the previous chapters.

A.3.1 Code listings

minvar.pro:

1 f o rward func t i on max pow four , weight , s e l e c t i nd ex , myfft
compi l e opt i d l 2

3

pro minvar ; >>>> MAIN CODE <<<<<
5

npct=30 ; number o f po in t s in one dim o f the scan domain
7 bkt=2 ; f requency braket ing

fn=’ Sensor ’ ; f i l e name
9 s=4 ; number o f s en so r s

ndata=512 ; number o f data po in t s
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Figure A.2: Flowchart of the main IDL code used for the source locator. The user first selects
the data subinterval to be processed, then the frequency of interest. The output is the array power
over the given grid.

11 con s t r a i n=1 ; impose divergence−f r e e cond i t i on
s t a r t=0 ; s h i f t o f f i r s t s ub i n t e r va l

13

; determine the number and the dimension o f data po in t s
15 spawn , ’wc ’+fn+’ 0 . dat ’ , wc out

wc arr=s t r s p l i t ( wc out , / ex t r a c t )
17 n l i n e s=long ( wc arr [ 0 ] ) ; number o f l i n e s to be read from each data

f i l e
nwords=long ( wc arr [ 1 ] ) & dim=nwords/ n l i n e s −4 ; 1 f o r module data , 3 f o r

vec to r
19

loadct , 39 , / s i l e n t
21

; read data
23 bmodule =db la r r ( s , n l i n e s )

t =db la r r ( s , n l i n e s ) & b =db la r r ( s ∗dim , n l i n e s ) & r =db la r r (3 , s , n l i n e s )
25 tbr=db la r r (4+dim , n l i n e s )

for n=0,s−1 do begin
27 f i l ename=fn+strcompress ( s t r i n g (n) ,/ r emove a l l )+’ . dat ’

openr , 1 , f i l ename
29 readf , 1 , tbr

close , 1
31 t [ n ,∗ ]= tbr [ 0 , ∗ ]

b [ n∗dim : n∗dim+dim−1 ,∗]= tbr [ 1 : dim , ∗ ]
33 r [∗ , n ,∗ ]= tbr [ dim+1:dim+3 ,∗ ]

bmodule [ n ,∗ ]= sq r t ( t o t a l ( tbr [ 1 : dim , ∗ ] ˆ 2 , 1 ) )
35 endfor

37 t=db la r r ( s , ndata ) & b=db la r r ( s ∗dim , ndata ) & r=db la r r (3 , s )
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bmodule=db la r r ( s , ndata )
39 b1 max=max( bmodule [ 0 , ∗ ] )

41 ; i n t e r a c t i v e s e t o f the data sub i n t e r va l
answer=’ ’

43 ! p . mult i =[0 ,1 , s+1]
while ( answer ne ’ y ’ ) do begin

45 i f ( s t r e g ex ( answer , ’ [0−9] ’ ,/ boolean ) ) then s t a r t=long ( answer )
t=t [∗ , s t a r t : s t a r t+ndata−1]/1000 & b=b [∗ , s t a r t : s t a r t+ndata−1]

47 r=t o t a l ( r [∗ ,∗ , s t a r t : s t a r t+ndata −1] ,3) /ndata
bmodule=db la r r ( s , ndata )

49 s enso r=0
for n=0, s ∗dim−1 do begin

51 xxx=db la r r ( ndata ) & yyy=db la r r ( ndata )
xxx [∗ ]= t [ sensor , ∗ ] & yyy [∗ ]=b [ n , ∗ ]

53 tmp=s v d f i t ( xxx , yyy , 3 , y f i t=f i t , s t a tu s=svds ta tus )
b [ n,∗]−= f i t

55 bmodule [ sensor ,∗]+=b [ n , ∗ ] ˆ 2
i f ( ˜ ( ( n+1) mod dim) ) then begin ; t r i g e r s on the l a s t component

57 bmodule [ sensor ,∗]+=b [ n , ∗ ] ˆ 2
bmodule=sq r t ( bmodule )

59 plot , bmodule [ sensor , ∗ ] , x s t y l e =1, y s t y l e=1
senso r++

61 endif
endfor

63 plot , bmodule [ 0 , ∗ ] , x s t y l e =1, y s t y l e=1
oplot , [ s t a r t , s t a r t ] , [ 0 , b1 max ] , th i ck =2, c o l o r =150

65 oplot , [ s t a r t+ndata−1, s t a r t+ndata −1 ] , [ 0 , b1 max ] , th i ck =2, c o l o r =150
t s t r=timp2 ( t [ 0 , s t a r t ] )

67 read , answer , $
prompt=strcompress ( t s t r . s+s t r i n g ( s ta r t , ” [ ” , n l i n e s−ndata , ” ] : ” ) )

69 t s t a r t=t [ 0 , s t a r t ] & ts top=t [ 0 , s t a r t+ndata−1]
s t a r t+=100

71 i f ( answer eq ”q” ) then stop
i f ( s t a r t+ndata ge n l i n e s ) then s t a r t=0

73 endwhile

75 dmax=max( r e l d i s t ( r ) )
d=min ( r e l d i s t ( r )+uni t ( s ) ∗dmax) ; minimum d i s t anc e between s en so r s

77

knyq=!dpi /dmax
79

kmin=knyq /1 . d5 & kmax=knyq ;
81 rmin=0.1d0∗d & rmax=30.d0∗d ;

lnmin=−180.d0 & lnmax=180.d0 ;
83 l tmin=−90.d0 & ltmax=90.d0 ; scan

d i s t anc e=dindgen ( npct ) /( npct−1)∗( rmax−rmin )+rmin ; domain
85 l ong i tude=dindgen ( npct ) /( npct−1)∗( lnmax−lnmin )+lnmin ;

l a t i t u d e=dindgen ( npct ) /( npct−1)∗( ltmax−l tmin )+ltmin ;
87 k=dindgen ( npct ) /( npct−1)∗(kmax−kmin )+kmin ;

89 dt=t o t a l ( t [∗ , ndata−1]−t [ ∗ , 0 ] ) / s /( ndata−1) ; average time step
omegavec=dindgen ( ndata/2+1) /( ndata∗dt ) ∗2∗ ! dpi

91

; Four i e r spectrum
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93 f t=myfft (b , navg=8, / time )
ftmax=max(2∗ abs ( f t ) )

95

openw , 2 , ’ f our . dat ’
97 tmp=dindgen ( s ∗dim+1,ndata/2+1)

tmp[0 ,∗ ]= omegavec
99 tmp [ 1 : s ∗dim ,∗ ]= abs ( f t [ ∗ , 0 : ndata /2 ] )

fmt=strcompress ( ’ ( ’+s t r i n g ( s ∗dim+1)+’d) ’ )
101 printf , 2 , format=fmt , tmp

close , 2
103

105 ; i n t e r a c t i v e s e t o f the f requency
omega=0

107 sk ip=bkt
answer=’ ’

109 f s c a l e=’ l i n ’
wnd=20

111 omax=!dpi /dt−2∗! dpi ∗(wnd+bkt ) /ndata/dt
xrng=[omegavec [ 2 ] , omegavec [ n e lements ( omegavec ) −1]]

113 while ( answer ne ’ y ’ ) do begin
omega=0

115 bf=max pow four (b , dt , omega , bkt , skip ,wnd) ; f i nd peak f r equecy
i f ( s t r e g ex ( answer , ’ ˆ[0−9] ’ ,/ boolean ) ) then begin

117 omega=double ( answer ) ∗2∗ ! p i /1000 < omax
sk ip=round (omega∗ndata∗dt /2/ ! dpi )

119 endif
omidx=round (omega∗ndata∗dt /2/ ! dpi )

121 s enso r=−1
for n=0, s ∗dim−1 do begin

123 i f (˜ ( n mod dim) ) then begin ; t r i g e r s on the f i r s t component
i f ( f s c a l e eq ” l i n ” ) then $

125 plot , omegavec , 2∗ abs ( f t [ n , 0 : ndata /2 ] ) , x s t y l e =1, y s t y l e =1, $
xrange=xrng / (2∗ ! p i ) ∗1000 , yrange=[ ftmax /1000 , ftmax ] $

127 else $
plot , omegavec , 2∗ abs ( f t [ n , 0 : ndata /2 ] ) , x s t y l e =1, y s t y l e =1, $

129 xrange=xrng / (2∗ ! p i ) ∗1000 , yrange=[ ftmax /1000 , ftmax ] , / ylog , / x log
s enso r++

131 endif
oplot , omegavec / (2∗ ! p i ) ∗1000 , 2∗ abs ( f t [ n , 0 : ndata /2 ] )

133 oplot , [ omegavec [ omidx−bkt ] , omegavec [ omidx−bkt ] ] / ( 2 ∗ ! p i ) ∗1000 , $
[ ftmax /1000 ,2∗ ftmax ] , c o l o r =150 , th i ck=2

135 oplot , [ omegavec [ omidx+bkt ] , omegavec [ omidx+bkt ] ] / ( 2 ∗ ! p i ) ∗1000 , $
[ ftmax /1000 ,2∗ ftmax ] , c o l o r =150 , th i ck=2

137 endfor
plot , s i n ( t [ 0 , ∗ ] ∗ omega ) , x s t y l e =1, y s t y l e =1, yrange =[ −1 .5 ,1 .5 ]

139 read , answer , prompt= $
strcompress ( s t r i n g ( f i x ( omega / (2∗ ! p i ) ∗1000) , ” [ ” , $

141 f i x (omax/ (2∗ ! p i ) ∗1000) , ” ] (mHz) : ” ) )
i f ( answer eq ”q” ) then stop

143 i f ( s t r e g ex ( answer , ’ z [0−9] ’ ,/ boolean ) ) then begin ; zoom
skip−=10

145 xrng [1 ]= omegavec [ n e lements ( omegavec ) −1]/ f i x ( strmid ( answer , 1 ) )
endif

147 i f ( s t r e g ex ( answer , ’ ( l i n ) | ( l og ) ’ ,/ boolean ) ) then begin
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skip−=10
149 f s c a l e=answer

endif
151 sk ip+=10

i f ( sk ip ge ndata/2−wnd−bkt ) then sk ip=bkt
153 endwhile

155 ; scan the data i n t e r v a l ( us ing subwindow twice sma l l e r )
; in 16 ove r l ap ing s t ep s and f i nd M matrix

157 Mb=dcomplexarr ( s ∗dim , s ∗dim)
for p=0,ndata /2 , ndata /32 do begin

159 B fou r i e r=max pow four (b [∗ , p : p+ndata /2−1] , dt , omega , bkt , skip ,wnd)
for q=0,2∗bkt do begin ; f r equency loop

161 Mb+=B fou r i e r [∗ , q]##conj ( B f ou r i e r [∗ , q ] ) /16/(2∗ bkt+1)
endfor

163 endfor
M inv=l a i n v e r t (Mb)

165

r t=s e n s s y s t ( r ) ; t r a n s l a t i o n vec to r and ro t a t i on matrix
167 r new=r−r t . t ; t r a n s l a t e to cente r o f mass

169 ; compute the Capon power f o r a l l scan domain
print , ””

171 pc=db la r r ( npct , npct , npct , npct )
for m=0,npct−1 do begin

173 rh=d i s t anc e [m]
for n=0,npct−1 do begin

175 lng=long i tude [ n ]
pbar , m, npct , n

177 for p=0,npct−1 do begin
l t d=l a t i t u d e [ p ]

179 for q=0,npct−1 do begin
w=weight ( rho ( r new , [ lng , l td , rh ] ) , k [ q ] , s , dim)

181 tmp=( transpose ( conj (w) )##transpose (M inv )##w)
i f con s t r a i n then begin

183 nk=cv coord ( f rom sphere =[ lng , l td , 1 . d0 ] , / t o r e c t , / degree s )
V=uni t (3 )+nk#nk

185 tmp=transpose (V)#tmp#V
endif

187 i f n e lements (tmp) gt 1 then begin
pc [m, n , p , q]=abs ( t r a c e ( l a i n v e r t (tmp) ) )

189 endif else begin
pc [m, n , p , q]=abs (1/tmp)

191 endelse
endfor

193 endfor
endfor

195 endfor

197 print , ”” & print , ””

199 openw , 1 , ’ power . dat ’
writeu , 1 , npct , pc , d i s tance , long i tude , l a t i t ude ,

r new , k , omega , rt , t s t a r t , t s top
201 close , 1
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203 spawn , ”beep −r 3 −f 5000 − l 10”

205 end ; >>>>>> END OF MAIN CODE <<<<<<<

207 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

209 ; r e turn Four i e r c o e f f i c i e n t s range o f l o c a l dominant f r q or o f g iven
f r q

function max pow four , f i e l d , dt , omega , bkt , skip ,wnd
211 b=f i e l d

s=n e lements (b [ ∗ , 0 ] ) & i=n e lements (b [ 0 , ∗ ] )
213 df=1/dt/ i ; f r equency step

f t=myfft (b , navg=8, / time )
215 ; co r re spond ing f r e qu en c i e s f o r even i :

; [ 0 , 1 , 2 , . . . , ( i /2−1) , i /2 , −( i /2−1) , . . . , −2 , −1 ]/ ( i ∗dt )
217 ; i /2+1 p o s i t i v e and i /2−1 negat ive

i f omega eq 0 then begin ; f i nd dominant f requency
219 pow=2∗abs ( f t [ ∗ , 0 : i / 2 ] ) ; keep only p o s i t i v e f r e qu en c i e s

index=0
221 index=s e l e c t i n d e x (pow , bkt , skip ,wnd)

omega=index ∗df ∗2∗ ! dpi
223 endif else begin

index=round (omega/ df /2/ ! dpi ) ; cor re spond ing index to g iven
f requency

225 endelse
fmax=f t [∗ , index−bkt : index+bkt ]

227 return , fmax
end

229

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
231

; l o c a l maximum
233 function s e l e c t i nd ex , pow , bkt , skip ,wnd

pp=pow
235 pp [ ∗ , 0 : sk ip ]=0 & pp [∗ , sk ip+wnd:∗ ]=0

ppp=t o t a l (pp , 1 )
237 pmax=max(ppp , index )

index=index < ( n e lements (pow [ 0 , ∗ ] )−bkt )
239 return , index

end
241

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
243

; we ights f o r computing the power
245 function weight , rh , k , s , dim

c=1/norm(1/ rh )
247 i=dcomplex (0 , 1 )

w=c∗exp ( i ∗k∗ rh ) / rh
249 wm=dcomplexarr (dim , s ∗dim)

for j =0,s−1 do begin
251 wm[∗ , j ∗dim : j ∗dim+dim−1]=uni t (dim) ∗w[ j ]

endfor
253 return ,wm

end
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255

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
257

; Four i e r t rans fo rmat ion
259 function myfft , dat , navg=n , time=time , f requency=frq , fwindow=fwnd

b=dat
261 i f n e lements (b [ 0 , ∗ ] ) eq 1 then b=transpose (b)

s=n e lements (b [ ∗ , 0 ] ) & i=n e lements (b [ 0 , ∗ ] )
263 f t=dcomplexarr ( s , i )

265 i f keyword set ( time ) then begin ; time averag ing
; n=16 ; nr o f i n t e r v a l s f o r averag ing (4 , 8 , 16 , . . . < i /2)

267 for p=0, i /2 , i /(2∗n) do begin
bb=db la r r ( s , i )

269 for q=0,s−1 do begin ;
tmp=l i n f i t ( dindgen ( i /2) ,b [ q , p : p+i /2−1] , y f i t=f i t ) ; detrend

271 bb [ q , p : p+i /2−1]=b [ q , p : p+i /2−1]− f i t ;
endfor ;

273 wnd=db la r r ( s , i )
wnd [∗ , p : p+i /2−1] = ( db la r r ( s )+1)#HANNING( i /2 ,/DOUBLE)

275 f t+=f f t (wnd∗bb , dimension=2)/n
endfor

277 f t [ ∗ , 0 : 1 ]=1 . d−64 ; we have no i n f o about these f r e q ( zero−padding )
endif else begin

279 i f keyword set ( f r q ) then begin ; f r equency averag ing
; n=1 ; number o f po in t s on each s i d e f o r averag ing

281 i f keyword set ( fwnd ) then begin ; t ape r ing
case s t rcompress ( fwnd , / r emove a l l ) of

283 ’ wide ’ : begin
ramp=(1−cos ( dindgen ( i /4) /( i /4−1) ∗ ! dpi ) ) /2

285 wnd=db la r r ( i )+1
wnd [ 0 : i /4−1]=ramp & wnd[3∗ i /4 : i−1]=1−ramp

287 wnd=(db la r r ( s )+1)#wnd∗4/3
end

289 ’ hanning ’ : wnd = ( db la r r ( s )+1)#HANNING( i , /DOUBLE)
endcase

291 endif else begin
wnd=1

293 endelse
f t=f f t (wnd∗b , dimension=2)

295 tmp=db la r r ( s , i +2∗n) ;
for p=−n , n do tmp [∗ , n+p : n+p+i−1]+=abs ( f t ) /(2∗n+1) ; smoothing

average
297 f t=tmp [∗ , n : n+i −1]∗( f t /( abs ( f t ) ) ) ;

endif
299 endelse

301 return , f t
end
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Figure A.3: Sketch of a typical longitude – latitude representation of the array power. For Cluster
data the direction to the Sun is in the center of the map. A set of parallel and meridian lines
associated with the magnetic field direction is shown for reference. The magnetic field line going
through the wave source follows a meridian line. The directions making the same angle with the
magnetic field as the detected wave gather along a parallel line.

A.4 Equirectangular projection

The array power computed by the wave telescope or by the source locator is visu-
alized throughout this work as bi-dimensional slices. Many times the shape of the
power maximum in the longitude – latitude slice reflects important properties of the
wave field. This slice is a equirectangular projection (i.e. the spherical angular co-
ordinates are linearly mapped to the carthesian bi-dimensional representation) and
is important to recall some of its properties.

We should be aware that this projection does not preserve neither shape nor
length, the distortion being stronger close to the poles (latitude = ±90◦). In partic-
ular this means that the representation of a straight line is generally not a straight
line.

A given direction is represented on the map by a point of coordinates (ϕ0, θ0). For
instance the red cross in figure (A.3). The opposite direction is given by (ϕ0+π,−θ0)
– the blue cross in figure (A.3). Any line parallel with this direction is represented by
a meridian line (pink in figure (A.3)) on the longitude – latitude map. The directions
in space having a specified angle with our given direction are represented on the map
by the parallel lines, drawn in gray in figure (A.3).

The figure (A.3) shows most of the elements which are present on the foreground
of a longitude – latitude map of the array power. The magnetic field line (and
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A.4 Equirectangular projection

sometimes the flow line) going through the identified power maximum follows a
meridian line on the map. The direction of the magnetic field is represented by the
red cross, and the point where the field or flow line is closest to the origin is marked
by the triangle.

The position of the wave source on the magnetic field line projection gives the
propagation angle α relative to the magnetic field. If the source is close to the triangle
then the propagation is nearly orthogonal, if it is close to one of the crosses then the
wave propagation is nearly parallel or anti-parallel. All directions making the same
angle α with the magnetic field line are represented by the string of squares.
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Pinçon, J., and U. Motschmann, Multi-Spacecraft Filtering: General Framework, in
Analysis methods for multi-spacecraft data, edited by G. Paschmann and P. Daly,
ISSI Sci. Rep. SR-001, pp. 65–78, ISSI, Bern, 1998.

Pokhotelov, O. A., M. A. Balikhin, R. A. Treumann, and V. P. Pavlenko, Drift
mirror instability revisited: 1. Cold electron temperature limit, J. Geophys. Res.,
106 , 8455–8464, 2001a.

Pokhotelov, O. A., O. G. Onishchenko, M. A. Balikhin, R. A. Treumann, and V. P.
Pavlenko, Drift mirror instability in space plasmas: 2. Nonzero electron tempera-
ture effects, J. Geophys. Res., 106 , 13,237–13,246, 2001b.

Pokhotelov, O. A., I. Sandberg, R. Z. Sagdeev, R. A. Treumann, O. G. Onishchenko,
M. A. Balikhin, and V. P. Pavlenko, Slow drift mirror modes in finite electron-
temperature plasma: Hydrodynamic and kinetic drift mirror instabilities, J. Geo-
phys. Res., pp. 1–1, 2003.

Pokhotelov, O. A., R. Z. Sagdeev, M. A. Balikhin, and R. A. Treumann, Mirror in-
stability at finite ion-Larmor radius wavelengths, Journal of Geophysical Research
(Space Physics), 109 , 9213–+, 2004.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C The Art of Scientific Computing , second ed., Cambridge University
Press, 32 East 57th Street, New York, NY 10022, 2002.

Primdahl, F., The fluxgate magnetometer, Journal of Physics E: Scientific Instru-
ments , 12 , 241–253, 1979.

Rème, H., et al., The Cluster Ion Spectrometry (CIS) Experiment, Space Science
Reviews , 79 , 303–350, 1997.

Rème, H., et al., First multispacecraft ion measurements in and near the Earth’s
magnetosphere with the identical Cluster ion spectrometry (CIS) experiment,
Annales Geophysicae, 19 , 1303–1354, 2001.

Riedler, W., et al., Active Spacecraft Potential Control, Space Science Reviews , 79 ,
271–302, 1997.

156



Bibliography

Robert, P., A. Roux, C. C. Harvey, M. W. Dunlop, P. W. Daly, and K.-H. Glassmeier,
Tetrahedron geometric factors, in Analysis methods for multi-spacecraft data, pp.
323–348, Int. Space Sci. Inst., Bern, Switzerland, 1998.

Russell, C. T., et al., Mirror-mode structures at the Galileo-Io flyby: Observations,
J. Geophys. Res., 104 , 17,471–17,478, 1999.

Sablik, M. J., D. Golimowski, J. R. Sharber, and J. D. Winningham, Computer sim-
ulation of a 360◦ field-of-view “top-hat” electrostatic analyzer, Review of Scientific
Instruments , 59 , 146–155, 1988.
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The near-Earth space environment is a result of the violent inter-
action between the supersonic solar wind and the magnetic field
generated in the Earth fluid core. Among other physical pheno-
mena, it abounds in a multitude of plasma waves which mediate
the energy transfer from the solar wind towards the inner mag-
netosphere. For many years, the study of the Earth magneto-
sphere has been limited to isolated measurements performed by
rockets or spacecraft. Single point measurements do not allow
to disentangle spatial from temporal variations unless strong as-
sumptions are made. It is also very difficult to determine even
elementary three dimensional quantities, such as wave vectors,
with single point measurements. With the launch of the four Clus-
ter spacecraft, simultaneous multi-point measurements in space
are routinely available. This work aims to develop the necessary
tools, and to use the multi-point measurements provided by Clus-
ter to their full potential in order to shed a bit of light on the mag-
netic structures and wave sources in the Earth magnetosphere.
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