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Abstract

The present work is devoted to the examination of a wide, stable, wintertime evening arc. Particle

and field data measured by the FAST satellite at�4000km altitude, as well as ground optical data,

are used to get a detailed description of the arc electrodynamics. By processing the particle data

one can evaluate the ionospheric conductance, while the magnetic field data allows the calculation

of the field-aligned current. The electric field measurements can be mapped to the ionosphere

as long as the magnetic field lines below the satellite are equipotential and otherwise serve to

determine the average ionospheric electric field.

In the vicinity of the arc FAST detects several ion beams, indicating field-aligned potential

drop below the satellite, which precludes the mapping of the measured electric field to the iono-

sphere. In order to derive the ionospheric electric field we develop a new method, based on the

current continuity at ionospheric level and on a parametric arc model. The simplest representa-

tion of an arc consists of a homogeneous block of increased conductance, infinitely extended in

longitudinal direction; field-aligned current sheets that flow in and out of the ionosphere at the

boundaries of the arc are connected through Pedersen current across the arc, while the electrojet

that flows along the arc as Hall current is divergence free. The parameters, which are determined

by numerical fit, express the departure from such an ideal model. We find that the minimum set

of parameters necessary to obtain consistent results includes polarization, a longitudinal electric

field constant across the arc, and coupling between the field-aligned current and the electrojet.

Once the conductance and the electric field are calculated we check for the configuration

of the current, which proves to be completely atypical. Because the convection reversal is very

close to the boundary between the downward and upward currents only a negligible fraction of

the downward current returns to the magnetosphere as upward current. The upward current is

fed by the westward electrojet while most of the downward current feeds the eastward electro-

jet; a small part of the downward current crosses the convection reversal and joins the westward

electrojet. Although the magnetic field signature suggests the common pattern, with upward and

downward field-aligned current sheets connected through ionospheric Pedersen current, a careful

investigation shows that the two current sheets are actually decoupled in the ionosphere.

The results obtained in this case-study point to the prospect of performing a systematic

surveillance of the high-latitude ionosphere by medium altitude satellites, including time intervals

when the measured electric field cannot be mapped to the ionosphere. By extending the application

of the method developed here other peculiar auroral features might be unraveled.
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Chapter 1

Introduction

The roots of the auroral physics can be traced back to more than 400 years ago. At that time

Galileo Galilei mentioned “aurora borealis” in his work, Rene Descartes tried to explain it by

reflection of sun light on ice crystals, and Georg Hartmann measured the variation of magnetic

declination between Rome and Nürnberg. In 1600 William Gilbert, the physician of the Queen

Elizabeth I, compared for the first time the Earth with a huge magnet in his book “De Magnetae”.

We shall begin by giving a brief account on the evolution of the auroral research, starting

with early discoveries of rather qualitative nature, and concluding with sophisticated contemporary

investigations. Because of the accumulation of knowledge and technological progress, the study

of the aurora evolved from mainly addressing problems of a global nature to investigating details

as small as the transverse 1km scale of the discrete arc. In the last Section we present the plan of

the work and point out the goals to be achieved in each Chapter.

Part of the information in the first two Sections comes from the review papers of Stern

(1989, 1996) and from the book “The Northern Light — from mythology to space research” of

Brekke and Egeland (1983).

1.1 A historical perspective

In 1741 Hiorter and Celsius discovered that the magnetic needle was disturbed at time of auroras.

It was realized for the first time that geomagnetic activity (this term had not been introduced at

that time) and auroras are somehow connected. At the beginning of the 19th century Gauss and

Weber established the first network of magnetic observatories, in order to accomplish systematic

observations of the magnetic perturbations. Later on Schwabe discovered the sunspot cycle (in

the 1840’s), Sabine found that the number of sunspots and the frequency of magnetic storms are

correlated (in the 1850’s), and in 1859 two astronomers, Carrington and Hodgson, observed a huge

1



2 CHAPTER 1. INTRODUCTION

“solar flare” (another modern term) 17 hours before a brilliant aurora that could be seen even from

London. In about 100 years were thus discovered the key relationships between solar activity,

magnetic perturbations, and auroral light.

Starting with the last part of the 19th century the understanding began to move from rather

qualitative to more quantitative. In 1896 Birkeland set up his famous “terrella” experiment: by

sending cathode rays (electrons) against a magnetized sphere he was able to produce an artificial

aurora - bright rings encircling the poles of the sphere - and consequently he suggested that aurora

could be created by electron streams coming from the Sun. The experimental work of Birkeland

was complemented by the theoretical investigations of Poincare, who studied the motion of the

charge in a magnetic monopole field, and by Størmer, who extended the research to the dipole

field. Poincare found that the particles are “guided” along the magnetic field, while Størmer

discovered that the particles coming from infinity (from the Sun) can only reach the Earth at high

latitudes, whereas at mid and low latitudes they are trapped by the Earth’s magnetic field.

Birkeland’s theory was criticized by Schuster in 1911, who showed that, because of in-

ternal electrostatic repulsion, no electron stream of solar origin could reach the Earth. To solve

the problem Lindemann suggested in 1919 that the particle stream should be electrically neutral.

Chapman and Ferraro used the image method of Maxwell to prove that the interaction of a neutral

beam (later named solar wind), consisting of electrons and ions, with the magnetic field of the

Earth, could lead to magnetic disturbances at the surface of the Earth. In a famous suite of papers,

published in 1931, they showed that a magnetic cavity is formed around the Earth, and suggested

that the magnetic disturbances could result from currents flowing at the surface of this cavity. This

early view proved remarkably correct, even if a large number of refinements was added since that

time. The Chapman-Ferraro cavity was named magnetosphere (Gold, 1959) and the global map

of this region, as it is known today, is presented as Fig.1.1.

The study of a fluid consisting of positive and negative charges, that balance each other so

that charge neutrality is preserved (like the solar wind), was undertaken in a systematic manner by

Langmuir and his collaborators, Mott-Smith and Tonks, through classic work done between 1925

and 1930 (Mott-Smith and Langmuir, 1926; Tonks and Langmuir, 1929; Langmuir, 1929). They

named such a collection of charged particles plasma, in close analogy with the blood plasma —

an electrolyte with positive and negative ions in dynamic equilibrium. The electrolyte behavior

had been studied by Debye and Hückel (1923) who showed that outside of a sphere with radius

�� �
�

����	
�� the departure from charge neutrality becomes vanishingly small. Likewise, the

positive ions in a plasma are in equilibrium with the electrons and the plasma can be considered

neutral on spatial scales larger than the Debye length.
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Figure 1.1: The global map of the magnetosphere. Figure 1.13 from Kelley (1989).

The basic analytical tools for plasma investigation were developed in the next few years

by Vlasov, Chapman, and Alfvén. Vlasov (1938) wrote a classical paper where he showed that

in many cases a good description of the plasma is provided if the collision term in the Boltzmann

equation is neglected. By solving the resulting equation together with the Maxwell equations he

obtained basic expressions for transverse and longitudinal oscillations in a plasma. Chapman laid

the kinetic theory on a sound foundation through work presented in compact form in the book

written together with Cowling, Chapman and Cowling (1939). Alfvén (1940a) invented in 1940

the one particle plasma theory, in relation with his work on magnetic storms (Alfvén, 1939, 1940b).

Two years later Alfvén (1942) wrote the first paper on magneto-hydrodynamics, originating in his

desire to understand the energy propagation within sunspots.

The plasma physics came to a rapid development after the world war II, mainly motivated

by the efforts to obtain controlled fusion. Space physics readily took advantage of this opportunity:

Beginning with the 1950’s rockets and satellites collected a continuously increasing body of data.

Analyzed by means of the new plasma physics tools, they boosted the understanding of the solar

wind – magnetosphere – ionosphere system. In the next Section we shall give a more detailed

account on the various types of data used in the investigation of the magnetosphere and ionosphere,

in particular of the auroral arc.
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1.2 The auroral arc and the auroral acceleration region

The auroral phenomena are studied by using both ground and in-situ data. Ground data are pro-

vided by optical instruments, magnetic observatories, and radar facilities; in-situ data are collected

by rockets and satellites.

1.2.1 Ground data

Optical observations

During the first half of the 20th century the advance of the photographic and spectroscopic tech-

niques found numerous applications in the auroral research, like: mapping the aurora distribu-

tion in height and geographical coordinates, the classification of auroral forms, and the detailed

characterization of auroral spectra (including an evaluation of the collision mechanisms between

charged and neutral atmospheric constituents). Extended presentations of such topics can be found

in Chamberlain (1961) and references therein.

A significant progress in the optical observation of aurora was achieved at the middle of

the 1950’s, with the invention of the all-sky-camera (ASC), by which pictures covering the sky

from horizon to horizon could be taken. The morphological studies of the aurora, following its

development both in space and in time, greatly benefited from the ASC pictures. By examining

an extended set of images, taken during the International Geophysical Year (IGY, 1957–1958),

Akasofu (1964) managed to provide the first systematic description of the auroral substorm.

The photographic techniques require an exposure time of the order of a few seconds to 1

minute. This is not appropriate for highly dynamic auroral features, developing on short temporal

and small spatial scales. This limitation was overcome at the middle of the 1960’s, with the

development of low light TV cameras. By using such an equipment Maggs and Davis (1968)

measured with high accuracy the width of auroral arcs, whileHallinan and Davis (1970) studied

the motion of auroral folds and curls. They found that many times the curls travel with high

horizontal velocities, often in opposite directions along adjacent arc elements, and interpreted this

motion as ��� plasma drift. From the fast curl motionsHallinan and Davis (1970) inferred the

existence of large electric fields (�0.5–1V/m) above auroras, perpendicular to the arc alignment

and changing the sign across the arc. Such values are about one order of magnitude larger than

those measured in the ionosphere, which are normally in the range 0.01–0.1V/m. In order to

explain the existence of intense electric fields at higher altitudes Carlqvist and Boström (1970)

suggested for the first time the “U”-shaped potential structure.
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Ground optical data are also used to supply information in conjunction with rocket, satel-

lite, and radar measurements. While rockets, satellites, and radars provide a 1D cut through the

space-time continuum, the optical observations cover the evolution of the auroral luminosity over

large 2D domains, adding valuable knowledge for understanding the in-situ data. As an example,

the connection between discrete/diffuse aurora and upward/downward currents was established by

combining Triad satellite and ground optical data. Optical observations in conjunction with rocket

and radar data also allowed a comprehensive characterization of the electric field and current in

the vicinity of auroral arcs (see Section 5.1.3).

Magnetic field observations

As already mentioned, the first ground magnetic observatories were established at the beginning

of the 19th century. At times of geomagnetic activity, currents flowing in the ionosphere, at about

110km altitude, or far away in the magnetosphere, perturb the geomagnetic field. By analyzing

the magnetic perturbation pattern one can extract information about the intensity, location, and

geometry of the current flow.

The current system associated with an auroral arc can be roughly divided in two sub-

systems (see Section 5.1.2):

� The field-aligned currents (FACs) flow along the magnetic field lines and close in the iono-

sphere through Pedersen currents, parallel to the electric field.

� The electrojets flow in the ionosphere as Hall currents, perpendicular to the electric field.

Fukushima (1976) showed that the magnetic perturbations measured at the ground are essentially

produced by the electrojets. In order to characterize the current distribution of the auroral electro-

jets, and to follow their development in space and time, meridian chains of magnetometers were

set up in regions of intense auroral activity, over the polar part of the northern hemisphere.

Radar observations

The radar investigation of aurora developed quickly with the advance of the incoherent scatter

technique. Whereas the classical ionosonde can gather information only up to the altitude of the

highest electron density (the F layer maximum, around 250-300km), by using incoherent scatter

radars (ISRs) a full set of ionospheric parameters can be collected, up to altitudes of about 500-

600km. Large ISR facilities close to the auroral zone are the European Incoherent SCATter radar

(EISCAT), in northern Scandinavia, and the Sondrestrom radar (which was moved from Chatanika,

Alaska, at the beginning of the 1980’s), in southern Greenland.
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Besides altitudinal profiles of electron density the ISRs also provide ion composition, ion

and neutral wind velocity, electron, ion, and neutral temperatures. These can be further used to

derive important parameters, like Pedersen and Hall conductivities, electric fields, perpendicular

and parallel currents, as well as precipitating particle and energy fluxes. More information on

results achieved by using ISRs is given in Sections5.1.1 and 5.1.3.

1.2.2 In-situ data

Rocket data

Collection of in-situ data started shortly after the world war II, when the first sounding rockets

were launched into ionosphere. Reaching at the beginning only modest heights (�100km), they

evolved to more than 1000km nowadays.

A large fraction of the basic knowledge that we have about auroras was achieved by rocket

experiments. Using a rocket particle detector McIlwain (1960) found that the discrete auroras

are produced mainly by �1–10keV electrons and interpreted the shape of the particle distribution

as suggesting the presence of electric fields parallel to the magnetic field lines — which had

been theoretically anticipated by Alfvén (1958). The pioneering work of McIlwain (1960) was

followed by other studies based on rocket data (e. g. Albert, 1967; Hoffman and Evans, 1968),

which represented significant contributions in this early phase of in-situ auroral research. Work on

auroral arc electrodynamics based on rocket data is discussed in Section5.1.3.

Rockets were not only used for passive experiments, i. e. for just measuring various plasma

and field quantities, but also as platform for active experiments. Some of the first determinations

of the electric field in the ionosphere were accomplished by measuring the velocity of ion clouds

released from rockets at�100km altitude (e. g.Haerendel, 1972, and references therein). By using

this technique it was also possible to obtain direct evidence for the existence of parallel electric

fields above auroral arcs (e. g. Haerendel et al., 1976).

Rocket measurements are still heavily used by the auroral community, because of the

possibility to obtain very high resolution data and the freedom in choosing the launch time, so that

a rocket flight can be tuned to a particular type of event. Neither satellites, nor radars can compare

to rockets in these respects, although recent missions, like Freja and FAST, have considerably

diminished the gap. They provide measurement resolutions close to those obtained with rockets,

while the continuous coverage results in large databases, that offer a large selection of individual

events.
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Figure 1.3: The geometry of the auroral acceleration region as revealed by
S3-3. From Mizera et al. (1982).

Satellite data

The continuous coverage made possible by satellites is of paramount importance for recognizing

typical features. Without a large collection of data one could hardly guess if a certain feature is

the exception or the rule.

At the end of the 1960’s satellite measurements brought the peremptory proof for solving

the old controversy on the existence of field aligned currents (Zmuda et al., 1970, and references

therein). The discovery of characteristic auroral signatures, like the inverted-V pattern in time–

energy electron spectrograms (Frank and Ackerson, 1971), and the association between inverted-

V events and electric field reversals (Gurnett and Frank, 1973), were also possible due to satellite

data. Gurnett (1972) suggested that an “U”-shaped potential structure — very similar to the config-

uration formerly imagined byCarlqvist and Boström (1970) — would explain both the inverted-V

character of the electron precipitation and the associated electric field reversal (Fig.1.2).

Convincing experimental evidence that the structure sketched in Fig.1.2 really exists came

with the USAF satellite S3-3, that discovered its location “almost accidentally” (cf.Fälthammar,

1983). Equipped with a full set of instruments to measure particles and fields, S3-3, with apogee

at 8000km, provided the first systematic description of the auroral acceleration region (AAR).



1.3. GOAL AND PLAN OF THE WORK 9

Many of the characteristic features associated with this key region — ion beams (Shelley et al.,

1976) and conics (Sharp et al., 1977), electrostatic shocks (Mozer et al., 1977), weak double lay-

ers (Temerin et al., 1982), ion cyclotron waves (Kintner et al., 1978) collocated with ion beams

(Kintner et al., 1979) and FACs (Cattell, 1981) — were discovered by S3-3. The AAR map, as re-

sulted from S3-3, is shown here in Fig. 1.3. For a full account of S3-3 achievements and extended

references the reader is directed to the reviews ofMozer et al. (1980) and Chiu et al. (1983).

The discoveries of S3-3 were further substantiated by missions like DE, Viking, and Ake-

bono, with apogees above 10000km, that fully confirmed the original picture and added further

refinements through increased time resolution and exploration of different altitude ranges. More

recently Freja, with apogee at 1700km, and FAST, with apogee at 4000km, resolved a large variety

of small scale structures below and at the bottom side of the AAR.

1.3 Goal and plan of the work

The main goal of this work is to provide a good electrodynamic characterization of an auroral

arc, based on high resolution satellite measurements and ground optical images. The satellite

data we use come from the NASA auroral mission FAST (Carlson et al., 1998a). The images were

recorded with a TV camera of Max-Planck-Institut für extraterrestrische Physik (Frey et al., 1996).

We shall develop a general frame for studies of arc electrodynamics, by building a realistic

model, which incorporates the ionospheric polarization, the Hall contribution to the FAC closure

across the arc, and the coupling between the FAC and the electrojet. Plasma and DC (electric

and magnetic) field data, measured well above the current closure region, will be used to examine

several instances of the model.

By means of the information provided by the ground images we shall check the consis-

tency of the results derived from satellite data. However, the frame assembled in this work is, in

principle, independent from ground measurements. If proved to be valid, it only relies on satellite

data. The method we suggest could become a valuable tool for the investigation of arc electrody-

namics under various auroral conditions.

The present work is organized as follows:

Chapter 2: Description of the satellite payload and of the ground optical equipment. The software

packages used to process the data are also briefly introduced.

Chapter 3: Data corresponding to a FAST overpass, in conjunction with optical observations,

are presented in detail. Geophysical parameters and ground magnetograms, illustrating the am-

bient conditions, are also included. The multi-scale approach possible with FAST, encompassing

convection, field-aligned currents, inverted-Vs, and ion beams, is emphasized.
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Chapter 4: Pedersen and Hall conductances are derived from particle data, by using approximate

formulas, taken from literature. The evaluation of conductances during ion beam events is given

special attention. We also discuss the errors associated with conductance determination, related

both to the method used and to the measurement technique.

Chapter 5: We start with a review of ionospheric electrodynamics that emphasizes work done

on the auroral arc. Some published experimental facts are briefly introduced. Several idealized

features of the proposed models are commented and shown to be incompatible with our data. We

conclude by building more realistic models whose parameters can be determined by fit.

Chapter 6: The results of Chapters 3, 4, and 5 are used to find the electric field and current along

the ionospheric footprint of our case-study FAST orbit. A step by step evaluation of the arc model

is performed, which shows that only the fully developed instance is reasonably consistent with the

complete set of experimental data. The most promising results are used to discuss the 3D current

configuration, which is found to differ substantially from the common pattern.

Chapter 7: Summary of the work and prospects for future development.



Chapter 2

Experimental setup

The forefather of Fast Auroral SnapshoT (FAST) is S3-3. About 25 years ago S3-3 discovered the

AAR, taking full advantage from a complete payload of field and particle experiments.

The FAST mission, devoted to the investigation of the small scale structure of AAR, was

developed under the SMall EXplorer (SMEX) program of NASA. The PI institution for FAST is

the Space Science Laboratory (SSL) of the University of California at Berkeley (UCB). UCB/SSL

has been heavily involved in auroral rocket and satellite projects (among them S3-3) since more

than three decades.

At the beginning of 1997, shortly after the FAST launch, an auroral campaign supported

FAST measurements with optical observations taken from a jet aircraft and from the ground. The

ground observation was conducted by the Max-Planck-Institut für extraterrestrische Physik (MPE)

and the jet aircraft by the Geophysical Institute of the University of Alaska at Fairbanks. In this

work we shall use data from one of the MPE’s TV cameras.

The first Section introduces the satellite and its payload. Next, the FAST data processing

software is briefly described. In the last Section we present the MPE’s optical equipment.

2.1 Satellite payload

The FAST satellite was launched on August 21, 1996, in a polar orbit (83Æ inclination), with

apogee at 4200km and perigee at 350km. The satellite has a reverse cartwheel motion, with a spin

period of 5s and the spin axis perpendicular to the orbit plane. As an important consequence of the

orbit and spin geometry, the magnetic field line is always close to the spin plane (typically within

5Æ). A FAST crossing of the AAR, together with some characteristic phenomena in this region, is

sketched on the left side of Fig. 2.1 (not to scale).

11
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An important feature of FAST is the flexible data acquisition rate, depending on the satel-

lite mode and on the selected Particle and Field modes. At low and medium latitudes the instru-

ments are switched off, except for the magnetic field which is sampled at a rate of 8s��. The

satellite is switched to Slow Survey mode when it crosses 60Æ invariant latitude (the exact time is

pre-determined by orbit calculation; see p. 27 for the definition of the invariant latitude). Particle

and field data collected in this mode are resolved at a rate comparable to that achieved by previous

missions. In Fast Survey mode, triggered by the enhancement of the auroral activity (visible in

the electron energy flux), the data rate increases by about one order of magnitude, and compares

to the highest burst rates achieved by missions before FAST. The most intense events are selected

for storing in Burst mode, according to another set of trigger algorithms, that depend on the scien-

tific goal. The Burst data typically span 10–30s and allow the detailed investigation of the small

scale structure of the AAR. The highest data rate available on FAST is High Speed Burst Memory

(HSBM), for capturing waveforms up to 1 MHz (covering �1s intervals). The present study is

mainly based on Fast Survey data; Burst data, acquired during ion beam events, are also used.

FAST was designed as one integrated measuring unit, with the different instruments acting

as sensors for the different data types. This concept is best reflected by the existence of a unique In-

tegrated Data Processing Unit (IDPU), taking care of all the scientific processing onboard FAST.

A schematic representation of the satellite and its payload is shown on the right side of Fig.2.1.

Extended descriptions can be found on the FAST web page, http://sprg.ssl.berkeley.edu/fast, and

were published in a recent issue of Space Science Reviews, Vol.98(1-2), August 2001 (for an

overview see Pfaff et al. (2001)). In addition, useful information was published in the AGU mono-

graphs Measurement Techniques in Space Plasmas (Pfaff et al., 1998a,b). The Tables 2.1 and 2.2

below are taken from McFadden et al. (1999). The following two Sections are intended just as an

outline; the reader is directed to the mentioned references for details.

2.1.1 Particle instruments

There are 4 particle instruments onboard FAST: A mass spectrometer (TEAMS), an ion spectrom-

eter without mass resolution (IESA), an electron spectrometer (EESA), and a high time resolution

electron spectrograph (SESA). Table2.1 shows the main characteristics of the particle instruments.

A common feature is the large geometric factor (the last column), making possible the achieve-

ment of statistically significant results for short sampling times (column 4). This is very important

for revealing the small scale structure of the AAR.

http://sprg.ssl.berkeley.edu/fast
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In this work we shall use Fast Survey and Burst data from the EESA and IESA instruments

in the presentation of the AAR crossing (Chapter 3) and to calculate ionospheric conductances

(Chapter 4). The Fast Survey TEAMS data (Chapter 3) show that the ion beams’ composition

agrees with the general geophysical conditions.

The Mass Spectrometer TEAMS

The Time Energy Angle Mass Spectrometer (TEAMS) consists of:

� An electrostatic energy filter of top-hat design (Carlson et al., 1983), covering an energy

per charge range of 1eV/e–12keV/e, divided into 48 logarithmic steps. An energy sweep

takes typically 78 ms, 1.6 ms for each step. Behind the electrostatic analyzer the ions are

accelerated by a selectable voltage of -15kV to -25kV.

� A time-of-flight (TOF) section able to resolve atomic and molecular ions with mass per

charge between 1 and 64 a.u./e (in cooperation with the electrostatic analyzer); the major

ionospheric ions, H+, O+, He+, are thus readily detected. For minor constituents longer

accumulation times (several spin periods) are necessary.

� A detection unit based on Micro-Channel Plates (MCP) which images the incoming particles

on 16 anodes, each of them covering a 22.5Æ sector.

The instrument axis is perpendicular to the spin axis, so that full 3D distributions can be

obtained. The unit sphere is divided into 64 solid angles, symmetric with respect to the spin plane.

Each hemisphere is divided into four belts, evenly spaced in polar angle (the middle polar angles

for the belts of the positive hemisphere are equal to 11.25Æ, 33.75Æ, 56.25Æ, and 78.75Æ). Each

belt, in its turn, is evenly divided in azimuthal sectors: 16 for the equatorial belts, 8 at lower mid

latitudes, and 4 at upper mid latitudes and around the poles. The polar and azimuthal angle refer

to the satellite spin axis.

In Fast Survey mode a full 3D distribution is collected every half spin (2.5s) for H+ and

O+, and every spin (5s) for He+. In Burst mode 2D distributions are also stored, 64 distributions

per spin (corresponding to a 78 ms energy sweep: 5s/78ms=64). However, unlike the IESA and

EESA plasma detectors, the magnetic field line lies in the TEAMS viewing plane plane only

two times per spin. Consequently, pitch-angle spectra can only be obtained with half-spin (H+,

O+) or spin resolution (He+). Other data products are also available, like mass spectra and high

resolution data from the polar sectors of the instrument (which look all the time perpendicular

to the magnetic field line and thus can offer information about transverse ion energization). See

Klumpar et al. (2001) for further details.
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The plasma spectrometers IESA, EESA, and SESA

The ion spectrometer (IESA), the electron spectrometer (EESA), and the stepped electron spec-

trograph (SESA) are packed together in 4 stacks of 4 top-hat electrostatic analyzers (ESA) each,

symmetrically distributed around the spacecraft . Each ESA has a field of view (FoV) of 180Æ, in

the spin plane of the satellite, and opposite ESAs are paired to obtain 360Æ FoV; one ESA pair is

used for IESA, one for EESA, and the rest of six for SESA. Additionally, the FoV can be deflected

within 10Æ from the spin plane, in order to include the magnetic field line in the viewing plane.

Consequently, for each energy step the full pitch-angle distribution is measured and complete

energy–pitch-angle distributions are available at high rates. The specific rate for each instrument,

as well as the energy range and the angular resolution are given below. For a detailed description

see Carlson et al. (2001).

� The ion spectrometer, IESA, covers the energy per charge range 3eV/e–25keV/e divided, as

for TEAMS, in 48 logarithmic steps; the typical energy sweep takes 78 ms. In Fast Survey

mode 4 energy sweeps are collected together while in Burst mode each sweep is recorded

separately. The angular resolution is 5.6Æ for Fast Survey data and 11.2Æ for Burst data.

� The electron spectrometer, EESA, has similar characteristics as IESA, except for the energy

coverage which is 4eV/e–30keV/e.

� The electron spectrograph, SESA, can be set to achieve maximum time resolution, 1.6 ms,

with 6 fixed energies, or maximum energy resolution, 48 levels, with a time resolution of

8�1.6 = 12.8ms. A trade-off between energy and time resolution is also possible. The

SESA angular resolution of is 22.5Æ.

It is a useful exercise to evaluate the spatial scale associated with the particle measurements. At

and near the apogee (as it is the case for this work) FAST velocity is �5.6km/s. In Burst mode

a full IESA/EESA distribution is collected in 78ms, which transforms to a distance of �440m.

In Survey mode the accumulation time is 4 times longer, which leads to �1760m. The magnetic

field at 4000km altitude is �4 times smaller than at 110km ionospheric level. Consequently, the

mapping factor from FAST altitude to the ionosphere is �0.5 (considering isotropic mapping,

which is a reasonable assumption for this altitude range) and the distances above correspond to

�220m and �880m respectively, at ionospheric level, comparable to the width of thin discrete

arcs. For SESA, the ionospheric distance between two measuring points is �5m–40m.
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2.1.2 Field instruments

The field measurements are very well represented onboard FAST, as one can easily notice by in-

specting Table 2.2. Extended instrument presentations can be found inErgun et al. (2001) (electric

field) and Elphic et al. (2001) (magnetic field). The field data to be used later in this study cover

only the DC part of the spectrum, for both the magnetic and the electric field. Nevertheless, AC

data are also introduced in Section 3.2, to offer a broader perspective on the event under study.

The low frequency magnetic field is measured with a fluxgate magnetometer, mounted on a

boom at 2m from the satellite body (see Fig.2.1). The satellite is magnetically clean (Elphic et al.,

2001) which allows high accuracy data. The sampling frequency is 128Hz and the signal is fil-

tered to 50Hz, below the 64Hz Nyquist frequency. The measured magnetic field is further passed

through a 16-bit analog-to-digital converter (ADC). The magnetometer covers the full �65000nT

range of the Earth’s background field, with a resolution of �2nT.

The electric field is measured by using the double probe technique. FAST is equipped

with 4 wire booms in the spin plane and with 2 rigid booms along the spin axis; each spin plane

boom carries 2 spherical probes, at 23m, respectively 28m from the satellite body; a probe is also

mounted on each axial boom, 3m away from the satellite. The more distant radial probes can only

work in voltage mode. The radial probes closer to the satellite, as well as the axial ones, can work

both in voltage and in current mode; they either measure the electric field, or the electron density

and temperature, according to the selected field mode.

The electric field booms came to an in-flight configuration different from the planned one.

One of the radial wires did not deploy and, in order to preserve a good satellite dynamics, it was

decided to deploy only one of the two axial booms. Because of the proximity of one axial probe to

the spacecraft body and the lack of spin signals necessary to estimate gains and offsets, the electric

field along the spin axis of the satellite (roughly E–W direction) is not measured in the DC range

(details at http://sprg.ssl.berkeley.edu/fast/scienceops/fast fields help.html).

The data from the spin plane probes can still be processed to obtain the electric field

components parallel/perpendicular to the spacecraft velocity. Due to the geometry of the orbit,

when the satellite is close to apogee the two components are nearly perpendicular/parallel to the

magnetic field; we designate them accordingly as �� and ��. By integrating �� one can obtain

potential differences along the satellite path; this procedure will be detailed in Section3.2 and

further used in Chapter 6. As far as �� is concerned, it should be mentioned that this is not the

exact value of the electric field component parallel to the magnetic field. A reliable determination

of the parallel electric field requires serious precautions (see the discussion at p.35).

http://sprg.ssl.berkeley.edu/fast/scienceops/fast_fields_help.html
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AC electric and magnetic fields are measured over a frequency range extending from DC to

2MHz. The electric field sensors are the spherical probes mentioned above, while for the magnetic

field a second, search coil magnetometer, was necessary. The various signals are processed both

onboard and on the ground.

Continuous on-line monitoring of the ELF/VLF (DC to 16kHz) and HF (�10kHz to

2MHz) power spectral densities is achieved through a Digital Signal Processor (DSP) and a Swept

Frequency Analyzer (SFA) respectively. Averaged spectra, with frequency resolution of 32Hz

(DSP) and 15kHz (SFA) are recorded typically every 4/0.25s in Slow/Fast Survey mode. In Burst

mode SFA spectra can be obtained every 31.25ms. In addition, a Plasma Wave Tracker, a Wave-

Particle Correlator, and a High Speed Burst Memory unit (able to collect �1s of 1MHz waveform

data), are active in Burst mode.

The off-line ground processing is performed by applying Fast Fourier Transform (FFT)

to the captured waveforms. In Fast Survey mode the frequency range extends to 1kHz, while in

Burst mode the upper frequency limit is either 4kHz or 16kHz (depending on the sensor and on

the instrument mode). The data used later in this work to provide the average ionospheric electric

field are low-pass filtered to the 10Hz Burst resolution of the particle experiment.

2.2 Data analysis software

The data presented in this work was analyzed by using three categories of software (for a more

extended description see Appendix A):

1. A quick look program, Science Data Tool (SDT), which brings the data from the Level

Zero Processing (LZP) files to the computer screen, for visual inspection, and in either disk

or memory buffers for further processing. SDT cooperates with a Data Manager (DM)

program, which communicates with the main FAST database at UCB/SSL. If a required file

is not found on the host computer DM takes care of downloading that file, without extra

trouble to the user.

2. A voluminous package of general IDL routines, covering tasks like:

� Getting and plotting the satellite orbit .

� Loading the data from the SDT buffers into IDL.

� Getting despun components of the magnetic and electric field.

� Obtaining energy and pitch-angle particle spectrograms.
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� Obtaining frequency spectra for the electric and magnetic field.

� Computing moments of the particle distributions.

� Plotting (multi)line and spectrogram data.

� Viewing particle distributions in various formats.

The list is just indicative and biased according to the necessities of this study.

3. Specific IDL routines and add-ons to the existing code, required by the present work. A

short selection includes:

� Reading the MPE image file format (IFF).

� Computing the ionospheric conductances and electric field.

� Adding error calculation sections to the code computing particle moments.

The quick look and data manager programs, together with the associated libraries, were

developed at UCB/SSL and are described to some detail inMcFadden et al. (2001). Documenta-

tion files on installing and configuring SDT and DM are provided within the package. Some in-

formation can also be found at http://sprg.ssl.berkeley.edu/fast/scienceops/fast sdt help.html. The

general IDL package was contributed by UCB/SSL and by some of the CoI institutions: Uni-

versity of California at Los Angeles (UCLA) for the magnetic field code and University of New

Hampshire for parts of the TEAMS code. The full package, containing SDT, DM, and general IDL

routines, is available at the FAST ftp site: ftp://juneau.ssl.berkeley.edu/pub/software releases.

2.3 Ground optical equipment

The origin of the MPE interest in optical observations can be traced back to the rocket ion release

experiments started in the 1960’s (e.g. Föppl et al., 1967). The motion of the ion clouds was first

recorded with photographic cameras and later by using low light TV systems. More recently,

three low-light CCD TV cameras were developed at MPE in order to study small scale auroral

structures (see Frey et al., 1996, for a detailed description). They can be equipped with either wide

angle (86Æ�64Æ) or narrow angle (21Æ�16Æ) optics, and can be used either with filters (577nm and

630nm narrow band, or �650nm pass band) or in white light.

Figure 2.2 shows the ground experimental setup during the auroral campaign from

January–February 1997. The N–S and E–W directions are indicated at the top of the picture.

The building at the rear is the field station that housed the electronics and the research team.

http://sprg.ssl.berkeley.edu/fast/scienceops/fast_sdt_help.html
ftp://juneau.ssl.berkeley.edu/pub/software_releases
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Figure 2.2: Ground optical equipment during the January–February 1997 campaign. At the rear is
the field station, housing the team and the electronics to control the cameras, which are visible in the
front plane. The side cameras are equipped with wide-angle and the middle one with narrow-angle
optics. The cameras are N–S aligned, with the South at the left. The data used in this work come
from the southward, only partially visible camera. (Courtesy W. Lieb)

The three cameras are visible in the front plane. The two cameras at the sides are equipped with

wide-angle optics and fixed in cardanic mounting, that allows rotation around two axes (in this

case N–S and E–W), in order to get the best view of the auroral form. The camera in the mid-

dle (under the black cover) is equipped with narrow-angle optics. The data we use in this work

comes from the southward camera (which is only partially visible). During the observation the

camera was rotated 30Æ around the N–S axis and 25Æ around the E–W axis (information from the

campaign log-book, maintained by H. Frey), and was equipped with the pass band filter.

The exposure time of the cameras can be varied from 40ms, the standard PAL TV norm,

by multiplication/division with/through powers of 2. The images are recorded on commercial

video tapes. At MPE the images are digitized to 768�576 pixel arrays (corresponding to the CCD

detector geometry), with 8 bit depth.

The digitized pixel value depends not only on the intensity of the auroral light com-

ing from a certain direction, but also on: a) optical parameters, e. g. transmission coefficients

and their dependence on wavelength; b) camera setup, e. g. exposure time and electronic gain.
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Obtaining the absolute light intensity is, in principle, possible, if the camera is optically calibrated

for the respective spectral range, but such a procedure will not be attempted here. For the purpose

of this work it is sufficient to calculate relative intensities (see Section3.3). The accuracy of the

results can be checked by comparing the position of the maximum brightness, along the satellite

path, with the position of the maximum electron energy flux (Fig. 3.11). In order to compare the

satellite measurements with the luminosity pattern exhibited by the ground images a geometrical

calibration is also necessary. The reader is referred to AppendixB for the details of this procedure.



Chapter 3

A satellite auroral overpass:

FAST orbit 1859

During the winter campaign from January–February 1997 optical data in conjunction with FAST

measurements were obtained for several FAST orbits. The ground equipment was located at Dead-

horse, in northern Alaska (Lat. 70.22Æ, Lon. 211.61Æ). We present here FAST data from orbit

1859, collected on February 9, 1997, around 8:22 UT, while crossing the evening auroral oval, at

about 21 MLT. The conjugated optical data are also discussed.

In the first Section the FAST crossing is placed in a more general context, derived from

both geophysical indices and ground magnetograms. In the next two Sections the satellite and

optical data are presented and discussed, with emphasis on the spatial and temporal scales available

to observation. We conclude the Chapter by pointing out data features important for the further

development of the work.

3.1 Geophysical conditions

The first half of the day of February 9, 1997, was relatively quiet in the auroral zone; the AE index

is shown in Fig. 3.1. Nonetheless, the background was disturbed: a magnetic storm started on

February 7 was in progress, reaching its maximum amplitude at the middle of February 10, with

a �
� of -72. The �� index for UT 6–9 was 2, the minimum value during this storm period. On

February 8 the �� went up as high as 6- and on the evening of February 9 it reached 5+.

The satellite pass over the auroral oval and polar cap is shown at the left side of Fig.3.2

(obtained by using the general IDL FAST package, see AppendixA). The figure is centered at the

magnetic pole and has the magnetic noon at the top (although the magnetic pole is marked with

23
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Figure 3.1: AE index for February 9, 1997. From World Data Center for Geomagnetism
Kyoto, http://swdcdb.kugi.kyoto-u.ac.jp.

’N’, this is actually the magnetic South pole). Plotted in the figure are the satellite trajectory (the

red curve joining the lower left and the upper right corners), the auroral oval, geographic fiducial

lines, and the day–night terminator at 110km (the blue curve at the upper side). Note that FAST,

at �3900km, was continuously in sunlight. The figure also shows several magnetic observatories

over Alaska and northern Canada, as well as Deadhorse, the site of the optical campaign.

The plotted auroral oval corresponds to an activity index Q=1 (Holzworth and Meng,

1975), in agreement with the AE index around 8:22 (Fig. 3.1). The big ’X’ close to the north-

ern border of the oval shows the time 8:22:12 when FAST encountered the southern edge of the

arc (see also Fig. 3.12). The width of the ’X’ is a rough measure of the arc width. The ’+’ signs

along the satellite path mark 5 minutes intervals. A more detailed view over the evening part of the

oval is given at the right side of Fig.3.2. One can compare the limits of the statistical oval with the

convection, field-aligned current, and luminosity patterns (Sections3.2 and 3.3). The agreement

is reasonably good, with the oval extending somewhat north of the convection reversal.

To complete the picture of the geophysical context, magnetograms from 2 stations close

to the arc, Barrow and College, are shown in Fig. 3.3. Each magnetogram shows the horizontal

component, H [nT], the declination, D [0.1min], and the vertical component, Z [nT]. The main

information one can extract from Fig. 3.3 is that around 8:22 the ground magnetic activity was

reduced, both south (College) and northwest (Barrow) of the arc. However, shortly afterward the

magnetic field within the oval got increasingly perturbed (this is also visible in the AE index).

http://swdcdb.kugi.kyoto-u.ac.jp:80/aedir
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Figure 3.3: Ground magnetograms from College and Barrow. Data retrieved from Space Physics
Interactive Data Resource, http://spidr2.ips.gov.au/spidr.

A strong westward electrojet progressively developed between College and Barrow, starting with

�9:00 UT, as exhibited by the negative H component and by the change in the sign of the Z

component from positive to negative.

We conclude that the data to be presented in the next two Sections were collected during

the growth phase of a substorm, as seen both in the AE index and in the ground magnetograms.

3.2 FAST data

The satellite measurements are introduced according to a scale hierarchy. Large, medium, and

small scale structures can be seen in the data. To understand the small scale features, which is the

main goal of FAST, one has first to understand the frame within which these features develop.

As a first step, large scale electric and magnetic field data are shown in Fig. 3.4. The

electric field was integrated along the satellite path, to get the potential drop, which reveals the

large scale behavior better than the electric field itself. The potential is shown in the upper

panel of Fig. 3.4 and its evolution illustrates the features of the convection pattern. Until 8:20,

close to the southern border of the oval (Fig. 3.2), the plasma co-rotates with the Earth and con-

vects antisunward (evening sector), the electric field is southward, and the potential increases.

http://spidr2.ips.gov.au/spidr
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From 8:20 to 8:22, across a large fraction of the oval, plasma convects sunward, the electric field

is northward, and the potential decreases. At 8:22, close to the polar cap border, the potential starts

to grow again, in good agreement with the general trend of dawn–dusk electric field and antisun-

ward plasma flow over the polar cap. From 8:26 on the potential is roughly constant, allowing for

a south-westward plasma flow (if any).

The middle panel of Fig. 3.4 shows the three components of the perturbation magnetic

field in the Satellite Associated System (SAS), oriented as follows: the � axis along the model

magnetic field ��, the � axis roughly to the east, along �� � � (� the satellite velocity), and

the � axis roughly to the north, completing the right-handed orthogonal set (the � axis has the

direction of ��� � �� � ��). The magnetic field components are labeled as “x”, “y” and “z”.

During the inverted-V event the SAS is practically identical with the Mean Field Aligned (MFA)

system (Lühr et al., 1994). The MFA system has its z axis along ��, the y axis points eastward,

perpendicular to the magnetic meridian, and the x axis completes the right-handed set, pointing

predominantly northward. In general, MFA and SAS differ by a rotation around �.

At not too high altitudes (� 	� 
��) the magnetic field of the Earth is, to a good approx-

imation, dipolar, with (82.7ÆLAT, -92.0ÆLONG) and (-75.3ÆLAT, 118.6ÆLONG) the coordinates

of the magnetic South and North pole respectively (the magnetic poles are reversed as compared

to the geographic ones). The poles are not symmetric because the best fit to the Earth’s magnetic

field is obtained with an eccentric dipole (�400km from the center of the Earth). The field lines

that reach the Earth at high magnetic latitudes extend to large equatorial distances (� ����) and

cease to be dipolar, due to the magnetic field produced by magnetospheric currents. The field lines

can still be organized in L-shells of equal invariant latitude, ILAT. In the case of an ideal dipole

field the intersection of the L-shell with the equatorial plane is a circle of radius �� � ��� and

��� ILAT � ��	�� � �	�. For the definition of the L-shell in a field which is not rigorously

dipolar the reader is referred toMcIlwain (1961). Using the concept of L-shell the MFA system is

defined by the conditions that the z axis is parallel to�� and the y-z plane is tangent to the L-shell.

The perturbation magnetic field measured by FAST exhibits the typical signature of double

field-aligned current sheet, with downward current flowing at the south and upward current flowing

at the north (Iijima and Potemra, 1978). The association of the double current sheet with the two

convection reversals, visible in Fig.3.4, is a consequence of processes that take place in the source

region of the FACs, in the equatorial magnetosphere (e.g.Haerendel, 1990). A key feature of the

data refers to the location of the convection reversal very close north of the boundary between the

downward and upward FAC sheets. This leads to a quite special configuration of the 3D current

flow, that will be explored in detail in Section 6.6.
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One can notice a small rotation, ���� � �Æ (calculation based on variance analysis, see

Section 6.4.4 and Appendix G), between the satellite trajectory and the normal to the FAC sheets:

the largest variation is in the “y” component, but there is some variation in the “x” component as

well. This pattern is the result of a small clockwise rotation of the current sheets, as seen from

above. The cartoon at the right of Fig. 3.4 shows the orientation of the current sheets with respect

to the SAS, at FAST altitude. The ��� �� coordinates are associated with the current sheets and with

the arc, and we shall accordingly call ��� �� �� the Arc Associated System (AAS). The cartoon also

shows that the downward current is broader and, on average, less intense.

The lower panel in the left plot of Fig. 3.4 shows the AAS components of the magnetic

field. As expected, the variation in �� is smaller than the variation in ��; still, �� �� �, which

implies the variation of ���� (stronger supported by the optical data, Fig3.12) and/or an eccentric

traversal of the current sheet. The variation of ���� for the upward FAC will be further explored

in Section 6.4.4. �� is almost identical to �� because ���� is quite small.

There is also a small difference between the orientation of the upward current sheet and

of the visible arc, as indicated by the magnetic and optical data, because the magnetic field of the

Earth deviates from an ideal dipole. Strictly speaking, the AAS is not associated with the arc but

with the FAC sheet at FAST altitude.

The medium scale, comparable to the transverse size of the oval, is dominated by down-

ward and upward current signatures. They are visible not only in the magnetic field but also in

the particle data, as seen in Fig. 3.5. The first panel shows again the magnetic field, for easy

comparison with the particle data. The next four panels show electron data: energy spectrograms

for downward (loss-cone), perpendicular (mirror) and upward (source-cone) electrons, as well

as pitch-angle spectrogram. The presence of upward narrow bursts of medium energy electrons

(up to �1keV, panels 4 and 5) is the most prominent feature of the downward current region

(Carlson et al., 1998b). During the satellite pass through the upward current region the electrons

show a large inverted-V signature, relatively isotropic outside of the source-cone (panels 2, 3, and

5). Note that in the pitch-angle spectrogram the y axis extends from -90Æ to 270Æ, corresponding

to the 360Æ FoV of the plasma experiment. The angle range is shifted by 90Æ, to avoid having

downward electrons split up among the upper and the lower borders of the plot. For a discussion

of the electron velocity space, in the presence of a parallel electric field extending both above and

below the satellite, the reader is referred to Section4.3.1.

The last panel of Fig. 3.5 shows again the electric potential, to compare it with the ion

energy and pitch-angle spectrograms in panels 6 and 7. As mentioned above, until 8:22:04 the

potential decreases, corresponding to northward electric field and sunward convection. The ions
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show mirroring plasma sheet distribution, both in the energy and in the pitch-angle spectrograms:

the green area at the upper left half of panel 6 and the empty source-cone in panel 7. North of

8:22:04, which can be identified as the time of the convection reversal, the dominant ion feature is

the sequence of beams and conics of ionospheric origin.

It is clearly visible that the beams are associated with holes under the inverted-V (panel 2)

and with dips in the potential, consistent with the expectations implied by the “U” potential model.

As long as the satellite is below the AAR, medium energy, backscattered, and secondary electrons

(resulting from the interaction of the primary magnetospheric flux with the atmosphere), can reach

the satellite either from below, or from above, after being reflected by the potential structure. When

the satellite crosses the AAR the medium energy electrons are reflected down at lower altitudes,

which explains the association of holes in the electron spectra with ion beams. The dips in the

potential are an immediate consequence of the “U” shape of the AAR (Fig.1.2).

The gap in the potential between 8:22:37 and 8:22:47 is due to bad quality electric field

data, probably caused by the sensors’ saturation in low density plasma. The potential drop over

the ion beam period, IALL = 8:22:03.8–8:22:57.5, was estimated at 2000V� ������ �2250V,

which implies a potential drop over the data gap 1000V� ����� �1250V. The calculation of

������ is based on the fact that, outside of the ion beams, the magnetic field lines are equipo-

tentials. The ionospheric potential drop can be determined on sub-intervals of IALL where data

are available, yielding reasonable limits for the average ionospheric electric field, ��� , during the

data gap. More details are given in Section 6.1.1.

AC electric and magnetic field data are presented in Fig.3.6, in order to complete the view

over a typical auroral event. The first six panels show electric field (panels 1–3) and magnetic field

(panels 4–6) spectrograms in the HF (�10kHz to 2MHz), VLF (2kHz to 16kHz), and ELF (DC to

2kHz) ranges. The electron cyclotron and proton cyclotron frequencies are overlaid in the HF and

ELF panels, respectively. One recognizes the signature of the auroral kilometric radiation (AKR)

in the HF panels. Broadband VLF electromagnetic emission is coincident with the more energetic

part of the inverted-V electron distribution (compare with panel 2 in Fig.3.5). The relationship

between the ELF waves and the ion beams will be discussed later (p.38).

The last three panels in Fig. 3.6 show the electric and magnetic energy densities, �����
�

and �
��

�	�, stored by the wave fields in the HF, VLF, and ELF frequency ranges. The high

frequency AKR is electromagnetic and carries comparable magnetic and electric energies. The

difference visible in panel 7 of Fig. 3.6 is caused presumably by instrument calibration. At low

frequency (panels 8 and 9) the waves are essentially electrostatic, except for some electromagnetic

contribution at 8:22:10–8:22:30. A more detailed view over the electric field spectra in the ELF
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range is given in the panels 8 and 10 of Fig. 3.7 (to be discussed next). Note that, as documented

at http://sprg.ssl.berkeley.edu/fast/scienceops/fast sdt help.html, the ELF and VLF DSP data are

also affected by calibration errors: a factor of �500 for the electric component and of �1/3160

for the magnetic component.

Going to smaller scales, Fig. 3.7 zooms on the upward current region, dominated by a large

inverted-V (panel 1). The more energetic part of the inverted-V is associated with a broad visible

arc (Figs. 3.10 and 3.12), whose southern border is located at the sharp increase in the electron

energy (�8:22:12). A particular feature of this arc is its position north of the convection reversal

(as one can see by comparing panels 2 and 8 in Fig.3.5). It is possible that the arc extends to the

polar cap, as described by e. g. Meng and Akasofu (1976).

The position of the arc north of the convection reversal raises the problem of current clo-

sure. One modeling assumption frequently made (e. g. Boström, 1974), which is supported to a

good extent by experimental data (Sugiura et al., 1982; Sugiura, 1984), is that the FACs close in

the ionosphere through Pedersen currents and the Hall current is divergence free. This is obviously

not the case here. The detailed consideration of this question is deferred to Chapters5 and 6.

The panels 2–10 in Fig. 3.7 illustrate the small scale structure of the upward current region,

which is typical for the measurements made by FAST during the winter months at the beginning

of 1997 (McFadden et al., 1999). The most prominent feature is the repeated encounter with

ion beams (panels 2–6), suggesting an altitude variation of the lower boundary of the AAR. In

panels 2 and 3 we show IESA pitch-angle and energy spectrograms, while panels 4–6 present ion

composition measurements achieved by TEAMS. The spectrogram pixels are wider for TEAMS

because of the lower time resolution (Section 2.1).

In our case the dominant component is H+, consistent with the relatively quiet conditions

during FAST overpass. At disturbed times, however, the beams can be dominated by O+ ions: they

are energized at low altitudes, transverse to the magnetic field, by wave–particle interactions, and

can then reach the bottom side of the AAR overcoming the gravitational bound. The transverse

motion transforms into parallel motion with the altitude increase, due to the conservation of energy

and of the first adiabatic invariant, ����	��, in the quasi-dipolar magnetic field of the Earth.

The presence of ion beams is accompanied by large spikes in �� (panel 7), the so-called

electrostatic shocks (Mozer et al., 1977). They can be either paired, as for the first ion beam, or

unpaired, as it looks to be the case with the second ion beam. However, one has to take precautions

for the second ion beam, because of the data gap: quite likely the potential recovers to a high level,

in agreement with the evolution of ion energy (see Fig. 3.9), which implies a strong southward

field, i. e. a negative spike, at the northern border of the beam.

http://sprg.ssl.berkeley.edu/fast/scienceops/fast_sdt_help.html
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Figure 3.5: Medium scale DC electromagnetic field and particles. Panel 1: Perturbation magnetic field.
Panels 2–4: Electron energy spectrograms for downward, transverse, and upward components. Panel 5:
Electron pitch-angle spectrogram. Panels 6, 7: Ion energy and pitch-angle spectrograms. Panel 8: Electric
potential; the data gap at 8:22:37–8:22:47 and the matching of the potential is discussed at p. 30.
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Figure 3.6: Medium scale AC electromagnetic field. Panels 1-3: Electric field spectra in the HF, VLF, and
ELF ranges. The black lines overlaid in panels 1 and 3 show the electron cyclotron and proton cyclotron
frequencies, respectively. Panels 4–6: Magnetic field spectra in the HF, VLF, and ELF ranges. Panels 7–9:
Electric and magnetic energy density in the HF, VLF, and ELF ranges.
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Figure 3.7: Inverted-V data. Panel 1: Downward electron energy spectrogram. Panel 2: Ion pitch-angle
spectrogram. Panel 3: Upward ion energy spectrogram. Panels 4–6: Upward ion composition (H+, O+,
He+) as measured by TEAMS. Panels 7, 9: �� and �� filtered to 10Hz. Panels 8, 10: Spectra of �� and
�� (not filtered). The average electron and ion energy is overlaid in panels 1 and 3, respectively. The line
in panels 8 and 10 show the proton cyclotron frequency.
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The bipolar variation of the electric field is associated with the “U” geometry of the poten-

tial while the unipolar variation corresponds to the “S” geometry. When the bipolar variation is not

balanced the resulting structure combines the two geometries, as illustrated by Figs.1.3 and 5.3.

The �� component of the electric field (panel 9) is seen to be about an order of magni-

tude smaller than �� at times of electrostatic shocks. It is, however, quite difficult to precisely

determine ��: the uncertainty, arising primarily from the inaccurate knowledge of the detector

orientation, is comparable to or larger than the field itself. �� is rather a proxy for the error of the

electric field measurement (R. Ergun, personal communication):

�� �

���
����

�
��

�
(3.1)

Even if �� is large, comparable to �� (not in our case), the validation of the measurement is not

an easy task, because of the many potential error sources (e. g.Mozer and Kletzing, 1999).

Panels 8 and 10 in Fig. 3.7 show frequency spectra obtained by applying FFT to �� and

��, respectively. The wave activity is mainly transverse to the magnetic field line. It consists of

broadband extremely low frequency (BBELF) emissions, associated with ion beams, and electro-

static ion cyclotron (EIC) emissions near the proton cyclotron frequency, going along with both

beams and conics. The energy exchange with waves contribute to the ion energy budget, in addi-

tion to the interaction with the AAR potential structure (see the discussion below).

High resolution particle measurements are illustrated with Burst data in Figs.3.8 and 3.9,

showing the first two ion beam events. Each pixel in the particle spectrograms (downward elec-

trons in panel 1 and and upward ions in panel 2) represents 220m, if mapped at ionospheric level

(p. 16). The transverse electric field and the high-altitude potential are shown in panels 3 and 4.

Panel 5 compares the average ion energy, obtained as ratio of the energy flux to the number flux,

with the field-aligned (FA) potential drop; the lower curve is the kinetic temperature. To obtain

the FA potential drop we considered the ionospheric potential linearly variable across the beam

and equal to the high-altitude potential at the beam boundaries. Accordingly:

��� �
�

�
������� �

� �

�
��� �� � ��

�

� �

�
�� �� �

� �

�
�� �� (3.2)

The calculation of
� �
� �� �� for the second ion beam cannot be rigorously performed because of

the data gap. Details on the evaluation procedure are given in Section6.1.1.

An obvious feature in Figs. 3.8 and 3.9 is the close agreement between the beam average

energy and the electric potential, which supports the electrostatic model down to very small scales

(McFadden et al., 1998). However, a closer inspection reveals discrepancies which are better

visible for the second beam but can be noticed for the first beam as well. Even if most of the time
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Figure 3.8: First beam event. Panels 1, 2: Downward electron and upward ion spectrograms. Panel 3:
Transverse electric field. Panel 4: Electric potential. Panel 5: Ion average energy (black solid line), FA
potential (red dashed line), and kinetic temperature (green dotted line).
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Figure 3.9: Second beam event. Same as Fig. 3.8.
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the ion energy and the potential vary at the same pace, there are also times when the ion energy

grows either slower or faster than the potential. In the first group we could pick up the intervals

8:22:06–8:22:06.5 and 8:22:29–8:22:30 (here the potential increases while the energy decreases)

whereas in the second group we have 8:22:08–8:22:10 and, most striking, 8:22:32.9–8:22:33.1.

A detailed investigation of the origin of these discrepancies is beyond the scope of this

work. We shall mention, however, some possible mechanisms leading to differences in the varia-

tion rate of the potential and of the beam energy:

� The ionospheric potential does not have a linear variation, i. e. the N–S electric field is not

constant. This should not be very surprising, considering the fact that a 10s ion beam covers

�28km at ionospheric level, whereas the ionospheric Debye length and ion gyroradii are in

the centimeter and meter ranges, respectively. However, as we will show in Chapter6, the

ionospheric electric field does not have large variations (at least for the data presented here)

and the ionospheric potential does not deviate too much from a linear evolution. One cannot

expect the non-linearity of the ionospheric potential to explain big disagreements between

FA potential and ion energy.

� There are non-electrostatic mechanisms contributing to ion energization. It is a well known

fact that ions get not only parallel energy, from the FA potential, but also transverse energy,

by interacting with various wave modes (e. g. André et al., 1998; Lund et al., 1999). The

transverse energy pumped by the waves can vary at a higher or slower rate, as compared to

the field aligned potential; consequently, the variation of the total ion energy will not follow

the variation of the potential. A good proxy for the non-electrostatic energization is the

kinetic temperature: the ion temperature in the ionosphere is less than 0.2eV, whereas the

ion beam temperature is typically in the 0.1–1keV range. It is more difficult to explain such a

temperature increase by invoking only electrostatic interactions (although such model exists,

e. g. Borovsky (1984)) and the simultaneous measurements of wave activity on auroral field

lines suggests the wave–particle interactions to be the main cause. Nevertheless, for the two

beam events discussed here the kinetic temperature is pretty low as compared to the average

ion energy (�10%) and can only explain small differences between beam energy and FA

potential.

� Non-electrostatic interactions between ions and the electromagnetic field can originate in

the development of anomalous resistivity. This happens, for example, when the FAC density

overcomes a critical value,  	. Plasma becomes unstable and the excited wave mode (e.g. ion

cyclotron or ion acoustic) can generate anomalous resistivity through non-linear saturation.
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In such a case the ion energy would increase slower than the potential, or even decrease when

the potential increases. Our data show potential increase and ion energy decrease at 8:22:29–

8:22:30, coincident with intense BBELF and EIC wave activity (panel 8 of Fig.3.7).

� It is also possible that the electric field is actually not electrostatic and the time variations

are important. One can still try to preserve the electrostatic model by associating the time

variations with motions of the potential structure along the field line (e. g.McFadden et al.,

1998). A downward motion would lead to a variation in the beam energy higher than the

variation in the potential (e. g. 8:22:32.9–8:22:33.1).

3.3 Optical data

Ground optical data enlarge the satellite perspective over the auroral phenomena. Whereas the

satellite payload can measure in detail plasma and field parameters along the track, ground images

give a better description of the aurora development, both in space and in time.

We focus further on images taken on February 9, 1997, during the interval UT 8:19–9:14.

The conjunction with FAST did only last 2:20 minutes, between 8:21:00 and 8:23:20. However,

inspection of the longer period of optical data provides the context for the shorter conjunction

time. A sequence of 9 frames, 1 minute apart, centered on the conjunction interval, is shown in

Fig. 3.10. Visual evaluation suggests that 1 minute is a reasonable time-scale for the change of

the auroral display. The frames are sequentially numbered in the upper right corner. One can also

read, in the upper left corner, the exposure time. As mentioned in Section2.3 the exposure time

can be varied. In particular, “00” means 40 ms and “-01” means 20 ms. Note that the exposure

time doubles for the last frame.

For the time period when FAST crossed the camera’s FoV (frames 4,5,6) we indicated the

satellite’s footprint at ionospheric level (110km). The instantaneous satellite position is shown

as a square (see Appendix B for a brief description of the mapping procedure). One can check

that the FAST footprint is at the right place by comparing the brightness profile along the satellite

path with the electron energy flux derived from EESA data (Fig. 3.11, relative units). The two

curves reach their maxima at about the same time, with a small separation �! � �s, the energy

flux maximum coming first. �! �� � could result from mapping the satellite position to a lower

altitude, as compared to that of the light emission. In such a situation the corresponding elevation

angle would be smaller than its real value and the image pixel associated with the maximum energy

flux would be too far south, resulting in a smaller brightness than the real one.
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Figure 3.11: The energy flux resulting from optical data compared to the energy flux resulting
from particle data. The fluxes are represented in relative units, scaled to the maximum value.

The large difference between brightness and electron energy flux in Fig.3.11 (except for

the position of the maxima) is probably related to a layer of background luminosity which de-

creases toward north. This view is supported by the higher value of this presumed background

south of the arc, in a region of diffuse aurora. However, a direct comparison between the electron

and the optical data is difficult, because of the difference between the elevation of the magnetic

zenith, �� � ��Æ, and of the ionospheric footprint of FAST, �� 	 	
Æ (the elevation increases

from 31Æ at 8:22 to 45Æ at 8:23 and then decreases to 27Æ at 8:24).

In each frame of Fig. 3.10 the ion beams’ boundaries, as read in IESA data (Section 3.2),

are identified with pairs of numbers between 1 and 4. Note that the satellite actually encounters

ion beams between 8:22:04 and 8:22:57. Marking all the frames does not imply that ion beams

are necessarily there and is just meant to provide a reference for the evolution of luminosity.

Although there is no direct connection between auroral light and ion beams, the observational

evidence supports the association of ion beams at lower altitudes with the development of visible

arcs (Marghitu et al., 2001).

On the longer time scale of the optical observation one can see that the more energetic part

of the inverted-V is relatively stable, denoting an equilibrium state along the respective flux tubes.

On the other hand small enhancements in the energy flux (at�8:22:42 and�8:22:52) develop into
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Figure 3.12: Top: Optical images 4s apart taken during the FAST overpass. The satellite is figured as a
square and the limits of the first two ion beams are shown in each figure as ’11’ and ’22’. North is at the left
and East at the bottom, similar to Fig. 3.10. Bottom: Outline of the arc geometry with North at the top and
East at the right. The reference systems associated with the southern and northern boundaries of the arc, at
the points of intersection with the trajectory of FAST, are also shown.
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visible arcs, consistent with a positive feedback mechanism (Sato, 1978). A peculiar feature is

the association of ion beams (3–3 and 4–4 in Fig. 3.10) with these energy flux enhancements,

and further with the visible arcs. This association supports recent simulation work byErgun et al.

(2000), who found that the altitude of the bottom side of the AAR is determined by the balance

between backscattered and secondary electrons, and ionospheric ions. An increase in the energy

flux results in a larger backscattered and secondary flux, which leads to the lowering of the bottom

side of the AAR.

The optical behavior of the arc during the minute 8:22:00–8:23:00 is detailed in Fig.3.12.

At the top side is given a sequence of 16 frames, 4 seconds apart, each of them bearing markers

for the satellite footprint and for the first two ion beams. One can easily notice the stability of the

arc during the satellite overpass. The cartoon at the bottom side outlines the arc geometry. The

plot gives the correct arc orientation, with North at the top and East at the right (the camera inverts

East and West because of the optical system). The reference systems (�
 � �
) and (�� � �� ) are

associated with the arc boundaries at the points of intersection with FAST trajectory. A careful

inspection of the images provides useful information for the following Chapters:

� By comparing the position of the southern edge of the arc with the position of the first ion

beam one can see that the arc has a slow, approximately uniform equatorward motion. The

arc covers a distance roughly equal to the width of the beam in two minutes (frames 4 to 6

in Fig. 3.10) and half of this distance in one minute (first to last frame in Fig. 3.12). The

beam width is 5.6km/s � 10s = 56km at FAST altitude, which maps to 28km at ionospheric

level. The resulting average arc velocity is �200m/s. A slow equatorward motion is often

observed during the growth phase of a substorm (e. g.Mozer, 1971).

� If the arc is frozen in the ionospheric plasma (possible deviations from this assumption are

discussed in Section 6.5.2) its motion follows the plasma ��� drift; the associated electric

field points westward and has a magnitude � � 
� ��
 � ��mV/m. A westward electric

field drives a northward Hall current, that contributes to the ionospheric closure of the FAC.

� The arc is not straight and its borders are not parallel. The angle between FAST trajectory

and the normal to the arc varies slightly across the arc (Fig.3.12): at the southern border of

the arc ����� � �, whereas at the northern border ����� � �. The frames in Fig. 3.12 show

that the width of the arc decreases from top to bottom (West to East). This geometry suggests

a coupling between the currents flowing transverse to the arc and the currents flowing along

the arc, that is between the FAC system and the electrojet.
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3.4 Summary

We presented ground magnetic data, in-situ measurements, and optical images, corresponding to

FAST orbit 1859, from February 9, 1997. The information can be summarized as follows:

� The data were collected during the growth phase of a small substorm, in the most quiet

period (��=2) of a disturbed interval (�� up to 6).

� An auroral arc �70km wide is seen in the images. FAST data shows that the arc is situated

north of the convection reversal and is associated with an upward Birkeland current sheet,

carried by inverted-V electrons with energies up to �5keV. The convection reversal is quite

close to the downward current sheet, which flows south of the arc.

� The inverted-V associated with the arc encompasses several ion beams. For two of them

Burst data are available, which allow a detailed examination of the relation between ion

energy and FA potential drop. The two quantities track each other quite well, except for

short intervals of disagreement.

� The arc is slowly moving equatorward, with a velocity of �200m/s, corresponding to a

westward electric field of �10mV/m (if the arc proper motion is negligible).

� Both the magnetic and optical data indicate a slight rotation of the arc with respect to the

SAS y axis. In addition, the optical data show that the arc edges are not parallel and the

width of the arc decreases from West to East.



Chapter 4

Ionospheric conductance

An essential ingredient in deriving the full picture of the ionospheric electrodynamics, for either

large, medium, or small scale phenomena, is the conductivity. By integrating it with respect to

height one obtains the conductance. Satellite measurements, like those presented in the previ-

ous Chapter, allow the monitoring of the particle influx into the ionosphere and the subsequent

determination of the conductance.

We begin with an overview of basic facts related to the conductivity of an anisotropic mag-

netic plasma. Next, we discuss in more detail the particle induced conductivity, which plays the

major role during the winter nighttime auroral oval. As an example we use Survey data collected

during the inverted-V period of orbit 1859 (Fig. 3.7). A separate Section is devoted to the eval-

uation of the conductance when the satellite detects ion beams; we illustrate it with Burst data

collected during the two beam events presented in Figs.3.8 and 3.9. In the last Section we address

the methodological and measurement errors involved in conductance calculation.

4.1 General considerations

The ionospheric plasma is influenced by the magnetic field of the Earth and is strongly anisotropic.

Both electron and ion motion, parallel and perpendicular to the electric field, contribute to the cur-

rent conduction. Their relative importance is determined by the relation between electron-neutral

("�) and ion-neutral ("��) collision frequencies in the (upper) atmosphere, and the respective gy-

rofrequencies (#���� � ��	���). We concentrate here on the high-latitude auroral region, where

the magnetic field can be approximated as perpendicular to the ionosphere (the actual angle is

�75Æ at auroral latitudes). This Section is only intended to provide a brief overview. For reviews

devoted to high-latitude conductances see e. g. Reiff (1984), Brekke and Moen (1993).

45
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By writing the equation of motion for electrons and ions, with neglect of pressure gradients

and gravity force, one comes to the following form of Ohm’s law, appropriate for the ionospheric

plasma (e. g. Kertz, 1971; Brekke et al., 1974; Baumjohann and Treumann, 1996):

� � ����� � ���
�� � ���� ����� �� � �	� (4.1)

where ��, �� , �� are respectively the parallel, Pedersen, and Hall conductivity (�� � ���
�� and

�� � ���������	� are the Pedersen and Hall current):

�� �

�
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� (4.2)

In the above formulas � is the electron charge, 
 is the plasma density, and the rest of the symbols

have already been defined. At the altitude of the current flow the main ion constituents are O��

and NO�. The mass difference between the two molecular ions is small, and can be neglected as

a first approximation. The ionosphere can be represented by only one ion species, with density 
�,

that has to be equal to the electron density, 
, in order to keep the plasma neutral: 
� � 
 � 
.

Typical variations of the conductivities with altitude, corresponding to mid latitudes at day

time, are shown in Fig. 4.1. The high latitude profiles have similar shapes, with ����� � �����

and $� % $� , but the specific numerical values can differ. Above �75km �� grows rapidly and

is usually taken as infinite, equivalent to saying that the magnetic field lines in the ionosphere are

equipotentials; �� and �� have maxima at�100–125km altitude and vanish above�200–250km.

As one can see by examining Eqs. 4.2 the conductivities depend on the ratios "�	#�,

"��	#��, and on the plasma density, 
. The profiles in Fig. 4.1 reflect these two influences:

� The ratios "�	#� and "��	#�� decrease with altitude, because of the decrease in the re-

spective collision frequencies, which in turn depend mainly on the density of the neutral

atmosphere. The gyrofrequencies can be considered constant over the altitudinal range of

the current carrying ionosphere. At �75km "�	#� � � while at �125km "��	#�� � �.

Below �75km the motion of the charged particles is predominantly collisional, generating

current along the direction of the electric field. Between �75km and �125km the electron

motion is governed by the ��� drift and contributes mainly to the Hall current, while the

ion motion is dominated by collisions, contributing mainly to the Pedersen current. Above

�125km the ion motion becomes also controlled by the magnetic field and the associated
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Figure 4.1: Variation of the conductivities with altitude. The profiles illustrate day time
values at medium latitudes, with the conductivities produced by solar radiation. At high
latitudes, where particle precipitation becomes important, the maxima, ����� and ����� ,
as well as their respective altitudes, �� and �� , can differ. Nevertheless, the relationships
����� � ����� and �� � �� remain valid. Adapted from Kertz (1971), Fig. 89.

current is opposite to the electron Hall current. From �200–250km up the plasma convects

as a whole and the perpendicular current vanishes. The convection electric field reflects the

balance between magnetospheric driving forces and ionospheric collisional drag forces.

� The plasma density, 
, behaves as a weighting factor in Eqs.4.2. In the � layer, below�85–

90km, 
 is small and the contribution to current conduction is not significant. 
 comes to

a maximum, 
���, in the � layer, at $���� � ���km. In the case of particle induced con-

ductivity 
��� and $���� depend on the particle energy flux and on its spectral distribution.

The plasma density increases again in the & layer, at �150–200km, but the bracketed terms

in the expressions of �� and �� (Eqs. 4.2) take small values and the resulting (transverse)

conductivities are small as well.

In Eq. 4.1 �� is the electric field in the reference system of the neutral atmosphere:

�� � �� ���, where � is the neutral wind velocity. For the following we disregard the poten-

tial influence of the neutral wind and consider �� � �. This approximation is supported by the

fact that � region neutral winds during reasonably quiet periods have typical velocities �100m/s,

which imply electric fields�5mV/m (e. g.Brekke et al., 1973). Note that the neutral winds show a
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strong height variation and can reach several 100m/s in the & region; however, as discussed above,

the transverse current flowing in the & region is small and disregarding the & region neutral winds

has little influence on the current closure. Neutral winds velocities as high as several 100m/s were

also measured, at times, in the � region (e. g. Comfort et al., 1976), so that neglecting the � re-

gion neutral winds can be a serious source of errors. Nevertheless, since we have no information

on these winds, we cannot take them into account.

The ionospheric perpendicular conductivities are significant in a very thin layer, when

compared to the magnetospheric dimensions. The magnetic field (and the distance between mag-

netic field lines) can be considered as constant within this range. As the field lines are equipo-

tentials the electric field is constant as well and the perpendicular part of equation 4.1 can be

integrated with respect to altitude:

�� � ���� � ���� ��� (4.3)

where

�� �

�
�� ��� �� �

�
�� ��

are the height-integrated Pedersen and Hall conductivities, or conductances. The most dynamic

factor in causing variations of the conductances is the plasma density. The gyrofrequencies, #��,

are practically constant, both in space (over the height of the current carrying layer) and in time,

while the neutral atmosphere, which determines the collision frequencies, "��, was shown to have

a reduced dynamic influence. Evans et al. (1977) found that the neutral atmosphere model consid-

erably influences the altitude dependence of the conductivities, but drives just minor changes in

the conductances.

The behavior of 
 is governed by the continuity equation (e. g.Atkinson, 1970):

'
	'! ��  �
�� � ( � ��
� � 
��� (4.4)

where � is the plasma convection velocity, ( is a source term, � is the recombination coefficient,

and 
� stands for the background ionization. The terms of Eq.4.4 can be explained as follows:

� The second term on the l.h.s. can be approximated by considering the ionospheric plasma

as incompressible and by replacing � with the ��� drift velocity. One obtains:

�  �
�� �
���

��
 �
 (4.5)

which represents ionization convected by plasma motion, e. g. from the dayside to the

nightside. During precipitation events in the winter auroral region this contribution can be

neglected, as long as the induced ionization is high.
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� The first term on the r.h.s. stands for ionization production, which arises from two main

contributions: the solar radiation and, in the high-latitude region, the particle precipitation.

In the winter nighttime auroral region the contribution of the solar radiation is negligible (for

ionization produced by solar radiation seeBrekke and Moen (1993) and references therein).

� The second term on the r.h.s. represents ionization loss which, at � region altitudes,

is mainly due to dissociative recombination (Kelley, 1989): )�
� � �� � ) � ), and

�)� � �� � � � ). The background ionization, 
�, results from atmospheric inter-

action with galactic EUV and cosmic radiation, as well as solar EUV scattered radiation

(e. g. Wallis and Budzinski, 1981).

Under the assumptions made above Eq. 4.4 writes, for nighttime winter auroral events:

'
	'! � ( � ��
� � 
��� (4.6)

with ( produced by particle precipitation. Equation 4.6 is further simplified by assuming station-

arity and neglecting the background contribution, which leads to the following expression for the

ionization:


��� �

�
(���

����
(4.7)

where we have explicitly emphasized the dependence on altitude.

The assumption of stationarity is, broadly speaking, allowed for precipitation events longer

than the recombination time,

*�	 �
�

�

(4.8)

As � � ���� � � � � � ���� and ��� � 
 � ��	, a recombination time range 3s� *�	 �100s

results. In Section 4.4.1 we shall discuss the errors related to the assumption of stationarity, in

particular for our drifting stable arc.

The background ionization is not larger than ���, which is small enough to be neglected

when compared to the ionization inside the arc. Outside of the arc the background ionization can

account for a significant fraction of the total ionization and neglecting it can lead to substantial

errors in conductivity.

To proceed further one needs to know the recombination coefficient, �, and the ion produc-

tion rate, (. Tabulated values of � can be found e. g. inRishbeth and Garriott (1969), Evans et al.

(1977), while ( follows from the energy deposited by particle precipitation.
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4.2 Conductivity induced by particle precipitation

Ionospheric energy deposition by precipitating particles has two sources: electrons and protons.

Electron precipitation is the main contributor for discrete auroral forms, at the northern/southern

side of the oval in the evening/morning sector. While the proton precipitation is substantially

lower — the overall energetic contribution is �15% (Galand et al., 2001) — it can be important

and even larger than the electron precipitation for certain time periods or localized areas, like the

equatorward side of the evening oval (Galand et al., 2001). In this Section we discuss electron and

proton induced conductances along the ionospheric footprint of the FAST orbit 1859 during the

inverted-V event.

4.2.1 Electron precipitation

The ionization production (��� in Eq.4.7 depends on the energy deposition at altitude �. Computer

codes based on the early work of Rees (1963) were developed (e. g. Vickrey et al., 1981) for the

computation of (���, and further 
���, on the condition that the stationarity assumption is valid.

With 
��� known Eqs. 4.2 can be integrated with respect to � to obtain the conductances.

Processing of a large amount of radar, rocket, and satellite data, led to a faster procedure

for evaluating �� and �� , which is based on the following facts:

� On average, the formation of an electron–ion pair requires 35eV. Consequently, one would

expect (��� to be proportional to the rate of the energy deposition at altitude �; this rate

should be equal, in turn, to the energy flux of the precipitating electrons, �� , weighted by a

factor dependent on the form of the electron distribution function. Note that “energy flux of

the precipitating electrons” can be understood in two ways:

– energy flux dissipated in the ionosphere, that is incoming minus backscattered flux

– energy flux available at the top of the ionosphere, that is only incoming flux

We shall return to this point below.

� By performing rigorous calculations, with test distributions representative for auroral elec-

trons, it was found that the particular shape of the distribution has a relatively small influence

on the final result (Robinson et al., 1987, estimated it to �25%, for electrons with energies

higher than �1keV). Consequently, one could characterize the distribution by a global pa-

rameter, the average energy, � (Eq. 4.10), thus neglecting the deviation from a maxwellian

having the same average energy.
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� �� is expected to be small for very hard or very soft electrons and the integral of the weight-

ing factor over � should follow the same variation pattern. For soft spectra the energy is

deposited at high altitudes, where the collision rate is too small to support Pedersen conduc-

tivity. On the other hand for hard spectra the energy is deposited deep inside the �-layer,

where the current is dominated by the electron Hall contribution.

� The ratio ��	�� only depends on altitude, via "��, but not on 
 (an immediate result of

Eqs. 4.2). One would expect the ratio of the integrals ��	�� �
�

�� ��	
�

�� �� to be

mainly determined by ��	�� at the altitude where the energy deposition maximizes, which

in turn depends on �.

Robinson et al. (1987) found simple approximate formulas for �� and �� , from fitting the results

obtained by Vickrey et al. (1981):

�� �
	��

�� � �
��

� �
�

��

��
� �+	
�

�!
�
(4.9)

�� is the energy flux, in erg/cm�s, and � is the average energy, in keV. � is calculated as ratio of

the energy and number flux:

� �

� ����

����
�& ��� ��� ����

����
& ��� �� (4.10)

with & ��� the differential number flux and ����, ���� the lower and upper integration limits,

that depend on the detector characteristics. ���� should not be too low, to avoid contamination

with secondary electrons, while ���� has to be high enough, to cover the full energy distribution;

if ���� is too low a correction factor is required. Following Robinson et al. (1987) we chose

���� � 
��eV and ���� � ��keV (the upper limit of the detector). For the event under study

no correction factor is necessary, as the electron energy is less than 5keV (panel 1 in the right plot

of Fig. 4.2), considerably smaller than ����.

We would like to shortly comment on the choice of the pitch-angle range to be used when

calculating �� and �, which is not explicitly mentioned by Robinson et al. (1987). One can

identify two different items related to this problem:

� The precipitating electrons, i. e. the electrons whose pitch-angle is less than 90Æ at the

top of the ionosphere (in the northern hemisphere), do not deposit all their energy in the

ionosphere. Part of this energy returns to the magnetosphere, carried by backscattered and

secondary electrons. Rees (1963) predicted an energy backscatter ratio of 17% (for an
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isotropic distribution), while Evans et al. (1977) found 18% from experimental data. Only

the energy deposited in the ionosphere leads to ionization production and, further, to in-

creased conductivity. In order to calculate ionospheric parameters one has to subtract the

upward (energy and number) flux from the downward one. If the electron measurement is

done at a higher altitude (as it is the case with FAST), it is only a fraction of the velocity

space that contains particles reaching the ionosphere: the precipitating electrons fill up the

loss-cone while the backscattered and the secondaries are to be found in the source-cone.

The rest of the velocity space is populated with electrons that cannot reach the ionosphere

because of the magnetic mirror force, part of them bouncing between the magnetic mirror

from below and the electric potential mirror from above. The definition of the loss-cone and

source-cone, as well as a detailed discussion of the electron velocity space in the presence

of parallel potential drops both below and above the satellite, are given in Section4.3.1.

We will show there that the difference between the downward and the upward flux can be

calculated by integration over the full velocity space, if the assumption of stationarity holds.

� Equations 4.9 depend on the variables �� and �� (� � ��	�� ), that can be calculated

either by integration over the loss-cone — yielding the fluxes of the precipitating electrons,

available at the top of the ionosphere — or over the full distribution — yielding the fluxes

that actually dissipate in the ionosphere (the two possible interpretations for the “flux of

the precipitating electrons” were already mentioned at p.50; the discussion there refers to

the energy flux, but it applies to the number flux as well). The values obtained are cer-

tainly different, nevertheless both sets are equally good to be used as independent vari-

ables when fitting the results obtained with an energy deposition computer code (as done by

Robinson et al. (1987)). The numerical constants in Eqs. 4.9 (yielded by fit) depend on the

integration domain used to calculate �� and �� . As Robinson et al. (1987) do not mention

it explicitly, we chose to calculate the moments and conductances by both integration over

the full distribution and over the loss-cone. Note that in integrating over the loss-cone we

did not take into account the widening produced by the potential drop below the satellite (if

such a potential drop exists; this is the case when ion beams are detected).

In the left plot of Fig. 4.2 we show the energy and number fluxes, as well as the average

energy. All the quantities were mapped to ionosphere level, by using Eqs.4.15. One can see that

outside of the ion beams the integration over the loss-cone produces higher fluxes, whereas the

opposite happens when ion beams are detected. For the first case the explanation is easy: by inte-

grating over the full distribution the loss-cone results are diminished by the negative contribution
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of the source-cone, while the effect of the mirroring and trapped populations is negligible. In the

second case the energy-dependent widening of the loss-cone compensates the fraction subtracted

by the source-cone particles. This question is examined in more detail in Section 4.3.1. The

average energy is not very sensitive to the integration domain during beam events, as the energy

and number fluxes vary at roughly the same pace. Outside of the beams the increase in the source-

cone number flux is larger than the increase in the energy flux (the backscattered and secondary

electrons do not carry too much energy), so that the average energy obtained by integration over

the full distribution is smaller.

The Pedersen and Hall conductances, as well as their ratio, are shown in the right plot of

Fig. 4.2. During ion beam events the difference between the two sets of results can be significant,

in particular when the potential drop below the satellite is comparable to the potential drop above.

(see panel 1 in the right plot of Fig. 4.2 for the potentials). Nevertheless, we will show in Sec-

tion 6.4.2 that the change in the conductance pattern associated with the choice of the integration

domain has only a small influence on the calculated ionospheric electric field and current.

Except for the energetic part of the inverted-V, coincident with the visible arc, the conduc-

tances in Fig. 4.2 drop to low values, below�5mho. In such a case the proton induced conductivity

can, in principle, become important. This possibility is supported by the examination of the ion

panels in Fig. 3.5. At the equatorward border of the arc there is significant high-energy proton pre-

cipitation, presumably of plasma-sheet origin. In the next Section we discuss proton precipitation

and evaluate its contribution to the ionospheric conductance during FAST overpass.

4.2.2 Proton precipitation

Proton precipitation has been studied since decades, due to its importance for diffuse and red

arc auroras (Eather, 1967). It was suggested in older conductance models that proton contribu-

tion could be taken into account by assimilating the proton distribution with an electron distri-

bution of somewhat lower energy flux and average energy (e. g. Reiff, 1984). More recently

Galand and Richmond (2001) undertook a detailed investigation of proton precipitation, similar

to that performed by Robinson et al. (1987) for electrons. They used a transport code to calculate

the ionization production (��� and then fitted approximate formulas to the results. The transport

code used by Galand and Richmond (2001) assumes a pure incident proton flux, isotropic over the

downward hemisphere, at the top of the atmosphere (800 km), and takes into account the charge

exchange between protons and the neutral atmosphere (the main reaction is H�+O
�� H+O�).

As a result of the charge exchange the incident H+ beam transforms into a mixture of H� and H,
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which diffuses across the field line (the H atoms motion is not impeded by the magnetic field),

and the incident flux is reduced. When mapping the proton flux from the 4000km FAST altitude

to the 800km top of the atmosphere one can disregard the charge exchange process because of the

associated large mean free path.

The approximate formulas found by Galand and Richmond (2001) are good for protons

(“,”) with average energies in the range 2–40keV:

��
� � 
+��

� �
�

��
�

��
�

� �+	
�
�!� (4.11)

The meaning of the symbols is similar to that in Eq.4.9. Galand and Richmond (2001) also derived

a more complete form of the above equations, where the dependence on the magnetic field (which

is shown to be important) is taken into account. However, as Eqs. 4.11 are based on Chatanika

(Alaska) data, and the FAST measurements analyzed here come from over Alaska, we can neglect

the magnetic field dependence.

One striking difference between Eqs. 4.11 and Eqs. 4.9 is that ��
� does not depend on the

average energy. This can be explained as follows: for protons with higher energy the ionization

cross-section grows, so that finally the energy is deposited roughly in the same altitude range.

Higher energy electrons, on the contrary, penetrate to progressively larger ionospheric depths. For

further discussion the reader is referred to the paper ofGaland and Richmond (2001).

In the left plot of Fig. 4.3 we present the proton energy and number flux, as well as the

average energy, obtained by integrating over the loss-cone, for the time interval 8:20 – 8:24. We

chose a longer period to show that the proton precipitation only contributes the conductance at

the southern edge of the inverted-V. Integration over the loss-cone is right for protons: there is

no source-cone contribution to be subtracted from the loss-cone result, as the deposited energy

is not altered by backscattering and secondary emissions. The source-cone population, which

occasionally show up as beams (Fig. 3.7), is extracted from higher altitudes, not important for

current conduction. One could still argue that the energy of the precipitating protons is reduced

during beam events, because of the potential drop below the satellite. However, the associated

potential energy is negligible when compared to the plasma-sheet proton energy (even if not, we

would still obtain upper limits for the proton fluxes and energy). The proton induced conductance

is shown in the right plot of Fig. 4.3. Its relative contribution to the total conductance is seen to be

significant only at the equatorward border of the arc (compare with the right plot of Fig.4.2). Our

values are in good agreement with those obtained in the statistical study ofGaland et al. (2001).
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Figure 4.4: Pedersen and Hall conductances resulted from combined electron and
proton precipitation, � �

�
��� ���� (black solid line). The electron induced

conductances (red dashed line) are obtained by integration of (�� , �� ) over the
full distribution. One can see a difference between the two curves only at the
beginning of the interval.

The combination of conductances resulting from different sources is not trivial. This prob-

lem was addressed by e. g. Wallis and Budzinski (1981) who showed that good results are obtained

by writing the resulting conductance as:

� �
�

��
� � ��

� (4.12)

Strictly speaking, Eq. 4.12 is valid only for similar altitudinal distributions of ionization (on the

basis of Eq. 4.7). Wallis and Budzinski (1981) showed that Eq. 4.12 holds reasonably well for

ionization induced by electron precipitation and solar radiation. Galand and Richmond (2001)

checked that Eq. 4.12 can be also used when the ionizing sources are precipitating electrons and

protons. Figure 4.4 shows the ionospheric conductances during the inverted-V event, due to both

electron and proton precipitation. To emphasize the proton contribution at the equator side, the

conductance obtained from electron data alone is plotted as well.
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4.3 Ionospheric conductances during ion beam events

This Section provides a more detailed consideration of the conductance calculation when ion

beams are detected. After a discussion regarding the integration domain, Burst data collected

during the two beam events presented in Figs. 3.8 and 3.9 are used to calculate moments and

conductances.

4.3.1 Choice of the integration domain

To illustrate the discussion, Fig. 4.5 shows the boundaries that develop in the electron velocity

space (azimuthal symmetry is assumed) in the presence of a parallel electric field extending both

above and below the satellite (e. g. Knight, 1973; Chiu and Schulz, 1978). Particles going down

to ionosphere have positive ��.

The hyperbola � separates particles that either originate or get lost in the ionosphere

from mirroring particles, that cannot reach the ionosphere. The ellipse � separates particles that

experience the full potential drop above the satellite, from particles that were or are going to be

reflected by the potential. The dotted lines � and � show the loss-, respectively source-cone, that

would develop in the absence of the potential drop below the satellite. The angle �� � � �
�,

���� �� �
�

��
� �� the magnetic field on the same field line at �100km (4.13)

results easily from the conservation of energy, ���	�, and of the first adiabatic invariant, ����	��.

At FAST altitude �� � ��Æ. The potential drop enlarges the loss-/source- cones to the hyperboloid

intersecting the ���� ��� plane along �.

For clarifying the difference between integration over the full velocity space and inte-

gration over the loss-cone, the various sub-domains bordered by �� � �� and � are labeled in

Fig. 4.5 as ��   ���. The downward electrons in �������	 are reflected by the potential

above the satellite and, for a stationary situation, they should exactly mirror the upward electrons

in ���������
 respectively, with �	 and �
 electrons bouncing between the upper electric and

the lower magnetic mirrors (strictly speaking, �� and �� could be more populated than ���

and ���, in case of suprathermal electron bursts; as there is no evidence for such events in our

data we shall assume that the equality stated above holds). Similarly, �� and �� should balance

each other: for a stationary case �� electrons are just the mirror flux of ��, going back to the

magnetosphere.
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Figure 4.5: Electron velocity space domains at altitude �, inside the AAR, in the presence of a
parallel electric field extending both above and below the satellite. See text for details. The geometry
is sketched in the upper left corner: ���� 	�� and ���� 	�� are the potential and the magnetic field
at the bottom and the top side of the AAR, at altitudes �� and ��, respectively. � and 	 are the
potential and the magnetic field at altitude �.

Consequently, the integration over the full velocity space yields:

���� � �

�
��

�

�
��

�

�
��

�

�
���

�    -��� ��

� �

�
�����

�

�
�����

�    - �� � �

�
�������

�

�
������

�    �- ��

� �

�
Loss-cone0

�

�
Loss-coneenh

�    - �� � �

�
Source-cone0

�

�
Source-coneenh

�    �- ��

(4.14)

where the last two forms explicitly show the negative contribution of the particles going away

from the ionosphere. The index “0” stands for no potential drop below the satellite, .�"�# � �,

while “enh” indicates the enhancement of the loss-/source- cone when .�"�# �� �.

Equation 4.14 explains the difference between integration over the full velocity space and

over the loss-cone alone. When there is a potential drop below the satellite, the enhancement of

the loss-cone exceeds the negative contribution of the total source-cone (“0” + “enh”) and the

integration over the full distribution gives a larger result compared to the integration over the loss-

cone. The support rendered by the data to this qualitative explanation gives confidence that the

assumed equality between incident and reflected fluxes is reasonably correct and further, that the

hypothesis of stationarity is acceptable.
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4.3.2 Numerical results

Equations 4.9 and 4.11 relate the conductances to the parameters � and �� calculated at iono-

spheric level. For the precipitating protons one can disregard the potential below the satellite, at

least at FAST altitude (see the discussion in Section 4.2.2). However, this is not allowed for elec-

trons. The extension of the potential structure below the satellite can add significant contributions

to the energy flux and average energy of the electrons. Consequently, they are calculated with:

� �����
� �

������

����

�
����
� � ����

� �. �"�#
	

�
�����

� �
���

� �. �"�#
(4.15)

The notations above are transparent. When .�"�# � � Eqs. 4.15 reduce to the mapping required

by the convergent magnetic field.

. �"�# can be estimated by using ion data. If the ions in the beam interacted only with

the electrostatic field the potential drop would be given by the peak energy. However, ion beams

are a mixture of H+, O+, and He+ (see panels 4–6 in Fig. 3.7), that can interact with each other,

e. g. by two-stream instability. The heavy ions can be transferred a substantial amount of the H+

energy, with the consequence that an ion spectrometer without mass resolution (as IESA) would

see rather a plateaued than a peaked distribution, with the left wing of the plateau corresponding

to H+ and the higher energy part being increasingly populated with O+ and occasionally with

He+ (J. McFadden, personal communication). In this case the peak energy under-estimates the

potential drop. The average energy is a better estimate, on the condition that the ions only exchange

energy one to each other. This condition, in its turn, is not rigorously valid. The extraction of the

ionospheric ions frequently involves wave-particle interactions, which lead to the formation of ion

conics. The ions, in particular the heavy ones, are given enough energy to reach the potential

structure, escaping the gravitational bound and avoiding to get lost by charge-exchange with the

H atoms. The average energy of the ions overestimates, to some extent, the FA potential drop.

However, the ion conic energy is often below several 10eV (see e. g. the conic between 8:22:14

and 8:22:27 in the ion panels of Fig. 3.7), so that evaluating the ion average energy can still be a

reasonable measure for the potential drop below the satellite.

Moments and electron induced conductances calculated for Beam 1 and Beam 2 by using

Burst data are presented in Figs. 4.6 and 4.7 respectively. Proton contribution is not significant

during the two beam events. Conductances obtained by using Burst and Survey data are compared

in Fig. 4.8. As expected, they are similar, with some more variability in the Burst results.



4.3. IONOSPHERIC CONDUCTANCES DURING ION BEAM EVENTS 61

Fi
gu

re
4.

6:
L

ef
t:

E
le

ct
ro

n
en

er
gy

flu
x,

nu
m

be
r
flu

x,
an

d
av

er
ag

e
en

er
gy

du
ri
ng

B
ea

m
1,

ca
lc

ul
at

ed
fr

om
B

ur
st

da
ta

.
R

ig
ht

:
E
le

ct
ro

n
in

du
ce

d
co

nd
uc

ta
nc

es
du

ri
ng

B
ea

m
1.

In
te

gr
at

io
n

ov
er

th
e

w
ho

le
di

st
ri
bu

tio
n

(b
la

ck
so

lid
lin

e)
an

d
ov

er
th

e
lo

ss
-c

on
e

(r
ed

do
tte

d
lin

e)
.T

he
be

am
co

ve
rs

th
e

in
te

rv
al

8:
22

:0
3.

8–
8:

22
:1

3.
8.



62 CHAPTER 4. IONOSPHERIC CONDUCTANCE

Fi
gu

re
4.

7:
M

om
en

ts
an

d
co

nd
uc

ta
nc

es
du

ri
ng

B
ea

m
2,

ca
lc

ul
at

ed
fr

om
B

ur
st

da
ta

.S
am

e
fo

rm
at

as
Fi

g.
4.

6.
T
he

be
am

co
ve

rs
th

e
in

te
rv

al
8:

22
:2

6.
9–

8:
22

:3
7.

5.



4.3. IONOSPHERIC CONDUCTANCES DURING ION BEAM EVENTS 63

Fi
gu

re
4.

8:
C

on
du

ct
an

ce
s
ob

ta
in

ed
by

in
te

gr
at

io
n

ov
er

th
e

fu
ll

di
st

ri
bu

tio
n.

B
ur

st
(r

ed
da

sh
ed

lin
e)

an
d

Su
rv

ey
(b

la
ck

so
lid

lin
e)

da
ta

.L
ef

t:
B

ea
m

1.
R

ig
ht

:
B

ea
m

2.



64 CHAPTER 4. IONOSPHERIC CONDUCTANCE

We conclude this Section by emphasizing once more that the two ion beams are located at

the edges of the visible arc, where significant conductance gradients develop. One can be reason-

ably confident in the obtained results as long as the conductances do not drop below �1mho. For

smaller values the errors related to the measurement technique, to the approximate formulas used,

and to the neglected ionization sources, become comparable to the results. The errors involved in

the calculation of conductances are considered in more detail in the following Section.

4.4 Errors in the evaluation of conductances

An accurate electrodynamic description of the auroral arc depends essentially on the precision

to which one can determine the conductances. First, we discuss carefully the sequence of steps

leading to Eqs. 4.9 and 4.11, and try to evaluate the methodological errors. Next, we compute the

measurement errors, originating in the statistical nature of the particle experiment and the discrete

sampling of the energy and angle continua.

4.4.1 Methodological errors

The chain of approximations done in deriving Eqs.4.9 and 4.11 can be summarized as follows:

True

conductances

���
Conductances from

energy deposition codes

���
Conductances from

approximate formulas

By using energy deposition codes one implies the simplified form Eq.4.7 for the continuity equa-

tion Eq. 4.4. This simplification is subject to errors because of:

� assuming stationarity and disregarding '
	'!

� neglecting the convection term, �  �
.

� neglecting the residual ionization, 
�.

For precipitation events in the winter nighttime auroral oval one would expect the errors due to

ignoring the convection and the residual ionization to be small. However, assuming stationarity is

a more serious source of errors, in particular at the leading and trailing edges of the arc.

Evans et al. (1977) addressed this problem for a pre-midnight auroral arc produced by

�10keV electrons. They found that the time constant associated with the growth/decay of the

conductance at the leading/trailing edge of the arc is of the order of 15/70s. As their arc moved

equatorward with �100m/s these times transform to distances of 1.5/7km over which the conduc-

tances might have been out of equilibrium (higher at the leading edge of the arc and lower at the

trailing edge, as compared to the real ones).
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In our case the energy of the electrons is lower, �5keV (Section 3.2), and the south-

ward motion of the arc is faster, �200m/s (Section 3.3). One can identify three intervals of pre-

cipitation gradient for the visible arc (Fig. 4.2): I��=8:22:04–8:22:12, I��=8:22:12–8:22:19, and

I��=8:22:35–8:22:38, at the leading edge, in the middle of the arc, and at the trailing edge respec-

tively. The indices are related to precipitation levels. As the satellite velocity is �5.6km/s and

the mapping factor �0.5 (p. 16), each second of FAST data corresponds to �2.8km ionospheric

distance. Consequently, the respective widths of the precipitation gradients are �
��
�� � ��+	km,

�
��
�� � ��+�km, and �

��
�� � �+	km. The time constants associated with the variations in conduc-

tance are !
���
�� � �s, !����� � ��s, and !

���
�� � �
s, which transform to �

���
�� � �+�km, ������ � 	+�km,

and �
���
�� � ��km respectively. It results that the assumption of stationarity is reasonable at the

leading edge and in the middle of the arc, but probably wrong at the trailing edge. To avoid con-

fusion, the notations “�” and “/” above stand for “external” and “internal”. For the explanation of

these notations and for computational details the reader is referred to AppendixC.1.

The time constants and the associated distances at the edges of the arc are in reasonable

agreement with the values from Evans et al. (1977). The differences are presumably related not

only to having other electron energies and arc velocity, but also to the less rigorous estimation

procedure we used. Our results are derived by solving the time dependent Eq.4.6 at the altitude

��, where the ionization production maximizes. No height integration was performed. Addition-

ally, except for using recombination coefficients corresponding to the actual height of maximum

ionization, the variation of �� with the change in precipitation was neglected.

The inaccurate knowledge of the recombination coefficient and/or of the loss mecha-

nism(s) can further increase the error in 
. If the electron precipitation is too hard/soft the energy

is deposited at low/high altitude, where the dissociative recombination is no longer the dominant

loss mechanism. In our case, however, the electrons have medium energies and we do not expect

this error source to be important.

Other contributions to the error in conductances may come from the collision frequencies,

"� and "��, that enter in Eqs. 4.2 and depend essentially on the neutral atmosphere. Evans et al.

(1977) compared several models and estimated the associated uncertainties to be (+4%,-5%) for

�� and (+8%,-9%) for �� . The integration of Eqs. 4.2 with respect to height levels out the

differences between particular models.

Returning to the scheme at p. 64, we still have to discuss the errors associated with the

use of the approximate formulas, based on just two parameters. To validate these formulas con-

ductances produced by idealized maxwellian distributions were computed, both by using energy

deposition codes and the approximations. The results were found to agree better than 20% for an
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average energy � % ��keV (Robinson et al., 1987). A serious source of errors can be the devia-

tion from maxwellian of the real distribution. However, except for some extreme situations (e. g.

monoenergetic), the results obtained for the equivalent maxwellian distribution agree fairly well

with the results yielded by the energy deposition codes, for the actual distribution.Robinson et al.

(1987) stated that for electrons with average energy � � �keV:

“(. . . ) the assumption of the Maxwellian spectrum yields conductivities that are within

about 25% of the actual values for the most common types of auroral distributions.”

Taking into account that our arc exhibits average electron precipitation we conclude that,

by using the approximate formulas, fairly accurate conductance values are expected inside the

visible arc. However, outside of the arc the errors are presumably of the same order with the cal-

culated conductances, because of non-stationarity, residual ionization, and use of the approximate

formulas with low energy electrons. In the next Section we show that the measurement errors have

a similar evolution, i. e. reduced inside the arc and increased outside.

4.4.2 Measurement errors

The measurement errors are related to the statistical nature of the particle experiment, to the limited

energy and angle coverage, and to the necessary division of the continuous energy–angle domain

into a finite number of channels, corresponding to a discrete sequence of energies and directions.

To find the errors associated with the conductances calculated from Eqs. 4.9 and 4.11

one has first to evaluate �$	 and ��, the errors in �� and �. As � � ��	�� , the primary

errors that we need are �$	 and �$� . A possible way to deal with this problem is described

in Paschmann et al. (1998): One chooses maxwellian distributions of given density, temperature,

and bulk velocity, computes the detector response, adds a Poisson error to the counting statistics,

calculates the desired moments, and compares the results with the rigorously calculated moments

of the maxwellian input data (this procedure is summarized in Fig. 6.2 of the cited reference).

Such an analysis can yield a reasonable estimate of the expected error ranges associated

with typical plasma regimes, by the appropriate choice of the maxwellian parameters. However,

one does not obtain the actual error, corresponding to a measured distribution, which may well

be non-maxwellian. We used an alternative approach, based on applying the error propagation

formula (e. g. Bevington and Robinson, 1992) to the measured distribution. The reader is referred

to Appendix C.2 for details on the technical steps. This procedure relies on the assumption that

the energy and angle windows of the detector are narrow enough to consider the distribution as

uniform over each energy–angle bin. Its main advantage is that it is solely based on the actual
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Figure 4.9: Number flux, energy flux, and average energy (black solid lines), together with their
respective errors (red dash-dotted lines). In the average energy panel the green dashed line shows
the error calculated by disregarding the correlation between �� and �� .

distribution. The assumption of uniformity has good chances to be reasonable; the present day

detectors collect thousands of samples for each single distribution (for FAST the numbers are

1536 in Burst mode and 3072 in Survey mode).

Figure 4.9 shows �� , �� and � together with their respective errors. The scale is loga-

rithmic, for better visibility of the error curves. As a general remark, the relative errors are quite

small, below 10% for most of the time. The explanation can be found in the high geometric factor

(see Table 2.1), providing a count rate, 
�% , typically higher than 100. As the relative error roughly

scales with �	
�


�% , one can easily understand the results.

In the � panel two error variations are given: The lower curve is calculated rigorously, by

taking into account the positive correlation between the energy flux and the number flux:

� �
��
��

�� ��
�

�
� �

��$	
��
�

�
��$�
��
�

� �
��$	$�
����

(4.16)

The upper curve is calculated by disregarding the correlation, i. e. by neglecting the last term on

the r.h.s. of Eq. 4.16. Still, the two curves track each other quite well, suggesting that the inexact

calculation could be good enough to find the relative variation of the error along the satellite path.
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This observation is useful when proceeding to evaluate the errors in conductances. A

rigorous calculation would be extremely cumbersome in this case. Even if one neglects the proton

induced conductance, the application of the error propagation formula to Eqs.4.9, with �� and �

from Eqs. 4.15, would imply a considerable amount of work (to measure this work one can follow

the rigorous calculation of �� in Appendix C.2.2).

The chance that this work would be worthwhile is, however, small. The measurement

errors are most probably less important compared to the methodological errors, which are not

as easy to evaluate quantitatively. One cannot expect, realistically speaking, to fully derive the

magnitude of the errors implied by the conductance calculation. Still, by using the approximate

procedure, which neglects the correlations between the involved quantities, one can hope to get a

reasonable estimate for the variation of the error along the satellite path.

Figure 4.10 shows the relative errors obtained for the whole inverted-V interval and for the

two beam events, by neglecting the correlations. The errors are quite small under the energetic part

of the inverted-V, inside the visible arc, and increase at the edges. This behavior is similar to the

expected variation of the methodological errors, which supports the use of these results as proxy

for the error shape. The influence of the errors in the conductance pattern upon the calculated

ionospheric electric field is checked in Sections6.4.2 and 6.4.3.

4.5 Summary

This Chapter was devoted to evaluating ionospheric conductances from the satellite data. We con-

centrated on conductances induced by particle precipitation, which is the main ionization source

in the winter nighttime auroral ionosphere. Simple approximate formulas were used to derive

electron and proton induced conductances, during the inverted-V period, using Survey data, and

during two ion beam events, using Burst data. The proton contribution was shown to be negligible

for the time interval under study.

The calculation of conductances during ion beam events was discussed in more detail in

Section 4.3. In particular, we commented on the choice of the integration domain to be used for

computing the energy and number flux. Because of some ambiguity in the derivation of the ap-

proximate formulas, we decided to perform the numerical evaluations for both the full distribution

and the loss-cone population alone.

The errors in conductances were investigated in Section 4.4. Both methodological and

measurement errors were considered. We suggested that, although a reliable magnitude of the

errors is difficult to obtain, a simplified evaluation of the measurement error could provide a rea-

sonable estimate for the relative variation of the total error along the satellite path.



Chapter 5

Ionospheric electrodynamics with

emphasis on the auroral arc

The ionospheric electrodynamics is investigated by using both ground-based and in-situ data. In

the first Section we review some of the methods developed to study the electrical parameters

of the ionosphere and outline important findings, in particular with respect to the auroral arc.

Some simplifying assumptions often made are discussed in the second Section and qualitatively

evaluated with respect to our data in the third Section. In the last Section a new method, developed

for the arc study and based on high resolution satellite data, is introduced.

5.1 Previous work

Ionospheric electrodynamics is investigated on multiple scales: different types of data, with dif-

ferent spatial and temporal resolution, are used to understand both global and local phenomena.

Similar to the logic of data presentation in Chapter 3, we begin by looking to methods based on

ground data, more adequate for describing large to medium scale patterns. Next, the relationship

between magnetic perturbation and electric field in the Birkeland current region, as revealed by

satellite data, is discussed. The review of the previous work is concluded with a more extended

Section devoted to the electrodynamics of the auroral arc.

5.1.1 Ground based methods to infer ionospheric electrodynamics

The main advantage of using ground data is the 2D coverage. Extended networks of magnetome-

ters, ionosondes, coherent and incoherent scatter radars, photometers and all-sky cameras cover

large areas in the polar part of the northern hemisphere. The methods addressing ionospheric

70
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electrodynamics are mainly based on measuring the ground perturbations in the magnetic field

produced by the ionospheric currents, as well as the ionospheric electric field (IEF). The auroral

images provide information on the geometry and dynamics of the luminosity pattern.

The basic relations underlying the ground based methods are (Glassmeier, 1987):

The Ohm’s law in the ionosphere:

�� � ���� ���� �� (5.1)

The decomposition of the ionospheric current density into a source-free and an irrotational part,

according to Helmholtz theorem:

�� � ��& � ���� (5.2)

The dependence of the magnetic field perturbation, �'��, below the current-carrying layer, on ��& :

��& �
�

�
�� ��'�� (5.3)

The dependence of the FAC,  �, on ����:

 � � �'  ���� (5.4)

where the subscript $ denotes differentiation with respect to the horizontal coordinates.

Considering the IEF to be electrostatic, � � ��'0, one can process Eqs. 5.1–5.4 further.

By applying (rot)( to Eqs. 5.1 and 5.3 one obtains:�
'��

'�
� '��

'�

�
'0

'�
�

�
'��

'�
�

'��

'�

�
'0

'�
� ����

'0 �
�

�
�' �'�� � � (5.5)

By applying (div)' to Eqs. 5.1 and 5.4 it results:�
'��

'�
�

'��

'�

�
'0

'�
�

�
'��

'�
� '��

'�

�
'0

'�
� ����

'0 �  � � � (5.6)

The two relations 5.5 and 5.6 are elliptic differential equations for 0. The source term is related

to the lower side of the ionosphere in Eq. 5.5 ( �
)�
�' �'��) and to the upper side in Eq. 5.6 ( �).

The methods based on ground data use mainly Eq. 5.5 and are discussed in more detail by e. g.

Glassmeier (1987), Untiedt and Baumjohann (1993). Here we shall just mention them briefly:

� The KRM method (Kamide et al., 1981; Mishin et al., 1980) solves Eq. 5.5 for a model dis-

tribution of the conductances and with �'�� derived by upward continuation of the ground

magnetic perturbation. The method is suited to be applied on global scale (e. g. polar cap

and auroral oval).
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� The forward or ’trial and error’ modeling uses electric field observations and assumed con-

ductance distributions and calculates the associated disturbance in the ground magnetic

field. The model conductances are iteratively changed until a good agreement between

the measured and calculated magnetic perturbations is obtained. This method was applied

to more local problems, e. g. auroral break-ups (Baumjohann et al., 1981) and Westward

Traveling Surges (WTS; Opgenoorth et al., 1983).

� The Assimilative Mapping of Ionospheric Electrodynamics (AMIE;Richmond and Kamide,

1988) can use as many data sets as available and finds the ionospheric parameters that pro-

vide the best fit to the data, in a least square sense (e. g.Richmond et al., 1988). It is more

appropriate for global problems.

� The “method of characteristics” (Inhester et al., 1992) originated with the Untiedt algorithm

(see Glassmeier, 1987). It requires magnetic and electric field measurements and it only

assumes the distribution of � � ��	�� . An important achievement of this method is

the possibility to assess the error, as well as to check the uniqueness of the solution. In a

subsequent study Amm (1995) applied the method to some typical auroral situations and

showed that the results are only weakly dependent on the error in �. Later on,Amm (1998)

generalized it to spherical coordinates.

A serious drawback of the ground-based methods is the relatively poor spatial resolution

— some typical numbers are 100km for the magnetic field data (Küppers et al., 1979) and 20km

for the electric field data (Greenwald et al., 1978). With the method of characteristics, which is

best suited to smaller scales, one can obtain a good description of the WTS or of the Harang

discontinuity (Amm, 1995), with a resolution of some 10km, but such a scale is normally too

coarse for the discrete auroral arc.

A fundamental difference between the studies based on ground data and those based on

in-situ data refers to the conductance distribution: while with ground data the conductance has to

be, in general, either assumed or calculated, with in-situ experiments is usually possible to derive

the conductance from the measured particle precipitation.

In the particular case of the discrete arc, having the length 1–2 orders of magnitude larger

than the width, the variation of the physical parameters is substantially smaller along the arc than

across the arc; high resolution 1D data, collected in-situ, can be more appropriate to investigate

the arc than low resolution 2D ground measurements.
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5.1.2 Electric field vs. magnetic field variation pattern

The correlation between the E–W magnetic perturbation (��) and the N–S electric field (��) in

the FAC region was anticipated byBoström (1974) from an idealized treatment of the ionospheric

current closure. Assuming homogeneous Pedersen and Hall conductances, and disregarding the

E-W variations, one obtains easily the following relation (see Section5.3 for the full derivation):

�� �
��

���
� �1
�!+ (5.7)

�� can be measured above the ionosphere with satellite-borne magnetometers.

Surprisingly enough, this very simple model was validated by experimental evidence:

Bythrow et al. (1980) used AE-C data, while Smiddy et al. (1980) and Rich et al. (1981) used

S3-2 and S3-3 data, to show that indeed, there is a qualitative agreement between the E–W pertur-

bation magnetic field and the N–S IEF. These results were substantiated bySugiura et al. (1982),

who found highly correlated DE-2 data sets, including a case with 0.996 correlation coefficient.

In a subsequent paper Sugiura (1984) extended the first results. He showed that even

when the current sheet is not parallel to the E–W direction, the ionospheric closure of the FAC

is achieved mainly through Pedersen current, perpendicular to the sheet, whereas the Hall current

parallel to the sheet (driven by the perpendicular electric field) is essentially divergence free. This

particular geometry had been already predicted byBoström (1964) as a possible magnetosphere–

ionosphere (M–I) coupling mode.

Besides homogeneous conductance and neglect of the longitudinal variations Boström’s

model also assumes that the FACs flow in thin sheets, at the southern and northern edges of the

auroral oval. Later on, this model was used not only for large scale M–I coupling, but also for

small scale structures, like the auroral arc. While one can emphasize basic physical mechanisms

in this way, there are also features not properly described with such a model. We shall return to

this point in Section 5.2.

5.1.3 The electric field in the vicinity of auroral arcs

Early observations (Evans et al. (1977), de la Beaujardière et al. (1977), and references therein)

showed that for a large majority of the auroral arcs the IEF associated with the arc is either corre-

lated or anti-correlated with the electron precipitation.

Using high quality rocket data, Evans et al. (1977) investigated in much detail an evening

arc. They were able to compute the Pedersen and Hall conductances from the electron data and

to show that a sharp decrease in the electric field corresponds to a sharp increase in conductance,
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originating in the enhanced precipitation. Furthermore, they also showed that the atmospheric

power inputs due to Joule dissipation and electron precipitation are anti-correlated, and inferred

that the auroral form should be just the visible portion of a larger system. To explain the rela-

tionship between the IEF and the electron density Evans et al. (1977) suggested that either the

magnetosphere acts like a current generator, or a high impedance along the magnetic field lines

controls the current to close in the ionosphere, emphasizing the role played by the FACs.

de la Beaujardière et al. (1977) conducted a study based on radar data. They examined

three different arcs, located in the evening, pre-midnight and post-midnight sectors respectively,

and found that for the evening and pre-midnight arcs the electric field was anti-correlated with the

electron density, whereas for the post-midnight arc the two quantities were positively correlated.

Making use of the fact that the zonal component of the electric field was westward inside the arc

in all the three cases, de la Beaujardière et al. (1977) suggested that both patterns originate in the

build-up of polarization charges at the edges of the arc. The charges are carried by the north-

ward Hall current driven by the westward electric field inside the high-conductivity arc channel.

The plasma inside the arc is neutral and the conductivity is homogeneously enhanced. Although

de la Beaujardière et al. (1977) computed the divergence of the ionospheric current, the FACs play

just a secondary role in their polarization model. This can be contrasted withEvans et al. (1977).

The difference might be related to the primary data used: a rocket experiment allows the direct de-

tection of the precipitating particles, whereas a radar measures the induced ionospheric ionization.

The two configurations imagined by de la Beaujardière et al. (1977) are reproduced here

as Fig. 5.1. On the evening side the polarization electric field is opposite to the large scale, north-

ward convection field, resulting in a decrease of the field inside the arc. On the morning side the

polarization electric field is again southward, but this time it adds to the southward convection

field, enhancing the arc field. de la Beaujardière et al. (1977) attributed the E–W electric field a

magnetospheric origin, but they did not address its large shear at the border of the arc. If the varia-

tions along the arc are neglected, as in the model ofde la Beaujardière et al. (1977), the Faraday’s

law writes '��	'� � '�(	'! and ��( � ���	�� ��!. With ��� � ��mV/m, �! � ���s,

and �� 	 
�km, one obtains ��( � �+	gauss, a value comparable to the Earth’s magnetic field

(the numerical values correspond to the evening arc ofde la Beaujardière et al. (1977)). The shear

in the electric field also implies that the convection velocity is not divergence free, which is hard

to explain, given that the magnetospheric plasma is practically incompressible. A solution to the

difficulty raised by the shear in the electric field might be conceived in terms of measurement

errors (from the evaluations of de la Beaujardière et al. (1977) one infers Æ�� � �mV/m and con-

sequently Æ��� � �	mV/m), possibly combined with temporal and/or longitudinal variations.
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Figure 5.1: Electric field and current for a pre-midnight (left) and a post-midnight (right) arc. (� ����),
(�����), and (�����) are respectively the electric field and current outside the arc, inside the arc, and asso-
ciated with the arc. Figures 15 and 16 from de la Beaujardière et al. (1977).

Later, de la Beaujardière et al. (1981) advanced the following arc classification:

1. anticorrelation type, when the N-ward electric field within the evening arc is decreased

2. asymmetric type, when the the N-ward electric field is decreased within the evening arc and

remains low on the poleward side of the arc

3. reversal type, when the meridional electric field reverses within the arc

4. correlation type, when the S-ward electric field is increased within the morning arc

They also suggested that both polarization and field-aligned currents contribute to establishing the

electric field configuration:

“When the electric field and the conductivities vary with latitude so that the current

divergence is nonzero, then Birkeland currents may flow, and/or space charges may be

induced so as to modify the ionospheric electric field. The balance between these two

effects depends on the configuration of the large-scale circuit that links the resistive

ionosphere to the magnetosphere via field lines where anomalous resistivity or double

layers can modify the current.”

The aforementioned balance was expressed by de la Beaujardière et al. (1981) in the following

equation (as compared to the original text x and y were changed to � and �, in order to agree with

our reference system; the sign of �� was also changed; for the rest of notations see Fig.5.1):

���" � ��
� ���

� � ���
� ��� ��

�	��
� � � ��

����
�	��

� � ��
�	��

� � � ��	��
� (5.8)

Equation 5.8 was derived by assuming that the E–W electric field is continuous: ��
� � ��

� . Note

the block structure of the model, with homogeneous regions inside and outside of the arc.
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Figure 5.2: The arc and the neighboring ionosphere. Cartoon adapted from Marklund (1984).

An important paper for the arc classification was written by Marklund (1984). He un-

dertook a comprehensive review of the work published until that time and came to the following

scheme, resembling the suggestion of de la Beaujardière et al. (1981):

1. polarization arcs

2. Birkeland arcs

3. combination arcs

Still, Marklund’s (1984) point of view is not identical to that of de la Beaujardière et al. (1981).

For example, while de la Beaujardière et al. (1981) sees the combination arc as a low-altitude

signature of a step like shear flow in the magnetosphere,Marklund (1984) considers it as a combi-

nation of polarization arc equatorward and Birkeland arc poleward, superposed on the decreasing

convection field toward the reversal boundary.

For Marklund (1984) the classifying criterion is the mechanism providing the current con-

tinuity. He expresses the competition between Birkeland currents and polarization in an equation

similar to that of de la Beaujardière et al. (1981):

��
� � �� � ��	��

� (5.9)

with:

�� �
��
�

��
�

��
� � �

��
�

��
�

� ��
�

��
�

���
� (5.10)

Note that we changed the original notation, ��� ��, to ��� ��. The geometry assumed byMarklund

(1984) is shown in Fig. 5.2. Idealizing assumptions are, again, a block structure of the ionosphere

(inside and outside of the arc) and infinite extension along the � direction. The parallel currents

flow in thin sheets at the steep borders that separate the arc from the rest of the ionosphere. The

tangential component of the electric field is continuous, ��
� � ��

� , as required by Faraday’s law.

When ��
� is roughly equal to �� in Eq. 5.9 the polarization mechanism prevails.

Intuitively this can be understood by considering the first term in Eq. 5.10 to be dominant.

Then ��
�
�� �� implies �� � ��

���
� , that is the parallel current is much smaller than the ambient

ionospheric current. In such a case the parallel current cannot have a significant contribution to
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keeping the ionospheric current continuous and the polarization plays the major role. Marklund

(1984) concluded that most of the arcs — evening arcs showing anti-correlation, or morning arcs

showing correlation between conductance and electric field — are polarization arcs. This point is

further commented in Section 5.2.

It is appropriate to mention here that already Coroniti and Kennel (1972) discussed the

close relationship between FACs and polarization as means to provide the current continuity in the

auroral ionosphere. However, this early paper addresses the auroral oval as a whole and is more

theoretically oriented. Marklund (1984) concentrates on the smaller scale arc features and relies

on a large collection of data sets, that became available in the meanwhile.

The experimental facts and models reviewed up to this point dealt with the modification

of the large scale convection electric field, due to increased electron density inside the arc pro-

duced by precipitation. A qualitatively new effect was emphasized byOpgenoorth et al. (1990)

and Aikio et al. (1993). Both papers point out the presence of an increased electric field in the

proximity of an arc, either at the equator edge in the evening sector, or at the polar edge in the

morning sector. This overshoot was attributed to the low density region close to the arc, on the

side where the downward return current flows. As this current is carried mainly by ionospheric

electrons, a region of highly depleted plasma develops close to the arc. To compensate the low

conductivity and preserve the current continuity a high electric field is necessary.Opgenoorth et al.

(1990) measured increased E-region electron and F-region ion temperatures, which are proxies for

intense electric fields, by using the EISCAT radar. Aikio et al. (1993) measured the electric field

directly, by means of the STARE (Scandinavian Twin Auroral Radar Experiment) radar.

More recently Elphic et al. (1998) showed, by using FAST data, that the association of

broad upward current regions, presumably connected to auroral arcs, with narrow intense down-

ward currents flowing at the sides, is quite common for the auroral current circuit. Another ex-

perimental fact emphasized by Elphic et al. (1998) is the smooth character of the FAC, in con-

trast to the steep variations in the electron precipitation (and, consequently, conductance). Such

a behavior suggests that the IEF adjusts itself so that the ionospheric current matches the input

magnetospheric current – in other words that the magnetosphere acts rather as a current than as a

voltage generator. This view is supported by a recent theoretical study ofVogt et al. (1999).

An additional contribution to the IEF comes from the high-altitude ’electrostatic shocks’

(Mozer et al., 1977), that go along with the creation of the AAR. Although the largest part of this

field is screened out by the parallel potential, a small fraction makes it to the ionosphere, because

of the ’U’+’S’ geometry (Fig. 1.3). The superposition of the AAR structure over the convection

electric field results in deviations from the ideal ’U’ configuration, as shown in Fig.5.3.
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5.2 Comments

In the previous Section we outlined several relationships between quantities relevant to ionospheric

electrodynamics, with emphasis on the auroral arc. We also described models which help to

understand these relationships. Here we shall discuss in more detail the idealizing assumptions

associated with these models.

We start by writing the current closure equation at the top of the ionosphere (in Section5.4

we shall concentrate on an alternative form):

 � � �  �� �
'

'�
����� � ����� �

'

'�
����� � ����� (5.11)

which can be easily transformed into:

 � � ��

�
'��

'�
�

'��

'�

�
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'��
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� '��
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�
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� ��

�
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� '��

'�

�

 �� 

��

(5.12)

The two equations above are written in the Arc Associated System (see Fig.3.4) and the symbols

have their usual meaning. Before proceeding to explore possible simplifications, we would like to

comment on the significance of the 4 terms above.

We start with ��, which is usually neglected:

��
��

� �����( �
'�(

'!
� � (5.13)

One can estimate how fast the variation of �( should be, in order to make �� � ��( �� �. By

approximating �� � ��( � ��	� and '�(	'! � ��(	� , we find that '�(	'! becomes

significant only for a time scale � � ���(	��. With some typical values, �� � 
�mV/m,

� � 
km, and ��( � 
��nT � �+�������', one obtains � � 
  ����s, which is much shorter

than the duration of most auroral events.

For the other three terms in Eq. 5.12, one can look at them from different viewpoints:

� A possibility is to regard �� and �� as being of magnetospheric, and �� of ionospheric ori-

gin. �� and �� arise because of inhomogeneous ionospheric conductance, mainly caused

by magnetospheric electron precipitation. On the other hand, if we disregard '�(	'�,

which is legitimate in the ionosphere, �� can be related to the ionospheric polarization,

��	�� � � � � 2	��.
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� Boström (1974) associated opposite meanings with (��, ��) and ��. He considered that ��

and �� to be of ionospheric origin, because they express the variation of ionospheric conduc-

tances, while �� has magnetospheric origin, because the variation of the IEF is related to the

magnetospheric convection. Boström’s view was adopted by many other authors (more re-

cently e. g. Sato et al., 1995; Sofko et al., 1995). However, these papers address the medium

scale Birkeland currents region. When discussing about the auroral arc, rather in the small

scale range, one would expect that the changes in the electric field originate mainly in the

polarization and not so much in the variation of the magnetospheric convection.

� Another option is to use the labels ’magnetospheric’ or ’ionospheric’ depending on the

orientation of the respective partial current as related to the electric field: if �  � � � the

ionosphere behaves like a load, dissipating magnetospheric energy, while for �  � % � the

ionosphere behaves like a dynamo, pumping energy into magnetosphere. Let us consider

an ideal configuration: the magnetosphere imposes the field �� , along the arc, while ��

develops transverse to the arc, so that the associated Pedersen current balances the Hall

current driven by �� . According to the above criterion, emphasized by e. g. Haerendel

(1990), only half of ��, that is ���'��	'�, can be termed as ’ionospheric’.

To conclude this discussion, we tend to support the idea that, in the coupled M–I system, it is

better to avoid labeling the terms in Eq. 5.12 (see also Kosch et al. (2000) in this sense).

The current closure Eq. 5.12 is suited to discuss the arc classification scheme ofMarklund

(1984). By disregarding �� one can re-write Eq. 5.12 as:

�� � �� �  � � �� (5.14)

In this form it is evident that electron precipitation excess has to be absorbed by either polarization

or FACs. To evaluate the relative contribution of the two mechanismsRothwell et al. (1984) intro-

duced the phenomenological parameter � in a WTS study. Later,Lysak (1986) was able to express

� in terms of other parameters — basically conductances — characterizing the coupled M–I sys-

tem, and investigated its variation for typical values of these parameters. As Lysak’s (1986) results

are not geometry dependent (in particular his Fig. 1) they can be used in the arc case to show that

for a Pedersen conductance larger than �2mho the arc is almost completely polarized.

Such a statement seems to contradict the common sense and to disagree with the classifi-

cation from Marklund (1984): The auroral arcs are normally associated with FACs, which provide

the continuity mechanism for Birkeland arcs. However, even the intense FACs are usually small

when compared to the ionospheric currents. Consequently, they take over only a reduced fraction

of the current that would develop in the absence of polarization (see also the discussion atp.77).
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Considering this fact, one would expect to find Birkeland arcs only reasonably close to the con-

vection reversal, where the ambient ionospheric electric field (and current) is small enough. One

should also add that the balance between polarization and FAC is intrinsically continuous and

cannot be fully captured with a model based on several homogeneous regions.

5.3 Qualitative evaluation of the simplifying assumptions

We concentrate further on the possible simplifications of Eq.5.12 and check, at a qualitative level,

whether they are appropriate to fit our data (Chapters3 and 4). We start by assuming that:

1. the field configuration is stationary, �� � �

2. there is no variation along the arc, '	'� � �

3. there is no Hall current perpendicular to the arc, �� � �

4. the conductance distribution is homogeneous not only along but also across the arc

Altogether, Eq. 5.12 reduces to:

 � � ��
���

��
(5.15)

Taking into account that for sheet geometry the Ampere’s law writes:

 � � �	�  ���	�� (5.16)

Eq. 5.15 can be integrated to:

�� � ����� � �1
�!+ (5.17)

which is the same as Eq. 5.7, as long as �� � const.

The assumption that the conductance is constant across the arc is obviously not correct,

as one can guess by looking at the electron energy flux (Fig. 3.11). The computation (Fig. 4.4)

confirms this evaluation. Even if Eq. 5.17 holds, �� cannot be taken as constant.

Further, we check the assumption that only the Pedersen current closes the FAC in the

ionosphere. For the purpose of this preliminary discussion we neglect the small rotation of the

AAS with respect to the SAS (Fig. 3.4) and loosely take � � �. Disregarding the Hall current

is not supported by the data. The southward drift of the arc stands for a westward component of

the electric field (Section 3.3), in a reference frame related to the ground (in the plasma frame the

electric field can vanish, i. e. the arc can be ’frozen’ into the plasma). In the presence of a non-

homogeneous Hall conductance the westward electric field — which is constant, by Faraday’s law,

as long as we neglect temporal variations and consider the arc to be longitudinally homogeneous

— drives a Hall current in the N–S direction whose divergence is not zero.
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On the other hand, as the arc is north of the convection reversal, the Pedersen current flows

southward. It would be difficult to close the FAC circuit in the absence of a Hall current flowing to

the north. As the data are obtained in the winter time, current contributions coming from outside

the auroral oval, in particular form the polar cap, are potentially not very substantial.

An important piece of information which was not used yet is the optical evidence that the

width of the arc is not constant. Consequently, the intensity of the electrojet associated with the

arc might have a longitudinal variation. An arc model that takes into account the coupling between

the FAC and the electrojet would have better chances to fit the experimental data.

The discussion up to this point can be summarized as follows: To explain the data one has,

as a minimum, to give up the assumptions of homogeneous conductance perpendicular to the arc,

and vanishing electric field parallel to the arc. In such a case — still idealized — the FAC closes

perpendicular to the arc, through Pedersen and Hall currents, and this current system is not coupled

with the electrojet. One can proceed further relatively easy and parametrize this coupling as well.

The formulation of a strategy able to provide the variation of �� across the arc, the constant value

of �� , and a proper parametrization of the coupling between the FAC and the electrojet is the

object of the next Section. This strategy is applied to our case-study data in Chapter6.

There are two more steps possible, in order to get a fully realistic arc model:

1. taking into account non-potential electric fields, '��	'� �� '��	'� � '�(	'! �� �

2. giving up the arc symmetry, which is based on cartesian coordinates

Step 1 would be appropriate for auroral forms with rapid variations of intensity (see the discussion

at p. 79). Step 2 would would open the possibility to investigate 2D structures, like the WTS or

omega band, but could lead to a more accurate modeling of the arc as well.

5.4 Ionospheric electric field from satellite data

Deriving the IEF from satellite measurements is in principle trivial, as long as the magnetic field

line below the satellite is equipotential. One has just to map the satellite measured field to iono-

spheric level. This is no longer possible when the satellite crosses the AAR. For such cases, when

there is a potential drop below the satellite, one has to use additional data to find the IEF. One pos-

sibility would be to add the ion average energy to the high-altitude potential, in order to estimate

the ionospheric potential and further the IEF. However, the ion average energy reflects not only

the potential difference between the ionosphere and the measuring point, but also non-potential

energization by e. g. wave-particle interactions. A better method for the evaluation of the IEF

would be desirable.
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We begin by casting the current closure equation in cartesian coordinates in a form suited

for processing satellite data input (a more general expression, valid in arbitrary orthogonal curvi-

linear coordinates, is derived in AppendixD). Next, we examine possible solutions of this equation

for an infinite straight arc. In this case the coupling between the FAC system and the electrojet

is implicitly disregarded. Finally, we show how this coupling can be taken into account by just

slightly extending the formalism developed for the infinite straight arc.

5.4.1 Current closure in cartesian coordinates

We give the full derivation, step by step, in order to make clear the generality of the result. The

choice of the reference system is unimportant, as long as the � axis is parallel to the magnetic

field; we neglect the small inclination, �15Æ, of the auroral magnetic field lines, with respect to

the direction perpendicular to ionosphere.

Charge conservation is expressed by the continuity equation:

'2

'!
��  � � � (5.18)

Because of the very high conductivity of the plasma along the magnetic field (see Fig.4.1) the time

dependent term in Eq. 5.18 can be disregarded and the charge conservation turns into the current

continuity equation (for a proof that '2	'! is indeed much smaller than �  � seeAkhiezer et al.

(1975), Chap. 1):

�  � � � � ' �	'� � ��' �	'� � ' �	'�� (5.19)

Further we integrate between the top and the bottom of the ionosphere. These are not

sharp boundaries, but the transverse conductivity is concentrated mostly in the altitude range 90–

150km and is negligible below 70km and above 250km (e. g. Brekke and Moen, 1993). With

respect to current closure one can consider these heights as the appropriate ’bottom’ and ’top’ of

the ionosphere, respectively.

Integrating Eq. 5.19 between ’top’ and ’bottom’ (� � � and � � � � in our reference

system) and taking into account that no significant FAC flows below ’bottom’, in the neutral at-

mosphere, one obtains for the l.h.s. term:

� (�

�
' �	'� �  �����  ��� � � ��� � � ���� (5.20)

where  ���� designates the downward parallel current at the ’top’ of the ionosphere.
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For the r.h.s. of Eq. 5.19, we express  � and  � according to Ohm’s law (Eq. 5.1) and

neglecting the neutral winds (p. 47). In our coordinate system  � and  � write:

 � � ���� � ����

 � � ���� � ����

(5.21)

By integration along � and neglecting the variation of the electric field with the altitude (which is

allowed due to the very high parallel conductivity) one obtains:

�� � ���� � ����

�� � ���� � ����

(5.22)

and

 ���� �
'��
'�

�
'��
'�

� '

'�
����� � ����� �

'

'�
����� � ����� (5.23)

with ��� �� the height-integrated ionospheric currents and �� ��� the height-integrated Pedersen

and Hall conductivities (Section 4.1).

We express  ���� by using Ampere’s law and neglecting the displacement current, '�	'!

(neglecting the displacement current in the Ampere’s law is of the same order with neglecting

'2	'! in Eq. 5.18 — see Akhiezer et al. (1975), Chap. 1):

 � �
�

�

�
'�������

�

'�
� '�������

�

'�

�
(5.24)

where by the notation ������� we emphasize the perturbative character of the transverse magnetic

field and the fact that the perturbation is mapped to ionospheric level. With 3 � ��
�
�

)�
we

finally obtain:

'

'�
�3� � ��� �

'

'�
�3� � ��� or

'

'�
�3� � ���� � ����� �

'

'�
�3� � ���� � ����� (5.25)

In arc coordinates Eq. 5.25 writes:

'

'�
�3� � ��� �

'

'�
�3� � ��� (5.26)

Equation 5.25 represents the most general expression of the current continuity equation; no ap-

proximation was done, except for neglecting the displacement current and the charge density vari-

ation which presumably amounts to negligible errors for the ionospheric plasma. This statement

could be false only for very dynamic transients. As already stated, the equation is equally valid in

any cartesian coordinate system with the � axis parallel to B — no particular use was made of the

x and y orientations. Equation 5.26 illustrates this point.
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Equation 5.26 is completely equivalent to Eq. 5.12. The two equations do express, how-

ever, different viewpoints: while Eq. 5.12 shows in detail the local balance between the FA and

the ionospheric current, Eq. 5.26 is more appropriate to investigate the FAC sheet and its iono-

spheric continuation as a whole. Equation 5.26 expresses the coupling between the FAC system

and the electrojet. The 3� component of the magnetic field is small in AAS coordinates (e. g.

Fig. 3.4; for an infinite current sheet 3� � �) and '3�	'� can be neglected when compared to

'��	'� if the variation length scales of �� and 3� are not too different (which is presumably true

when the satellite crosses the current sheet close enough to its center). In this case the r.h.s. of

Eq. 5.26 reduces to '��	'�, roughly equal to the longitudinal derivative of the electrojet current.

Equation 5.26 says that the FAC closes not only transverse to the arc, but also along the arc.

We note that Sugiura (1984) expressed the current continuity in the form Eq.5.25. How-

ever, he only used this form to show that Eq 5.7 is valid not only for E–W aligned FAC sheets

but can be regarded as a general M–I coupling mode. With high resolution data, like that coming

from FAST, one can try to use Eq. 5.26 to find small scale IEF solutions, corresponding to certain

events. The next Section deals with the particular case of an auroral arc that can be reasonably

described by assuming longitudinal homogeneity.

5.4.2 Determination of the IEF for the infinite straight arc

Consideration of an infinite straight arc reduces Eq.5.26 to:

3� � �� � const. � �� (5.27)

If the AAS is rotated by the angle � with respect to the SAS then:

�� � �� �� � � �� ��� �� �� � ��� ��� � � �� �� � (5.28)

where v is an arbitrary vector. Equation 5.27 transforms to:

3� �3� ��� � � �� � �� ��� � �
��

�� �
(5.29)

or

3� ��� � � ��� � �� ��� ���� � ���� � �� ��� ���� �
��

�� �
� 3� (5.30)

The unknown quantities in Eq. 5.30 are ��� ����� �� and ��. 3��3� are measured and �� ���

can be determined from the measured particle distributions (see Chapter4). The angle � can also

be determined from magnetic field and/or optical data, but for the time being we shall consider it

as unknown. This provides an additional degree of freedom, in order to accommodate situations
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when the electrojet is not parallel to the arc; the experimental data show that this is not unusual

(e. g. Evans et al., 1977). It has to be emphasized here the following distinction:

� For an ideal case the equations above state that the arc is homogeneous along the direction

� and all the physical quantities are constant along this direction.

� In the case of a real arc, described with real data, we can still try to use Eq.5.27 as starting

point, but the angle � to be determined by fit just shows the flow direction of the electrojet,

which in turn is not an exact result. When deriving �, i. e. one parameter, we impose the

electrojet an invariant flow direction. This approximation may be good enough for arcs, but

not for auroral forms with more complicated geometries.

In the next Chapter we shall complete this discussion with results based on experimental data. In

particular, in Section 6.4.5 we shall check how these results change when using � as provided by

the magnetic data, instead of considering it as an unknown parameter. Note that for the calculations

to follow by ��� �� we understand the coordinates ��� � �� � provided by fit, which are not identical

to the AAS coordinates (Fig. 3.4).

To get a reasonably well defined physical problem one has to add to Eq.5.30 the condition

Eq. 5.13 that the field is electrostatic:

'��

'�
�

'��

'�
(5.31)

This condition has two consequences:

1. One can define an electric potential, and evaluate it by integrating the measured electric field

along the satellite path. Even when the satellite crosses ion beams, one can still integrate

between the start and the end of the beam. Assuming that the magnetic field lines at the

boundaries of the beam are equipotentials, one obtains the potential drop at ionospheric

level and, consequently, the average IEF, ��� :� ��

��

�� �� �

� ��

��

��� �� � ������ � ��� � ���� � ��� � ��� � ���	� (5.32)

2. Because of the assumed homogeneity along the arc, '��	'� � �, and by using Eq. 5.31 we

get

�� � const. � 4��� (5.33)

In the following we shall take 4��� � 4� � const. This assumption is further discussed in

Section 6.5.4. From ��� ��� � � �� �� � � �� � 4� it results

�� � �� ��� � � 4�	 �� � (5.34)
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By introducing Eq. 5.34 in Eq. 5.30 we obtain:

3� ��� � � �� �� � ���� ���� � ���� � �� ��� ��
4�

�� �
�

��
�� �

� 3� (5.35)

It is convenient to write �� as:

�� � ��� � Æ�� (5.36)

where Æ�� is the deviation from the average, not necessarily small. We require that the integral of

Æ�� over the satellite path vanishes: � ��

��

Æ�� �� � � (5.37)

A natural parametrization of Æ�� is achieved by using orthogonal polynomials (Appendix E).

In our case the proper choice is represented by either Legendre polynomials, �5��, or Jacobi

polynomials belonging to the weight function ,��� � �, from now on termed just Jacobi poly-

nomials, ����. Both of them satisfy by definition Eq. 5.37. As �5�� and ���� are equivalent,

5���� � ������� �, the results should not depend on which of the two systems is used. The

practical confirmation of this theory (see AppendixE) provides support for the correctness of the

numerical results to be derived in Chapter 6.

For the time being we just write the expression of Æ�� without specifying whether we use

Jacobi or Legendre polynomials:

Æ�� �

�����
���

6�7� (5.38)

The summation in 5.38 starts from index 1 because the constant term, corresponding to index 0,

was explicitly written as ��� . We shall return in Section 6.2.2 to the determination of 
�.

Introducing the parametrization 5.38 in Eq. 5.35 we finally obtain:

3� ��� � � ����� ���� � � �� �� � ���� ��

���
���

6�7��

���� � �� ��� ��4�
�

� � ���� � � ��
�

� � ���� � � 3� ������ (5.39)

The l.h.s. of Eq. 5.39 depends on the unknown parameters ��� �� 6��    � 6�� � 4�� ��, whereas the

r.h.s. is fully determined by experimental measurements. In the most general case the unknown

parameters can be found by non-linear minimization of a 8� type expression (Eq. 6.2). Equa-

tion 5.39 can be written in condensed form as:

�&�� � ���� (5.40)

where the indices “ft” and “ms” express that the l.h.s. contains parameters to be found by nu-

merical fit, whereas the r.h.s. results from measurements. The index “k” emphasizes the fact that

Eq. 5.40 is written for every measurement point, 5*.
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A full consideration of the numerical fit problem is the object of Chapter6. Here we shall

only add a brief discussion on possible simplifications of Eq.5.39. By setting some of the unknown

coefficients in Eq. 5.39 equal to 0 we can model a polarized or non-polarized arc, considering or

not the Hall contribution to the current closure. For each of the following models a linear version is

obtained if the electrojet is assumed to flow parallel to the arc and ��� � derived from the magnetic

data is used. The bracketed “L” in the name indicates the possible linear model.

1. Model NPNH(L) (No Polarization No Hall): With �� � � and �� � const., which implies

4� � � and all the terms 6�7� � �, we have the simplest model: a non-polarized arc,

�� � �, without Hall current. The ionospheric closure of the FAC is achieved by Pedersen

current only. Equation 5.39 becomes:

3� ��� � � ����� ���� � � ��
�

� � ���� � � 3� � ����� (5.41)

In this case there are two parameters to be found, ��� � and the constant ��.

2. Model NPYH(L) (No Polarization Yes Hall): If �� � const. and �� �� � the arc is still

unpolarized but the Hall current contributes to the closure of the FAC and Eq.5.39 becomes:

3� ��� � � ����� ���� � � ���� � �� ��� ��4�
�

� � ���� ��

��
�

� � ���� � � 3� � ����� (5.42)

The parameters to be found are ��� �� 4�� ��.

3. Model YPNH(L) (Yes Polarization No Hall): With �� � � and �� variable one models a

polarized arc, �  � �� �, where the FAC closes through Pedersen current; no Hall current

is present. Equation 5.39 becomes:

3� ��� � � ����� ���� � � �� �� � ���� ��

���
���

6�7��

��
�

� � ���� � � 3� � ����� (5.43)

There are n+2 parameters to be found: ��� �, the coefficients 6�    6�, and the constant ��.

4. Model YPYH(L) (Yes Polarization Yes Hall): Last possibility is to let Eq. 5.39 as it is,

i. e. consider �� �� const. and �� �� �. This means that both the arc polarization and

the Hall current are allowed to contribute the ionospheric closure of the FAC. This is the

most general form of the current closure equation that can be obtained by disregarding the

variations along the arc, and implicitly neglecting the coupling between the FAC system and

the electrojet. We shall see in Section 6.3.3 that even for quiet, pre-breakup arcs, Eq.5.39 is

still too idealized to get consistent results.
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5.4.3 Parametrization of the FAC–electrojet coupling

The easiest way to model the coupling between the FAC system and the arc associated electrojet

is to set the r.h.s. of Eq. 5.26 equal to a constant ���:
'

'�
�3� � ��� � ��� (5.44)

As discussed at p. 85, if ���� ��� are the AAS coordinates, '3�	'�� may, in general, be ne-

glected. However, in the ��� � �� � system '3�� 	'�� is not necessarily negligible. By considering

the transform Eq. 5.28, with the rotation angle ��� � �� � �� (�� � ����), one obtains:

'3��

'��
� ��� ���

'3�

'��
� ��� ��� �� ���

'3�

'��
� ��� ��� �� ���

'3�

'��
� ���� ���

'3�

'��
(5.45)

Because of the sheet geometry the dominant term in Eq.5.45 is the last one:

'3��

'��
� � ���� ���  '3�

'��
� � ���� ���   � (5.46)

Note that, in the upward current region,  � % � and '3�� 	'�� � �.

Equation 5.44 provides an estimation for the longitudinal length scale of the electrojet, ��:����'��'�

���� � 
��

��

� �� �
���� ��
�� � '3�� 	'��

���� �
����� ��

�� � ���� ���   �

����� (5.47)

which reduces to

�� �
��������

���� (5.48)

if ���� ���   � is negligible. In Section 6.4.1 we shall evaluate �� and the relative importance of

'3�� 	'�� from the experimental data. �� will be shown to be in the range of several 100km, in

good agreement with the expectations.

If we introduce Eq. 5.44 in Eq. 5.26 we get:

'

'�
�3� � ��� � ��� (5.49)

which integrates to:

3� � �� � ���� � ���� (5.50)

In the following we shall disregard the dependence of � on � and set ���� � �� � const. This

assumption implies that the variation in � associated with the arc crossing is small as compared to

�� and will be further discussed in Section 6.5.1. By writing Eq. 5.50 in SAS we get:

3� �3� ��� � � �� � �� ��� � �
�� � ��� �� � �

�� �
�

�� � ���

�� �
(5.51)
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with � � � along the satellite trajectory and � � � �� �. Equation 5.51 is identical to Eq. 5.29,

except for the term ��� on its r.h.s. Consequently, the fit formula Eq. 5.39 transforms to:

3� ��� � � ����� ���� � � �� �� � ���� ��

���
���

6�7��

���� � �� ��� ��4�
�

� � ���� � � ��� � ����
�

� � ���� � � 3� � ����� (5.52)

We shall associate Eq. 5.52 with the model YPYHX(L). The models NPNHX(L), NPYHX(L),

and YPNHX(L) are obtained from NPNH(L), NPYH(L), and YPNH(L) by just changing �� with

�� � ��� in Eqs. 5.41, 5.42 and 5.43, respectively. Figure 6.21 in Section 6.6 could help to a better

visualization of the models described above.

5.5 Summary

In this Chapter we reviewed some of the work done on ionospheric electrodynamics and discussed

several of the frequently used approximations. It appears that a highly idealized model, consisting

of regions with homogeneous conductance, and disregarding the Hall contribution to the current

closure, is not appropriate for the data we have.

A new method to process the data was introduced, leading to the characterization of the

ionosphere status along the footprint of the satellite path. By this method one can evaluate the lon-

gitudinal component of the IEF and the ionosphere polarization during intervals when ion beams

are detected. The IEF was assumed as electrostatic and a cartesian coordinate system was used.

Two families of models were developed: For the first family the variations along the arc

were disregarded and the coupling between the FAC system and the electrojet implicitly neglected.

For the second family this coupling was taken into account through a coefficient which was shown

to be related to the longitudinal length scale of the electrojet. Each model can be formulated either

linearly, by assuming that the arc associated electrojet is parallel to the arc, or non-linearly, by

including the electrojet orientation among the parameters to be found by fit.

As a last remark, one can note the similarities that exist between the AMIE and the method

introduced here: both aim to finding the IEF by using multiple data sets. However, while the

AMIE is appropriate for large scale problems and is mainly based on low resolution ground data,

our method is oriented to small scale structures and is based on high resolution satellite data.



Chapter 6

FAST Orbit 1859: Electric

field and current close to the arc

We concentrate further on the electrodynamics of the arc presented in Chapter3. A large fraction

of the Chapter is devoted to the derivation of the IEF during the ion beam period of orbit 1859.

After some preliminaries (Section 6.1), we discuss the IEF obtained with the models NPNH,

NPYH, YPNH, and YPYH (Sections 6.2 and 6.3). Although an improvement is visible with

the increase in the complexity of the model some inconsistencies persist, because of neglecting

the coupling between the electrojet and the FAC system. The results obtained with the models

YPYHX and YPYHXL (Section 6.4), which take this coupling into account, are significantly

better. The discussion of the two models is extended in Section6.5.

Finally, in Section 6.6, we examine the 3D current flow which reveals an interesting and

infrequent configuration: the transverse current that connects the downward and upward FAC

sheets is very small and the FACs are continued in the ionosphere essentially parallel to the arc.

This feature is related to the position of the convection reversal close to the boundary between the

two current sheets, already pointed out in Section 3.2. Because the upward FAC is electrically

decoupled from the downward FAC it is possible to treat the ion beam period as an independent

unit, which is implicitly assumed in the first part of the Chapter. The southern boundary of this

interval coincides with the convection reversal, as witnessed by the large scale potential (Fig.6.22).

The underlying theoretical basis for the analysis presented here is the current conservation

at ionospheric level, where the FAC is balanced by Pedersen and Hall currents, flowing both

transverse and parallel to the auroral arc. We emphasize that although the auroral arcs are quite

homogeneous in longitudinal direction, the coupling between the FAC and the electrojet should

not be disregarded. This issue is particularly important for our atypical case.
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6.1 Preliminaries

Before proceeding to show numerical calculations for the particular models we note that the fit

problem posed by Eqs. 5.39 and 5.52 has the same quantity on its r.h.s., independent of the choice

of the model. This quantity is:

��� � 3� � ����� (6.1)

We can regard the two terms involved in ��� as the ’forcing’ exerted by the magnetosphere on the

ionosphere. It is particularly appropriate to say this in our case, as the SAS and MFA reference

systems are practically identical (p. 27) during the inverted-V. 3� stands for the current pumped

into the ionosphere, whereas ��� depends on the potential across the arc, mainly controlled by the

magnetosphere. �� imposes a structure over the quite flat 3�. This view, which is convenient

here at least for practical reasons, leads to the following interpretation of the fit problem: given

the ’forcing’ of the magnetosphere, one tries to find, in a least-square sense, how the ionosphere

changes to accommodate this forcing. To avoid confusion we should mention that the three quan-

tities on the r.h.s. of Eq. 6.1 are not independent; their relationship is investigated in M–I coupling

studies (e.g. Lysak, 1990, and references therein).

6.1.1 The ionospheric potential drop

As already noticed (Section 3.2) the electric field data is not usable during the time 8:22:37–

8:22:47. This raises the question about how to estimate ��� for the time interval IALL=8:22:03.8–

8:22:57.5, when ion beams are detected (Fig. 3.7).

To answer it we note first that IALL consists of an alternation of ion beams (IB) and ion

conics (ICo) and can be naturally divided in five sub-intervals. The first and second column of

Table 6.1 show the identifier of the ion beam or conic and the respective time period. The time

origin is !� �8:22:00. ICo2, IB3, and ICo3 were grouped together under the identifier I4 because

of a scale reason: the corresponding time stretch is 10.8s, comparable to the other four time

intervals. Column 3 of the table shows the length of the satellite path projected at ionospheric level.

Table 6.1: Ion beams and conics during Orbit 1859

Id �! ����� ���9 � ��� ��9	��

I1 (IB1) 03.8–13.8 28.5 482 -16.9
I2 (ICo1) 13.8–26.9 36.7 455 -12.4
I3 (IB2) 26.9–37.7 30.5 (500, 350) (-16.4, -11.5)

I4 (ICo2, IB3, ICo3) 37.7–48.5 30.5 (500, 350) (-16.4, -11.5)
I5 (IB4) 48.5–57.5 26.1 292 -11.2
IALL 03.8–57.5 152.3 (2229, 1929) (-14.6, -12.7)
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Figure 6.1: 
��, the quantity on the r.h.s. of Eqs. 5.39 and 5.52, fully determined
from the experimental data. The black solid line corresponds to an ionospheric potential
�� � ���	V, the red dotted line to �� � �			V.

Columns 4 and 5 show the potential difference across each path segment and the corresponding

��� . For I3 and I4 some reasonable upper and lower limits are suggested, based on the values for

the other three intervals.

Figure 6.1 shows the variation of ��� for the time interval IALL. The upper curve corre-

sponds to ��� � ��	+�mV/m, the lower one to ��� � ���+�mV/m. The first value of ��� was

obtained for an ionospheric potential drop �� � ��
�V, which results by rounding off the sum of

potentials in column 4 of Table 6.1, with the upper limit taken for I3 and I4. For the second value

of ��� a total potential drop �� � ����V was used, with the potential drop over I3 and I4 close

to its lower limit.

6.1.2 The fit procedure

The fit procedure consists in minimizing a 8� type expression:

- �

��
*��

����� � �&����

��*
(6.2)

with both ���� and �&�� introduced first in Eq. 5.40. � is the total number of measuring points;

� � ��� for fitting over IALL . For an interval of�10 s, comparable to the duration of the ’units’

I1. . . I5, FAST Survey data provides � � �� points. The minimum of - is found by a numerical

algorithm. More details on the statistical significance of - , on the minimization procedure, and on

the computer implementation of this procedure are presented in AppendixF.
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The weighting factor �	��*

In Eq. 6.2 �* is the error of the measurement ���� . By applying the error propagation formula we

get:

��* � ����
� ��

���
�
�� � �����

��
� (6.3)

One has to look how the error terms compare. For the first term we have to take into account that

� is obtained as the difference between a measured and a model field, � � ��� ����+", and

consequently:

����
� �����

� ����
���
(6.4)

The measurement error is mainly the quantization error, amounting to �2nT (see Section2.1.2).

Since 3 is obtained from � by dividing through � � 	:����, it results ���� � �� ����		: �
� � ����A/m. When FAST is near the apogee, this number should be multiplied by a factor of

�2 in order to get ���� at ionospheric level. The result is still quite small, when compared to the

typical values of the ionospheric currents, of several 0.1 A/m.

The model error is, however, more important. The reason is the inaccurate knowledge

provided by the IGRF (IGRF95 in our case). A discussion of the error sources in the IGRF models

is given at http://www.ngdc.noaa.gov/IAGA/wg8/igrfhw.html. Based on this, we shall take as a

typical error in the �� component the value of 10nT. By dividing through � we get � ����A/m,

a value comparable to the other error terms, as we shall see.

The evaluation of the second error term was basically done in the previous Chapter. As-

suming a typical Pedersen conductance of �10mho and a relative error of �10% we get ��� �
�mho. With an electric field of �10mV/m a rough estimation for the error contributed by the

conductance term amounts also to �10��A/m.

For the third term, the discussion in Section 6.1.1 suggests an imprecision in ��, and

consequently in ��� , of about 10%. With ��� � ��mV/m and �� � ��mho, we get once more

an error of �10��A/m.

By adding the 3 terms in Eq. 6.3 and taking the square root we get a total error

�* � �  ����A/m. However, instead of keeping all the three error terms in �*, which would

be the rigorous approach, we shall discard the imprecision due to the errors in the magnetic and

electric field and keep only the conductance term. This influences the actual minimum value of -

in Eq. 6.2 but presumably not too much the parameter values. We shall check the dependence of

the results on the assumed error in the second unit of Section6.4.3.

http://www.ngdc.noaa.gov/IAGA/wg8/igrfhw.html
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6.2 The infinite straight arc: calculations

We explore next the models introduced in Section 5.4.2. We only discuss the non-linear

models: NPNH, NPYH, YPNH, and YPYH. The results obtained with the linear instances are

not substantially different. For each model we will show the currents ���� and ����, as well as the

components of the IEF, �� and �� . ���� and ���� are obtained from ��� and �&� respectively, by

adding ������ �3� ��� �� and multiplying the result with �� �:

���� � �3� �3� ��� �� �� � � 3� �� � �3� ��� � � 3� (6.5)

���� � ��&� � ����� �3� ��� �� �� �

� ������� � ���� �� � ���� � �� ��� ��
4�

�� �
�

��
�� �

� �� �

� ��� ��� � �� ��� ��� ������ ��� � � ���� �� � � ��

� ���� � ���� � �� � �� � �� (6.6)

To get Eq. 6.6 we introduced Eqs. 5.28 and 5.34 on the l.h.s. of Eq. 5.39. If one measured an

ideal, infinite and parallel FAC sheet, 3� would be the linear density of the FA current and ����

the ionospheric current transverse to the arc, plus the constant ��. As we work with real data, the

directions � and � are not related to the FAC sheet, but to the flow direction of the ionospheric

electrojet (see the discussion at p. 86). Note that the figures to come show �� � �� instead of �� ,

in order to make clear how good is the agreement between the experimental data and the fit.

The non-polarized arc models, NPNH and NPYH, are presented first. Then, as a prepa-

ration for the polarized models, the limit imposed by the data to the expansion in orthogonal

polynomials is discussed. Section 6.2.3 presents the results from the models YPNH and YPYH.

The fitted parameters are listed in Table 6.2 and discussed in detail in Section 6.3.1.

6.2.1 Non-polarized arc

The model NPNH, Eq. 5.41, disregards the Hall current and depends on just 2 parameters, ��� �

and ��. The model NPYH, Eq. 5.42, takes into account the Hall term by adding the parameter 4�.

Hall term = 0

The top panels of Fig. 6.2 show the results obtained for the model NPNH. As expected, there is a

substantial difference between ���� and ����. The electric field components, �� and ��, are both

constant. �� is not 0 because the modeled current sheet is not aligned with the SAS � axis.
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Hall term �� 0

The results are substantially better when the Hall term is included in the fit (bottom panels of

Fig. 6.2). �� is close to 0 because �� ��� � and 4�	 �� � balance each other in Eq. 5.34.

6.2.2 Determination of ��

The results in the previous Section are illustrative for the necessity to take into account the iono-

spheric polarization. This means that �� is no longer considered constant and the coefficients of

the series Æ�� (Eq. 5.38) have to be determined. In principle, the numerical procedure allows one

to get to any order, even higher than the number of data points, � . This does not make sense and

a first question is to find a reasonable criterion for cutting the series, i. e. to decide what should be


�. Physically, 
� corresponds to the polarization length scale. This interpretation is particularly

appropriate with orthogonal polynomials, due to their quasi-periodic variation (see AppendixE).

A good estimation of the required 
� is provided by fitting ��� with progressively higher

order expansions. The dependence of 8�� on the order of the expansion is shown in the top left

panel of Fig. 6.3. One can see that the decrease of 8�� saturates for 
� � ��; ��� was normalized

by dividing it through 0.01, roughly equal to its estimated error. For higher orders the improvement

in the representation of ��� is small. The right top panel of Fig. 6.3 shows ��� together with the

approximations obtained for 
� � �� ��� ��.

The higher order (smaller scale) variability in ��� results from the electron precipitation.

This can be read in the bottom panels of Fig. 6.3: the left panel shows the dependence 8���
�� for

3�, the right panel for �� . The decrease of 8�� saturates at 
� � 	 for 3� and at 
� � �� for �� .

6.2.3 Polarized arc

As compared to the non-polarized arc models we shall examine in addition the influence of the

polarization length scale. Each plot shows results obtained for 
� � �� ��� ��. The fields will be

seen to converge with increasing 
�, which provides a double-check for the numerical algorithm.

Hall term = 0

The currents and electric fields for the model YPNH, Eq. 5.43, are shown in the top panels of

Fig. 6.4. The fit is considerably better as compared to model NPNH (Fig. 6.2, top panels). How-

ever, the improvement as compared to model NPYH (Fig. 6.2, bottom panels) is not very substan-

tial, although with model YPNH we have a much larger number of parameters. This is a good hint

for the importance of the Hall term.
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Figure 6.5: The current along the ionospheric footprint of FAST for model YPYH36. The dashed
lines indicate the approximate location of the visible arc edges. The reference arrow at the top
shows the flow direction of the electrojet as determined by fit.

Hall term �� 0

The best fit to the data, assuming no variation along the straight and parallel arc, is obtained by

taking into account both the polarization and the Hall term. The bottom panels of Fig.6.4 show

the results obtained with the model YPYH. The main difference as compared to model YPNH is

seen in the electric field, whose values are considerably smaller in the second half of the interval.

The agreement between ���� and ���� is also better. However, the model YPYH still has a serious

flaw, that will be pointed out in Section 6.3.3.

Figure 6.5 shows the ionospheric current vector, obtained via Eqs.5.22, with �� and ��

resulted from the fit procedure. Note that, inside the visible arc, the direction of the current is not

very different from the fitted electrojet direction. However, the current is strongly divergent at the

arc edges, in particular at the southern one.

6.3 The infinite straight arc: discussion

We shall analyze the results presented in a graphical form in the previous Section. First, we

shall tabulate the computed parameters and point out several peculiar features. Next, we shall

check the agreement with the optical information. We shall conclude with a careful examination

of the internal consistency of the results. Before proceeding to the discussion we emphasize that

assuming an infinite straight arc model, which implies no variation along the arc, has the important

side-effect that the coupling between FAC and electrojet is neglected.
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6.3.1 Discussion of the parameters

The parameters resulting from the infinite straight arc models are summarized in Table6.2, for both

�� � ����V (left column) and �� � ��
�V (right column). For the models with polarization

the value of 
� is indicated in the name of the model. Thus, e. g. YPYH36 stands for model YPYH

with 
� � ��. Only ��� �, 4� (for models NPYH and YPYH), and �� are listed. The coefficients

6� are not given in the table: although they substantially contribute to the agreement between data

and model, their particular values are not of prime importance for the discussion to follow. When

trying to model the ionosphere status the important option is whether to take or not into account

the polarization. Choosing a certain polarization order is important for small scale changes in the

field distribution, but has just a small influence on the global parameters ��� �, 4�, and ��. We

shall return to this point below.

The last column of the table shows the reduced 8�, obtained as 8�� � -	�� �;�, with

� the number of data points and ; the number of model parameters; ; is equal to either 
� � �

or 
� � �, depending whether the Hall term is considered or not. For the two cases without

polarization (NPNH and NPYH) 
� � �. Both the start value (before minimization) and the

minimum found are given for 8�� . As starting point for the search of the minimum we chose, as

a rule, the origin of the parameter space. This is equivalent to an �-shell aligned homogeneous

arc, with no ionospheric current flowing into (or out of) the auroral oval (other starting points

were also tried, to make sure that the minimum found is not just a local one). With a good model

the minimum obtained for 8�� should be close to 1, on the condition that the errors in Eq.6.2 are

correctly evaluated (see Appendix F). As we only have a limited knowledge on the error, we can

only say that the chance for a model to be better is higher when 8�� is smaller.

By examining the Table 6.2 one notes systematic trends that deserve to be commented:

� The angle � is close to 0 when the Hall term is disregarded. This can be explained by consid-

ering the symmetry of the problem. With 4� � � the Hall conductance is not included in the

fit (Eqs. 5.41 and 5.43). The angle � is not exactly 0 because the FAC sheet is not rigorously

aligned with the �-shell and 3� �� � (Fig. 3.4). If this were the case the models NPNH and

YPNH would imply FAC closure through Pedersen current along � (perpendicular to the

�-shell, ��� � � �) and a constant current density electrojet in the �� direction.

When the Hall term is taken into account ��� � % �. The negative value of ��� � for the

models NPYH and YPYH indicates that the flow direction of the electrojet is different from

the orientation of the current sheet. This possibility was already mentioned at p.86 and is

essentially related to the dependence of the electrojet direction not only on the conductance,
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but also on the IEF. While the conductance is, indeed, closely connected to the FAC, the IEF

reflects the large scale balance between magnetospheric driving forces and ionospheric drag

forces, which are not in a direct relationship with the FAC.

As already noted above, ��� � is not very sensitive to the polarization order (except for the

case 
� � �). The small influence of the polarization order can be understood if we think

that the parameter ��� � — as well as 4� and �� — is global, depending mainly on the

average values of the measured physical quantities. The polarization order can only reveal

small scale features, associated with the conductivity pattern, but not modify too much the

derived flow direction of the electrojet.

� The value of the parameter 4� is only slightly influenced by the polarization order (even if


� � �, model NPYH) and scales with the total potential drop across the arc: an increase

of �10% in �� (from 2000V to 2250V) leads to an increase of �10% in 
4�
 (e. g. from

8.6 to 9.6, model YPYH36). We shall try to explain the values obtained for 4� based on the

geometry presented in Fig. 6.6.

Once the direction �$ of the ionospheric current � is known, the direction of the electric

field is fixed by:

��� �$� � ��	�� (6.7)

This relation can be easily demonstrated by choosing a coordinate system whose � axis is

aligned with the electric field; in this system �� � ����, �� � ���� , and ��� �$� �

��	�� � ��	�� . The component 4�� of the electric field along � is given by:


4��
 � � �� �$� �

��
 �� �$�

�����$ � �$��
�

�

��� �$ � ��� �$�


��

�� �$

(6.8)

Equation 6.8 can be written at any instant of time. In order to pass from 4�� to 4� we need to

change �� with ��� and �$ with 
�&��
. The first replacement is allowed on the ground of the

mentioned global character of 4�. The second replacement can be justified by comparing

the instantaneous direction of the current vector with the fitted direction of the electrojet

(Fig. 6.5). By using Eq. 6.7 and choosing the right signs Eq. 6.8 transforms to:

4� �
�

��	�� � ��� �&��

���

�� �&��
(6.9)

With ��� � ��
mV/m (Table 6.1), ��� �&�� � ��+
, and ��	�� � �, Eq. 6.9 provides

4� � ���mV/m, in good agreement with the values in Table 6.2. The bottom panel in the

right plot of Fig. 4.2 suggests that ��	�� � � is a reasonable average choice in our case.
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Figure 6.6: Sketch illustrating the evaluation of ��.

� The constant �� is higher for the models without Hall term. This can be understood by

observing that �� has the significance of a current flowing southward, from the polar cap to

the auroral oval (if positive). A negative 4� (westward electric field) drives a northward Hall

current, which decreases the value of ��. The formal expression of this argument is obtained

by writing Eq. 5.27 two times, once for the model YPNH and once for the model YPYH

(the demonstration for the models NPNH and NPYH is similar):

3- ���
� � �- ���

� � �- ���
�

3- �-�
� � �- �-�

� � �- �-�
�

Subtracting the second equation from the first one yields:

�- ���
� � �- �-�

� � �3- ���
� �3- �-�

� �� ��- ���
� � �- �-�

� �

The first term on the r.h.s. is positive, because of the relative orientation of the systems

��� ��- ��� and ��� ��- �-� , while the second term is negative, because of the Hall contri-

bution to �� . Consequently, �- ���
� � �- �-�

� , in agreement with the results in Table 6.2.

� The last column of the Table 6.2 shows that the accuracy of the model (as expressed by 8��
)

increases from NPNH to YPYH, with better results for higher 
� (i. e. smaller polarization

scale size). However, the improvement obtained with YPNH as compared to NPYH is

limited, even for large 
� (a significant decrease of 8�� is seen only for 
� � ��). The Hall

current is a necessary ingredient, whose role cannot be played by polarization.
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6.3.2 Consistency check: optical observations

The necessity of a Hall term, resulting from an arc-aligned component of the electric field, is

strongly supported by the optical data (Section3.3), which indicate a southward motion of the arc

with an average velocity of �200m/s, equivalent to an electric field �� � ���mV/m (if the arc

has no proper motion; see the discussion in Section 6.5.2). This value compares quite well with

4�. Recall, however, that 4� is actually �� , which is different from �� . This is clearly visible in

the bottom right panels of Figs. 6.2 and 6.4, where �� �� ���mV/m.

For the model NPYH �� � �, because the contribution of 4� to �� is almost fully compen-

sated by the rotation of the arc (compare Eq.5.34). This would imply that plasma has no motion in

the Earth’s system or, equivalently, that the arc moves with �200m/s in the plasma system, which

is a quite large velocity for the growth phase of a substorm (Section3.1). The model NPYH is

not likely to offer a reasonable approximation. Another argument against the model NPYH is the

large � angle, implying that the electrojet is almost transverse to the arc.

The model YPYH compares better with the optical observation. �� at 8:22:12, the time

of the satellite encounter with the bright edge of the arc (whose motion can be followed in the

TV frames, Fig. 3.12), is �10mV/m westward, and it stays at �5mV/m westward all over the arc.

The southern edge of the arc is thus frozen in the ionospheric plasma, which is not an unusual

behavior for a substorm growth phase. We cannot say too much about the rest of the arc; however,

the velocity of the arc proper motion would not exceed 100m/s, which could be explained in terms

of the AAR motion (for further discussion see Section6.5.2).

The optical data are unequivocal about the orientation of the arc: its alignment is roughly

E–W, with a slight increase of ����, from ����� � � at the southern edge to ����� � � at the

northern edge. The optical alignment of the arc compares well with the orientation of the FAC

sheet, as it results from the magnetic data (small differences can be explained by the deviations of

the magnetic field from the ideal dipole). There is, however, a clear disagreement between ���� and

�&��. The models examined up to this point provide an ionospheric electrojet whose flow direction

is not parallel to the optical arc, produced by the FAC sheet energetic electrons.

6.3.3 Internal consistency of the model YPYH

We shall check in more detail the electric field provided by the model YPYH. A good solution

should lead to an ionospheric potential that matches the trend exhibited by the high-altitude po-

tential (upper panel of Fig. 3.4). Besides, the results should not depend too much on the choice of

the fit interval except, perhaps, for some boundary effects (see Section6.5.3).
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The comparison between the ionospheric potential, obtained for model YPYH36, and the

high-altitude potential is shown in the top panel of Fig.6.7. The origin of the potential was chosen

at ! � !� � �+�, when the satellite encounters the first ion beam (see Fig. 3.8). The ionospheric

potential is shown for the interval IALL; the high-altitude potential extends for some 15s before

and after IALL. The jump in the high-altitude potential over the time interval with bad data is

such that the potential drop over IALL equals 2250V. Obviously, the modeled potential fails to

reproduce the measured data, in particular over the intervals I1 and I5. A satisfactory model should

result in an ionospheric potential drop equal to the high-altitude one, between the boundaries of

an ion beam.

The dependence of the electric field on the fit interval was examined by comparing the

results obtained for the intervals I1. . . I5 with the results obtained for IALL (middle and bottom

panels of Fig. 6.7). For the fit over IALL we took 
� � ��, whereas for the sub-intervals 
� � �.

As IALL is about 5 times longer than each of the I1. . . I5, this choice makes the fit resolutions

comparable. Note that there is no free parameter, to allow the matching of the separate curves.

The results obtained by fitting over sub-intervals do not agree with the result of the fit over

IALL. As expected from the potential calculation, �� yielded by the fit over IALL is in strong

disagreement with �� resulted from the fit over I1 and I5. The same is true for �� . Results

obtained with YPYH using Burst data, 
� � ��, were added for I1 and I3. As the Burst rate is 4

times larger compared to the Survey rate, YPYH28 with Burst data corresponds to the same spatial

frequency as YPYH7 with Survey data. The difference between the two sets is small, except for

the ends of the sub-intervals, in particular the end of I3. The inaccuracy at the boundaries of the

fit interval was already mentioned and will be discussed in more detail in Section6.5.3. The large

difference at the end of I3 may also be related to the abrupt decrease of the conductance to low

values (� �mho).

More insight into the reason for the discrepancy exhibited by Fig.6.7 can be achieved by

examining the Table 6.3, which compares the parameters obtained by fit over IALL and over sub-

intervals. One can see that ��� � and 4� are not very sensitive to the choice of the interval, but ��

has a significant variation from one interval to the other, decreasing toward north. This points to

a fundamental weakness of the model YPYH: the difference 3� � �� , which should be constant

according to Eq. 5.27, actually varies across the arc. The fact that �� is not constant cannot be

explained if the coupling between the FAC and the electrojet is neglected. In the next Section, by

taking the coupling into account, the results will get considerably improved.
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Figure 6.7: Top: High-altitude potential (black solid line) compared to the ionospheric
potential (red dash-dotted line) obtained with model YPYH36 (�� IALL � ���	V).
Middle and Bottom: IEF � and ��, on IALL and on I1. . . I5. Model YPYH36 (black solid line)
was used over IALL, model YPYH7 (red dashed line) over sub-intervals. Model YPYH28 was used
with Burst data, available during I1 and I3 (green dash-dotted line).



108 CHAPTER 6. ELECTRIC FIELD AND CURRENT CLOSE TO THE ARC

6.4 Models with FAC–electrojet coupling

The results obtained in the previous two Sections, by neglecting the FAC–electrojet coupling,

show that this assumption is too restrictive even for the arc geometry. In this Section we present

results obtained with the models developed in Section 5.4.3. The non-linear models NPNHX,

NPYHX, YPNHX, and YPYHX are discussed first. Next we address the derivation of ��� � from

the magnetic data and examine the linear model YPYHXL.

6.4.1 Results obtained with the non-linear models

The improvement brought by including the FAC–electrojet coupling among the fit parameters

can be easily appreciated by just qualitatively comparing the graphical representations. The new

results are illustrated as follows (the figure showing the corresponding old results is indicated in

brackets):

� Models NPNHX and NPYHX: Fig. 6.8 (Fig. 6.2)

� Models YPNHX and YPYHX: Fig. 6.9 (Fig. 6.4)

� Ionospheric potential (YPYHX36) and fit over I1. . . I5: Fig. 6.10 (Fig. 6.7)

� Ionospheric current vector (YPYHX36): Fig. 6.11 (Fig. 6.5)

Note that ���� (Eq. 6.6) is now yielded by:

���� � �� � �� � ���� � �� � �� � ��� (6.10)

The parameters were collected in the Table 6.4. Two new columns were added as compared to

Table 6.2, showing the new parameter, ��, and the difference 3���� � ����� � �� � ��� (L is

the ionospheric path length, see Table 6.1). The figures and tables presented here were obtained

by using Jacobi polynomials. Using Legendre polynomials instead does not change the results,

which provides a good check for the validity of the numerical algorithm (see AppendixE).

The new results are definitely better than the old ones. This can be seen by both comparing

the figures and the two tables, 6.4 and 6.2. Numerically, the improvement is expressed in the 8�

column. An interesting feature that one can notice is that the parameters do not change too much,

except for ��. On the other hand, the ionospheric potential distribution over IALL is now in

good agreement with the high-altitude potential (Fig. 6.10). Consequently, the detailed balance

of the current across the arc is mainly achieved through polarization. The current closure is now

properly modeled: 3���� � ����� � �, within the experimental error (a few .01 A/m), which is

the expected result at the northern boundary of the winter, nighttime auroral oval.
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Figure 6.10: Top: High-altitude potential compared to the ionospheric potential obtained with
model YPYHX36. Middle and Bottom: Ionospheric electric field, � and ��, on IALL and on
I1. . . I5. Same as Fig. 6.7.
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Figure 6.11: The current along the ionospheric footprint of FAST for model YPYHX36.
Same format as Fig. 6.5.

The flow direction of the ionospheric current is less variable for model YPYHX36 as

compared to YPYH36. The maximum ionospheric current, near the southern edge of the visible

arc, is �0.65A/m for model YPYHX36, higher than �0.45A/m for model YPYH36. With �� �
�+�–�+�A/m (Fig. 6.11) and 
��
 � �–�A/m� (Tables 6.4 and 6.5) the longitudinal length scale

of the electrojet is �� � ���–
��km (Eq. 5.48). According to Eq. 5.47 �� has to be corrected

when ��� �� �. In our case this leads to a decrease of some 10–25% in �� (��� � �� � �� �
���Æ � �Æ � ���Æ, ���� ��� � �+�
,  � � �3�	� � ��+�	A/m 	 �
�km � ��+�A/m�;

consequently ���� ���   � � ��+	A/m�). The strength of the electrojet increases eastward,

because both '��	'� � �� and �� are negative; this confirms the expectations for a westward

electrojet at the poleward boundary of the evening auroral oval.

Further insight into the relationship between the fit parameters is provided by comparing

Tables 6.3 and 6.5. Similar to the results obtained for IALL, adding the ��� term does not change

too much the values of ��� � and 4�, but the variation of 3� � �� is now reasonably continuous.

This can be seen by checking the I
 � � value in the column �� against the I
 value in the col-

umn �� � ��� (in this context � stands for the respective lengths of the sub-intervals, as read in

Table 6.1). The agreement is good, within a few 0.01 A/m.

The improvement obtained by adding the term ��� is most convincingly expressed by the

top panel of Fig. 6.10, as compared to the top panel of Fig. 6.7 (also the columns ��,� and ��""

in Tables 6.5 and 6.3). However, the potentials are obtained by integration, which smooths out the

small disagreements. To check the model in detail we have inspected the electric field on I1. . . I5

(middle and bottom panels of Fig. 6.10). Although the consistency of the results is now better,

there are still differences, the most clear one at the boundary between I3 and I4.
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Figure 6.12: The electric field obtained by fit over the larger
sub-intervals I6. . . I10. For the line style corresponding to each
sub-interval see Table 6.6. Top: �. Bottom: ��.

Table 6.6: The intervals used in Fig. 6.12
Id �! �� Line style

IALL 03.8–57.5 2250 solid
I6 03.8–48.5 1950 dotted
I7 13.8–48.5 1500 dashed
I8 13.8–57.5 1800 dash dot
I9 26.9–48.5 1000 dash dot dot dot
I10 26.9–57.5 1300 long dashes
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The large disagreement around !� � �� is most probably a numerical effect because of

having the boundary between I3 and I4 in a low conductance region. Figure6.12 illustrates this

point by showing how the results change when the fit is done on larger sub-intervals, I6. . . I10, that

avoid the boundary between I3 and I4. �� and �� are quite similar to the field found by fitting

over IALL, except for the already mentioned boundary effects. The time limits, the respective

potential drop, and the line style used in Fig.6.12 for each sub-interval, are listed in Table 6.6.

6.4.2 Model YPYHX: Dependence of the results on the conductance pattern

In Section 4.2.1 we showed that Eqs. 4.9 are somewhat ambiguous about the pitch-angle range

considered. Figure 6.13 presents �� and �� obtained by using the models YPYHX7, YPYHX18,

and YPYHX36, with the conductance derived by integration over the full distribution and over the

loss-cone. Most of the time the differences are small, implying that the choice of the pitch-angle

range has secondary importance. It is only near !� � ��, when the conductances are very low,

that the difference between the results is larger for model YPYHX36. Note that only the model

YPYHX36 is able to resolve this small scale variation in conductances.

Although we have not performed a systematic study on the dependence of the derived

electric field on the accuracy of the computed conductance pattern, Fig. 6.13 suggests that the

error risk is increased only inside small scale regions of low conductance. On the other hand,

the results are pretty close to each other e. g. during interval I1, when the conductances depend

significantly on the pitch-angle range (Fig. 4.6). This remark might be useful: during I1 there

is a strong gradient in the electron precipitation which leads to errors because of non-stationarity

(Sections 4.4.1 and C.1). Nevertheless, the influence of these errors on the derived IEF is probably

reduced.

It is interesting to compare the two sets of results from a statistical point of view. Table6.7

lists the values 8��� and 8��
 , obtained for �� � ��
�V. Using the loss-cone electron population

yields higher 8��
 (and 8���) values, which implies a lower fit quality. This suggests that the full

distribution might be a better integration domain for calculating the conductances. However, such

a statistical criterion can be deceiving (see the discussion on considering ��� � small parameter, in

the next Section) and its validation requires a more thorough check.

Table 6.7: Dependence of the fit quality on the conductance pattern.

YPYHX7 YPYHX18 YPYHX36
Full distrib. Loss-cone Full distrib. Loss-cone Full distrib. Loss-cone

8��� 15476 65404 16619 70233 18902 79883
8��
 39 135 15 46 8 17
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Figure 6.13: Dependence of the IEF on the conductance pattern. The model YPYHX was used with
conductances derived by integration of �� � �� over the full distribution (solid lines) and over the loss-
cone (dashed lines). � is shown with black and �� with red.
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6.4.3 Model YPYHX: Dependence of the results on the fit formula

We shall perform some further examination of the fit formula Eq. 6.2, in order to test the depen-

dence of the results not only on the arc model but also on the fit formula itself. More precisely, we

shall look how the results change if:

� The angle � is considered small and Eq. 5.52 is linearized in ��� �. This makes sense in our

case and, more generally, with polar satellites, because the satellite trajectory is presumably

close to the arc normal.

� The fit formula Eq. 6.2 is not normalized by dividing it through ��.

� The FAC–electrojet coupling is modeled through a non-linear term.

��� � small parameter

In this case the definition of �&� (l.h.s. of Eq. 5.52) in Eq. 6.2 reduces to:

�&� � 3� ��� � � ��

���
���

6�7� � ��4� � �� 4� ��� � � �� � ��� (6.11)

The results obtained by linearizing the fit formula in ��� � are presented in the top panels of

Fig. 6.14 and in Table 6.8. Large differences are seen to exist, as compared to the results obtained

with the exact formula. The largest discrepancy is in ��� �, which is -3 when using Eq.6.11 (not

small at all), as compared to -0.4 when using Eq. 5.52. The flow direction of the electrojet would

be practically perpendicular to the arc alignment as inferred from the optical and magnetic field

data. Obviously, ��� � cannot be considered as a small parameter for the minimization procedure.

Even if the the satellite path is almost perpendicular to the arc the angle it makes with the normal

to the electrojet can be significant, which precludes the approximate formula Eq.6.11.

An instructive remark refers to the value of 8�� . The fit linear in ��� � is better, if judged

only by the statistical criterion. The physical meaning is, however, the primary criterion to be

considered.

Table 6.8: Model YPYHX36: Results obtained rigorously and with ��� � small

��� � 4� [mV/m] �� [A/m] �� [A/m�] 8���	8
�
�


Rigorous, Eq. 5.52 -0.4 -9.8 0.193 -1.34 18902/8.0
Approx., Eq. 6.11 -3.0 -3.6 0.061 -0.91 18902/1.4
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Fit formula not normalized

By neglecting the weighting factors �	��* the fit formula Eq. 6.2 writes:

- �

��
*��

����� � �&���� (6.12)

The results do not change too much. However, the weighting factors become important when the

conductance drops to low values. The bottom panels of Fig.6.14 show the electric field obtained

for model YPYHX with 
� � ��� ��� 
	. The higher is 
�, the smaller is the field structure that is

taken into account. The interval IALL consists of 171 measuring points, each of them �0.3s long.

Accordingly, 
� � ��� ��� 
	 corresponds to resolutions of�3s,�1.5s, and�1s respectively. The

low conductance intervals, �!� � ��+
� !� � 	�� and �!� � 	
� !� � 	�+
�, are properly modeled only

for 
� � ��� 
	 but not for 
� � ��. If 
� is high enough to capture the small scale the neglect of

the weighting factors in Eq. 6.2 artificially increases the (absolute value of the) electric field when

the conductance is low, at the expense of a slight decrease for the rest of the time.

The importance of the weighting factor for low conductance intervals also points to the

potentially larger error in the electric field for such intervals. The weighting factor we used is

based on the error in the Pedersen conductance (Section 6.1.2). The associated relative error is

not larger than �10% (Section 4.4.2), which might well be underestimated when the conductance

drops below �1–2mho (as it is the case in the vicinity of ! � !� � ��). Considering a larger error

would diminish the contribution of the low conductance intervals in the fit function Eq.6.2 and

the electric field would flatten across such intervals.

When the conductance is reasonably high (exceeding a few mho) the results are relatively

insensitive to the choice of the weighting factors. Taking into account that at such times the

evaluation of the conductance itself is pretty accurate, it seems appropriate to conclude that our

results are reliable for most of the time.

Modeling the FAC–electrojet coupling with a non-linear term

A last check that we performed regarding the proper form of the fit function refers to the term that

expresses the FAC–electrojet coupling. The results we showed are based on a linear approxima-

tion, which is the simplest modeling solution. However, there is no a priori theoretical reason to

disregard other options.

A limited number of tests was performed, to see if the linear dependence is favored in

some way. The answer seems to be affirmative. When choosing a quadratic or cubic dependence,

���
� respectively ���

� instead of ���, the fit with starting point 0 does not make any change to ��
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(which remains 0) and the result is identical to that obtained from model YPYH. Another test was

conducted by letting the exponent of � variable, that is by changing the term ��� to ���
�. When

the set of parameters provided by YPYHX was chosen as starting point, the output was essentially

identical to the input (the exponent �, for example, only varied from 1 to 0.999). When the starting

point was chosen to be 0 for all parameters, except for �� � �, no useful results could be obtained

because of the numerical instability introduced by the variation of �.

These limited checks suggest that the assumption Eq. 5.44 might be more than just a

convenient numerical choice and the current transfer between the FAC and the electrojet could

tend to proceed linearly along the arc. To clarify this issue one might have to address the M–I

coupling, but a detailed investigation is beyond the scope of this work.

6.4.4 Deriving ��� � from magnetic field data

It is interesting to check how the results obtained with model YPYHX change if we use ��� � as

provided by the magnetic field data. In this case we only have to find 4�, ��, and the polariza-

tion coefficients, 6�. The fit formula Eq. 5.52 does not change, except that now ��� � is known.

Equation 5.52 becomes linear in parameters and one can use a regression method instead of non-

linear minimization (the results obtained are identical, irrespective of which method is used; see

Appendix F for details). We shall first address the problem of deriving ��� � from the magnetic

data. In Section 6.4.5 we shall comment the results obtained with model YPYHXL36.

Considering both the optical (Fig. 3.12) and magnetic field (Fig. 3.4) data, one would

expect to find some variation in ��� � across the arc. It makes sense to examine the variation

of ��� � on a scale close to the length scale of the structure under investigation. In our case

the interesting time interval was naturally divided into 5 sub-intervals, of �10s each, or �28km

ionospheric length. One can calculate ��� � in 2 ways:

1. Using the variance analysis (see Appendix G). By moving a window of 10s along the

interval IALL a continuous variation of ��� � can be obtained.

2. Recalling that ��� � � �Æ���	Æ��� � �������	������, with �� the perturbation

magnetic field and ����� the derivative with respect to �. By expanding ��� and ���

in series of Legendre polynomials one can calculate the derivatives by using an analytic

expression (Eq. E.9). The scale is taken into account through the order 
� of the series. For

IALL, which is 53.7s long, a scale of 10s corresponds to 
� � 
� �.

The results of the two methods are shown in Fig. 6.15. In order to illustrate the influence of

the scale we show ��� � for 
� � �� �� 
� �. The derivatives are polynomials of order 
� � �.
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Figure 6.15: Rotation angle of the current sheet, ��� ����, obtained from the variance analysis
(solid line) and by developing the magnetic field perturbation into Lagrange polynomials: �  � �
(solid line, constant), � �  (dotted line), � � � (dashed line), and � � 
 (dash-dotted line).

Consequently, for 
� � � we have ��� � � const. One can see that ��� � obtained from the

variance analysis with a window of 10s is somewhat ’between’ the results obtained for 
� � 


and 
� � �. Applying the variance method to the full interval IALL yields ��� � � �+�		, in good

agreement with ��� � � �+��� obtained for 
� � �. The corresponding angle is � � �Æ.

6.4.5 The linear model YPYHXL

Figure 6.16 shows results obtained with the model YPYHXL36 (�� � ��
�V). Two cases are

presented: a) with ��� � constant and b) with ��� � calculated by the variance method (10s win-

dow). The parameters obtained for the two cases are compared in Table 6.9 to the parameters

obtained with model YPYHX36 for both IALL and for the sub-intervals I1,. . . ,I5. One notes that

the results are roughly insensitive to the particular form of ��� �. This is not surprising: the listed

parameters are mainly influenced by the global change in the measured data, in particular of 3� ,

and not so much by the detailed variation, as captured by a non-constant ��� �.

The currents (top left panel of Fig. 6.16) exhibit a small increase as compared to model

YPYHX: ���� (Eq. 6.5) reaches its maximum value in the AAS (that is, for model YPYHXL) and

���� is accordingly increased (mainly through the increase of ��, see Table 6.9). The orientation

of the ionospheric current is substantially modified (compare Fig. 6.17 with Fig. 6.11): model

YPYHXL imposes a current flow roughly parallel to the arc while for model YPYHX the dominant

flow direction is determined by fit.
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Figure 6.17: The current along the ionospheric footprint of FAST for model YPYHXL36; ��� �
from variance analysis with 10s window. Same format as Fig. 6.5.

The �� component of the electric field (bottom right panel of Fig. 6.16) is, for most of

the time, just slightly modified. Consequently, the change in the ionospheric potential is small

(top right panel of Fig. 6.16). However, the intensification of the southward IEF at ! � !� � �� is

�2 times stronger for model YPYHXL. This points once more to the larger uncertainty one can

expect when the conductance drops to low values.

A significant difference with respect to model YPYHX36 is the �3 times larger west-

ward electric field ��. This is related to the change in the orientation of the ionospheric current,

as explained by Fig. 6.18: �� and �� correspond to model YPYHX36, �� and �� to model

YPYHXL36. Both vector pairs are associated with the average conductance ratio over IALL,

��	�� � � (implying �� � �� � 	
Æ) and ��, �� are related by ��� � ��� � ��� . With

��� �$� � �+
 and 
��� 
 � �
mV/m one obtains 
��� 
 � 
mV/m and 
��� 
 � �
mV/m.

The goodness-of-fit as expressed by 8��
 in the last column of Table 6.9 suggests that the

model YPYHX36 should be preferred. Metaphorically speaking, by including !6
� among the fit

parameters a ’lower energy’ configuration can be obtained, from the data point of view. However,

�� yielded by model YPYHXL36 looks better fitted for the growth phase of a substorm, as will

be discussed in Section 6.5.2. In addition, we tend to regard as more credible an electrojet that

flows roughly parallel to the arc. The difference ��� � �� � �� (�30Æ in our case, see p. 112),

between the arc and the orientation obtained by fit, might be taken as an error estimate for the flow

direction of the electrojet.
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Figure 6.18: Sketch that explains the larger �� for model YPYHXL36.

Table 6.9: Parameters obtained with model YPYHXL vs. YPYHX
Interval Model 4� [mV/m] �� [A/m] �� [A/m�] 8���	8

�
�


YPYHXL36 a) -11.7 0.245 -1.55 19951/13.0
IALL YPYHXL36 b) -11.4 0.245 -1.57 20283/12.8

YPYHX36 -9.81 0.193 -1.34 18902/ 8.0
YPYHXL7 a) -12.4 0.249 -0.04 40715/11.6

I1S YPYHXL7 b) -12.5 0.253 0.07 41930/12.9
YPYHX7 -10.3 0.204 -0.38 40268/ 7.7

YPYHXL28 a) -10.3 0.279 -1.03 10028/ 3.0
I1B YPYHXL28 b) -10.4 0.283 -1.07 10322/ 3.3

YPYHX28 -9.1 0.233 -0.84 9585/ 2.2
YPYHXL7 a) -5.6 0.254 -2.00 37095/ 4.3

I2 YPYHXL b) -5.8 0.255 -1.93 38254/ 4.6
YPYHX7 -5.1 0.229 -2.02 36142/ 3.6

YPYHXL7 a) -14.6 0.191 -4.57 16342/ 2.7
I3S YPYHXL7 b) -14.4 0.191 -4.60 16234/ 2.7

YPYHX7 -11.0 0.145 -3.49 15970/ 1.7
YPYHXL28 a) -12.7 0.179 -3.30 4127/ 2.2

I3B YPYHXL28 b) -12.6 0.179 -3.34 4101/ 2.2
YPYHX28 -10.3 0.137 -2.71 3912/ 1.4

YPYHXL7 a) -18.4 0.054 0.65 3837/ 1.2
I4 YPYHXL7 b) -15.7 0.048 0.41 3321/ 0.8

YPYHX7 -12.7 0.038 0.17 3583/ 0.7
YPYHXL7 a) -17.0 0.037 -0.53 2998/ 1.7

I5 YPYHXL7 b) -16.9 0.035 -0.35 2993/ 1.6
YPYHX7 -10.6 0.018 -0.76 2666/ 0.8
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6.5 Further discussion of the models YPYHX and YPYHXL

We shall examine in more detail some features of the models YPYHX and YPYHXL associated

with uncertainties in the parameters. We shall also briefly explore some possible extensions of the

fit procedure, that could lead to more accurate models of the arc.

6.5.1 The dependence on � of the constant ��

In Section 5.4.3 we derived the fit formula Eq. 5.52 by neglecting the dependence of �� on � in

Eq. 5.50. This approximation might be questioned as long as �� � 
 ��� �
�, the variation of �

along the satellite path, is not negligible compared to the length scale �� of the electrojet. With

� � �
�km (Table 6.1) and 
!6
�
 � �+	 (Table 6.4) we get �� � 
�km for model YPYHX36.

For model YPYHXL36 ��� � � �+�	 and �� � ��km. �� was estimated to 200–500km for

model YPYHX36 (p. 112); we can keep the same estimate for model YPYHXL36, as both �� and

�� are somewhat larger. Consequently, the ratio ��	�� may take values in the range 0.1–0.3 for

model YPYHX36 and is probably smaller than 0.1 for model YPYHXL36.

It makes sense (in particular for model YPYHX36) to see what happens if, instead of

���� � const. � ��, we approximate ���� by its Taylor expansion up to the first order:

���� � �� �
��

��

����
����

�� � �� �
��
��

�� � �� � �� ��� �

��
�� (6.13)

If we take �� � �� � � Eq. 5.50 writes:

3� � �� � �� � �� ��� �

��
� � ���� � �� �

�
�� � �� ��� �

��

�
� � �� � ���� (6.14)

Strictly speaking, the value obtained by fit is ���. The error in �� is of the order Æ�� � ��
 ��� �
	�� .

Introducing numerical values we get for model YPYHX36 an average value 
Æ��
 � �+��
�+		��������� � �+�
����	 . The relative error in �� is 
Æ��	��
 � �+�
	�+� � ��%. For model

YPYHXL36 an upper estimate of the error is 
Æ��
 � �+�
 � �+�
	���� � ���� � �+�� � ���	.

The relative error in this case is 
Æ��	��
 � �+��	�+
 � �%. The variation of 3� � �� with � has

smaller influence on �� for model YPYHXL36 because of the associated smaller ��.

6.5.2 ��: Fit results vs. optical evidence

If we compare the electric field �� � ���mV/m, inferred from the optical data, with the results

of the fit, a slight disagreement exists, Æ�� � 
mV/m, either if we refer to model YPYHX or to

model YPYHXL. For model YPYHX the resulting �� is a little bit smaller (in absolute value)

than the experimental value, while for model YPYHXL �� is a little bit larger (bottom left panel

of Fig. 6.16). There are two possible explanations for these differences:
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� They could be just the effect of averaging. Although when evaluating �� from the optical

data the same �1 min period was used as for the fit procedure, the averaging is different:

– The �� provided by the optical data is based on the average velocity of the southern

border of the arc

– The �� provided by fit is, in some sense, a spatial-temporal average over �1min of

FAST data, collected between points somewhat in front of the southern border and

well beyond the northern border of the visible arc

� Some (or all) disagreement is real, and the arc has a proper motion, with respect to the

ionospheric plasma. This topic was investigated in detail by Haerendel et al. (1993). By

simultaneous measurements of plasma and arc motion, from radar and optical data respec-

tively, these authors were able to determine the relative motion of three different arcs with

respect to the plasma.

Haerendel et al. (1993) suggested that the proper motion of the arc could be initiated not

only at generator but also at AAR level. In the first case one can distinguish again two possi-

bilities: a) fast motions, as a result of reconnection or compressional waves at substorm onset;

b) extremely slow motions, of the order of 10m/s (equivalent to 0.5mV/m), due to generator hot

plasma transport. Neither of these two alternatives fits to our data: situation a is typical after the

break-up, not in the growth phase, while in situation b the motion of the arc and the Pedersen

current should point in opposite directions, not as in our case, both southward.

The proper motions generated at AAR level reflect the spontaneous propagation of the

AAR into or out of the current circuit, which can be compared to a ’fracture’ process (seeHaerendel

(1989) and references therein for details). The velocity of the motion is of the order of �100m/s,

equivalent to�5mV/m, which compares well with our ’would be’ motion. For the model YPYHX

the arc travels southward somewhat faster than the plasma; according toHaerendel et al. (1993)

this means that the current system shrinks and magnetic energy is released. For the model

YPYHXL on the contrary, the plasma motion is faster; the current system expands and the

energy is built up, in better agreement with a substorm in its growth phase.

6.5.3 Boundary effects

We have seen earlier in this Chapter that abrupt variations of the electric field can be sometimes

noticed at the boundaries of the fit intervals (Figs. 6.7, 6.10, and 6.12). Closely related to this

feature is the dependence of the derived IEF on the fit interval.
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Although we do not have a good analytic proof, we feel that the origin of the problem can

be traced back to the steep variation of the orthogonal polynomials at the the boundaries of the

interval, the steeper the higher the order of the polynomial is (see AppendixE). Small errors in

the polarization coefficients 6� can combine ’in phase’ with the large variations in 7�, leading to

the deviations observed. It would be probably safe to disregard the ’boundaries’ of the interval,

i. e. the two half-periods were the steep variation is concentrated. When the conductance is small,

and the errors presumably large, it may happen that the boundary errors propagate deeper inside

the investigated interval (this is probably the case with interval I4).

Function expansion in series of orthogonal polynomials provides, as a rule, only conver-

gence ’in the mean’, but not uniform convergence (e. g. Courant and Hilbert, 1953, Chapter II,

p. 54). The series converges to the approximated function most of the time, but there are also

points of poor convergence or no convergence at all.

6.5.4 Extensions of the fit procedure

The fit formula Eq. 5.52 is written in cartesian coordinates and assumes quite restrictive condi-

tions for the electric field. In the first unit below we shall check how the fit formula changes when

written in polar coordinates, which represent the simplest choice of orthogonal curvilinear coordi-

nates. In the second unit we shall give more freedom to the electric field and derive the associated

fit formula. The results from the two units can be combined increasing further the complexity of

the fit formula. Note that the more general formulas to be given below were not tested with the

data. They are meant to illustrate a possible continuation of the present work.

Fit in polar coordinates

If ��� �� are polar coordinates then �� � � and Eq. D.13 writes:

'

'�
�3� � ���� �

��
�3� � ��� �

'

'��
�3� � ��� (6.15)

If we set '	'���3� � ��� � ��� Eq. 6.15 transforms to:

'

'�
�3� � ���� �

��
�3� � ��� � ��� (6.16)

which is identical to Eq. 5.49 except for the second term on the l.h.s. Equation 6.16 reduces to

Eq. 5.49 for �� � �. If we assume that �� � � � const. Eq. 6.16 becomes linear and can be

easily integrated:

3� � �� � ����� � ������� . � �� (6.17)



128 CHAPTER 6. ELECTRIC FIELD AND CURRENT CLOSE TO THE ARC

If �	� � � Eq. 6.17 reduces to Eq. 5.50. This can be easily checked by writing the Taylor

expansion of the exponential. The important point about Eq.6.17 is the additional parameter �,

besides the older �� and ���. Further processing yields a fit formula similar to Eq. 5.52, except for

the term ��� which is replaced with the second term on the r.h.s. of Eq.6.17.

Additional degrees of freedom for the electric field

In deriving Eq. 5.52 we started from the Eqs. 5.50 and 5.33:

3� � �� � �� � ����� �� � 4�

with the same axis, �, in both equations. There is, however, no imperative reason for such a

constraint; the current and the electric field could, in principle, be associated with distinct axes, �$

and �� . In addition, either ��	 , or ��	 , or both, could be variable (see Section 6.6.2); as a first

approximation one may consider a linear variation. The two equations above write:

3�� � ��� � �� � ����$ � �� � ��� �� �$  � � �� � ��� (6.18)

and

��	 � 4� � �4��� � 4� � �4� ��� ��  � � 4� � 4�� (6.19)

if ��	 varies or, via Faraday’s law

��	 � 4� � �4��� � 4� � �4� �� ��  � � 4� � 4�� (6.20)

if ��	 varies. After some tedious but straightforward algebra one obtains:

3� ��� �$ � ������ � ��� �� ��� �$� � �������� �$ � ��� ����

���� � �� ��� �$�
4� � 4��

�� ��
�

�� � ���

�� �$
� 3� (6.21)

The additional parameters are now ��� �� and 4�. Equation 6.21 reduces to Eq. 5.52 if �� � �$

and 4� � �. Using Eqs. 5.36 and 5.38 to replace �� Eq. 6.21 is cast in a form appropriate for fit.

A simple and potentially interesting model is obtained by setting �$ � �� � ��, i.e. a

variety of the model YPYHXL with �� linearly dependent on �. Theoretically, in such a case

it would not be possible to say unambiguously whether the term 4�� originates in the variation

of �� (Eq. 6.19) or �� (Eq. 6.20). However, the track of a polar satellite is in general roughly

perpendicular to the arc, �� � � and �� �� � ��� ��; the chance that 4�� reflects the variation

of �� would be considerably higher. Conversely, if the assumption �� � 4� � 4�� does not lead

to reasonable results one might conclude that �� can be considered constant along the arc, at least

on a scale comparable to �� � � ��� ��, i.e. the shift associated with the satellite crossing.
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6.6 Current configuration

The models YPYHX and YPYHXL were shown to provide consistent electric field results. In

order to complete the investigation of the arc electrodynamics we concentrate now on the current

flow. The ionospheric current associated with the different models was already discussed, to some

extent, in the previous Sections (Figs. 6.5, 6.11, and 6.17). While our main concern there was the

electric field, here the current stays in the center of interest.

We shall first perform a detailed check of the current closure equation along FAST iono-

spheric footprint during the ion beam period. This approach will unravel the local topology of the

current flow and will give a hint about the non-local behavior. Next we shall discuss the configura-

tion suggested by our data and emphasize its considerable departure from the standard paradigm.

6.6.1 Current closure along FAST ionospheric footprint

We shall evaluate the relative contributions of the FA and ionospheric currents — along and trans-

verse to the arc — in the closure equation (Eq.5.23). In order to calculate the ionospheric current

(via Eq. 5.22) we have used the electric field derived from the model YPYHXL36; the geometry is

in this case simpler and the proper motion of the arc seems to corroborate better with the substorm

growth phase (Section 6.5.2).

Figure 6.19 presents the ionospheric currents, �� and �� , as well as the FA sheet current,

��, for the intervals IALL and I1, I2, I3 (that cover the visible arc). �� and �� are shown together

with their Pedersen and Hall components, ���� � ���� and ���� � ��� �. �� was calculated with:

����� �

� �

��

 ��<� �< � 3�� 3� at ionospheric level (6.22)

where �� indicates the southern boundary of the downward FAC sheet. We assumed the longitudi-

nal extension of the FAC may be approximated as infinite (see Fig.3.4), in which case �� � 3� .

The most important information one can extract from Fig. 6.19 is that the transverse cur-

rent, �� , practically vanishes at the beginning of IALL. �� remains small over the whole interval,

because the southward Pedersen and the northward Hall currents compensate each other. As we

shall discuss in more detail next Section, �� cannot provide the ionospheric connection between

the downward and upward branches of the FAC. The current parallel to the arc, �� , is much larger,

reaching a peak value of �0.75A/m (within the normal electrojet range). �� is mostly of Hall

origin, but the Pedersen contribution is not negligible (of the same order with ��).

With the very small �� it is only the variation of �� that can act as source for  �. One can

convince oneself about this point by checking the current continuity at ionospheric level (Eq.5.23,

re-written here in ��� �� coordinates):
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 � �
'��
'�

�
'��
'�

� =% � '��
'�

�
'��
'�

�  � � � (6.23)

=% can be expressed in terms of quantities to be calculated from the experimental data:

'��
'�

� ���
��

�
'��
'�

� ���  � �
'3�

'�
� �3�

��

where �� is the ionospheric length perpendicular to the current sheet, ��� � ������������, and

�3� � 3������3����. Equation 6.23 becomes:

=% � =��
% �

���
��

� �� � �3�

��
� � (6.24)

We checked Eq. 6.24 for the data shown in Fig. 6.19 and, in addition, for burst data, available

during I1 and I3. The results obtained are collected in Table 6.10 (we used �� � � �� �, with

� from Table 6.1 and � � �Æ, see Section 6.4.4). The last column proves that Eq. 6.24 is indeed

verified by the data, within the experimental error. As one can see by comparing columns 3 and

4 the results obtained by fit over sub-intervals support the average trend expressed by the fit over

IALL, in that the FAC is obtained at the expense of the variation in �� . It is only for I1S (I1,

Survey data) that the FAC is balanced by the variation in �� . For I1B and I2 most of the FAC

originates in the variation of �� while for I3B and I3S �� sources both  � and �� . This last case is

sketched in Fig. 6.20, which may be regarded as a graphical expression of the current continuity

at ionospheric level (any other situation may be illustrated by appropriate changes of the arrows).

As our model calculations are based on the continuity equation the consistency of the

results with this equation is actually not surprising. The last column of Table6.10 just provides a

good double check for the numerical method, which does not mean, however, that the results in

the columns 2 and 3 are necessarily correct. The comparison of the values obtained with Survey

and Burst data is significant for the errors involved. Even if one might feel reasonably confident in

the tendency expressed by Table 6.10, more physical arguments, independent from the numerical

processing, would be needed to improve on the credibility of these results. We shall return to this

point the next Section.

Table 6.10: Check of Eq. 6.24

Interval $�
��

��
��

��
=%

IALL 0.14 -1.57 -1.46 0.03
I1S -1.55 +0.07 -1.44 -0.04
I1B -0.37 -1.07 -1.44 0.00
I2 -0.17 -1.93 -2.18 0.08
I3S 2.93 -4.60 -1.75 0.08
I3B 1.56 -3.34 -1.75 -0.03
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Figure 6.20: Cartoon illustrating the current conservation (Eq. 6.23). The decrease
in �� is the source for the increase in �� and for ��. Note that �� is surface density
(A/m�) while �� and �� are linear densities (A/m).

The local closure of the current discussed above supports a 3D perspective of the arc and

its surroundings as presented in Fig. 6.21. We included the currents and electric fields along

FAST and an adjacent parallel track, as well as the conductance pattern, indicated by the gray

background. The boundaries of the arc, the convection reversal (CR) and the FAC reversal (FR) are

also shown. In the arc region the westward electrojet (WEJ) feeds the upward FAC and decreases

toward west. The ionospheric current supplied by the downward FAC does not reach the upward

FAC; most of it enhances the eastward electrojet (EEJ) and a small fraction crosses the CR as Hall

current (see next Section) and joins the WEJ. Figure6.21 tries to point to the possible sources for

the longitudinal intensification of the electrojets:

� Enhanced precipitation (and FACs). In the arc region ��� and ��� point in the same di-

rection and enhanced electron precipitation leads to the intensification of the WEJ. In the

downward current region precipitating protons may carry a significant fraction of the cur-

rent. However, ��� and ��� point in opposite directions; the EEJ does not intensify.

� Increase of �� , implying a larger ��� . The WEJ intensifies but the EEJ weakens.

� Increase of �� , implying a larger ��� . Both the WEJ and the EEJ intensify (note that here

and above we refer to the absolute values of the mentioned quantities).

We suggest that the intensification of the EEJ is mainly determined by the increase in the northward

electric field, while the intensification of the WEJ originates mainly in enhanced precipitation.

This feature is pointed out in Section 5.4 of Kamide and Baumjohann (1993), who characterize

the EEJ as “electric-field-dominant” and the WEJ as “conductivity-dominant”. Note that Fig.6.21

is not fully consistent with our model YPYHXL, in that �� is shown as variable in longitudinal

direction. In the next Section we shall comment on still keeping �� constant transverse to the arc.
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6.6.2 The uncommon topology of the current flow

The comparison of the convection potential with the FAC sheet density is instrumental in under-

standing the closure of the current. We expanded the interval UT 8:20–8:24 of Fig.3.4 in Fig. 6.22

and chose to show again only � and 3� in order to make clear the close proximity of the CR and

FR, which is the key feature of our auroral configuration. Typically, the CR is located such way

that most of the upward FAC is embedded in northward electric field and the connection between

the two FAC sheets is achieved through Pedersen current — one of the two topologies discussed in

the classical paper of Boström (1964). This is obviously not our case. It is only in the narrow strip

between FR and CR (vertical hatching in Fig. 6.22) that the Pedersen current points to the north;

the sheet upward current across this strip is, however, less than 0.02A/m. The largest part of the

downward FAC injected into the ionosphere does not make it to the upward FAC. Before detailing

the peculiar topology of the current flow we want to comment shortly on the position and width of

the CR, as well as on the ionospheric current that crosses this boundary.

Because of the high-altitude potential structure the minimum in the potential (which is

calculated from satellite data) is reached at 8:22:11 (see Fig.3.8 for a zoom). However, the trend

exhibited by the potential out of the ion beams as well as our calculations (Fig. 6.16) point to

�8:22:04 as the location of the CR. Note, however, that the electric field, ��, that we derived is

negative at this time (beginning of IALL) whereas just a few tenths of second earlier �� is clearly

positive, as indicated by the high-altitude potential. This raises the question whether such a thin

CR is reasonable. Figure 6.22 suggests also that the change in the electric field is quite abrupt,

while usually it is assumed that �� has a gradual change in the vicinity of the reversal. Let us take

�� � 
�mV/m south of the reversal, �� � ���mV/m north of the reversal, and a reversal width

> � �km (we chose a conservative set of values; > � �km corresponds to 0.35s of satellite

data). The associated charge density is, in this case:

( �
�

��
� � �

�

��

���

��
� �

��

���

��
� ��� ����	C/m� (6.25)

which implies an excess of electrons Æ
 � 	� ����cm��. This is only a small fraction (% ���	)

compared to the plasma densities to be found in the auroral region (� ���cm��). The numerical

exercise above shows that the CR can be indeed very thin.

Coming to the transfer of ionospheric current through CR it is obvious that this can only be

Hall current. Assuming an westward electric field of 15mV/m (as yielded by model YPYHXL36)

and a Hall conductance of 4mho (Fig. 4.4), the associated northward Hall current is 0.06A/m

(�25% of the current fed to the ionosphere in the downward FAC region). This current, however,

does not reach the upward FAC region (Fig. 6.19) but joins the WEJ. The Hall current that crosses
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Figure 6.22: Expanded view of the interval UT 8:20–8:24 from Fig. 3.4 that shows the relative positions
of the FAC reversal (FR), the convection reversal (CR), and the arc. The CR is very close to the FR and just
a negligible fraction of the downward FAC returns to the magnetosphere as upward FAC.
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the CR might be different if the arc is not ’frozen’ in the plasma, which means that increased

conductance can be carried away from the arc. In our case the distance between the peak of the

electron precipitation (8:22:12, close to the southern border of the arc, indicated with horizontal

hatching in Fig. 6.22) and the CR is�20km. With a plasma velocity relative to the arc of�100m/s

(Section 6.5.2), assumed to be relatively uniform, one obtains that the precipitation peak crossed

the CR �3min before FAST encountered it. This time interval is longer than !��� � �min (see

line 4 of Table C.2) needed for a change in plasma density from the value corresponding to the

precipitation peak down to the level outside of the arc. Note that 3min before the satellite traversal

the arc was less intense (frame 2 in Fig. 3.10), so that !��� � �min is a safe upper limit. We may

conclude that the conductance at the CR is not significantly increased due to the relative motion

of the plasma with respect to the arc.

As the charges cannot get accumulated it appears that the FACs are continued in the iono-

sphere with the EEJ and WEJ, as already pointed out in the previous Section. The topology of the

current flow is sketched in Fig. 6.23 which can be seen as complementary to Fig. 6.21. For sim-

plicity we neglected the small difference between AAS and SAS; below it is implied accordingly

that � � � and � � �. Figure 6.23 also shows the electric field along the ionospheric footprint of

FAST and the plasma convection, in a reference system moving with the arc. Because the west-

ward electric field, �� , does not vanish there is net plasma flux crossing the boundary of the arc

and the CR; the plasma flow in Fig. 6.23 corresponds to a negative �� in the arc system, as derived

from model YPYHXL36. Similar results, based on the ion cloud technique, were reported already

long time ago (e. g. Haerendel (1972), in particular Fig. 7, and references therein).

Figure 6.23 shows �� as constant over a latitudinal extension of�300km. North of the CR

this assumption agrees with model YPYHXL. However, as discussed in the previous Section, ��

is expected to vary along �, at least south of the CR. Consequently, we may also expect variations

of �� along �. It is still reasonable to consider that these variations are small, at least within

�160km south from the CR. The ionospheric current fed by the downward FAC flows northward

before joining the EEJ; a westward electric field of�15mV/m drives a northward Hall current that

has about the needed value to ensure the current continuity. For �� � ��
mV/m the transverse

current, �� , around �8:21:00 is comparable to the sheet current,�� , fed by the downward FAC

until this time. With �� � �� � 	mho (considering only proton induced conductance, Fig.4.3)

and �� � ��mV/m (�� � �� � ���	��, with �� from the left third of the upper panel in

Fig. 6.22) one obtains �� � �+�A/m. This value compares quite well to �� � �+��A/m, read in

the lower panel of Fig. 6.22).
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Figure 6.24: Two possible configurations of the FAC and its connection to the electrojet. Left: Type 1.
Right: Type 2. Adapted from Boström (1964), Figs. 7 and 8.

We also showed  � as constant in Fig. 6.23. This is an immediate consequence of the

current continuity Eq. 5.23 and of our assumption that '��	'� � ��� (Eq. 5.44 with neglect of

'3�	'�), if '��	'� can be disregarded — which is reasonable close enough to CR, on its northern

side, as one can read in Table 6.10. One may consider, as a first approximation, that a constant  �

implies constant conductance. If we keep to the model YPYHXL and require �� to be constant

along � then the increase of both the westward and eastward electrojet toward east would require

the increase/decrease of �� north/south of the CR, with the result that �� could no longer be

constant along � and �� along �. This reasoning illustrates the limitations of our model, which are

essentially related to having data just along a 1D cut through the arc. Using these data it is possible

to derive the local variation rate of the WEJ (for the EEJ the conductance might be too low for a

reliable application of our method), but it is not possible to make a resolute statement about the

origin of this variation. It is reasonable to expect that both the change of the conductance and of

the two electric field components contribute to the variation of the WEJ, but we cannot estimate

their relative importance. More involved models, as those briefly discussed in Section6.5.4, might

lead to improved results without, however, to completely eliminate this problem.

The topology of the current flow in Fig. 6.23 looks quite surprising to the reader famil-

iar with the standard model of the auroral arc. For the first time Boström (1964) analyzed the

relationship between the FACs and the auroral electrojets and pointed out the two basic config-

urations, Type 1 and Type 2, reproduced here in Fig. 6.24. For the Type 1 circuit the electrojet

is connected with line FACs at the extremities, while for the Type 2 circuit a downward and an

upward FAC sheets are connected through Pedersen current and the electrojet develops as Hall

current between the two FAC sheets. Later the Type 2 circuit was associated with auroral arcs

(e.g. Sesiano and Cloutier, 1976; Casserly, R.T., Jr., 1977) while the Type 1 circuit with the con-

vection electrojets and the substorm current wedge (e.g.Baumjohann, 1983). For comprehensive

reviews on the relationship between the FACs and the auroral electrojets the reader is referred
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to Kamide (1982) and to Chapter 2 of Kamide and Baumjohann (1993). Considering the pub-

lished material, our case is completely atypical. Although the magnetic field signature suggests

a standard Type 2, the current configuration appears to consist of two times the Type 1 topology.

Examination of more data is required in order to check whether this is indeed a very rare case and,

if similar events are found, to determine the conditions under which they develop.

6.7 Summary

This Chapter was devoted to a detailed electrodynamic investigation of an arc event for which

both optical and satellite data are available. We first explored the interplay between polarization

and Hall current, as ionospheric carriers of the FAC supplied from the magnetosphere, within an

infinite straight arc model. We found that the model was in reasonable agreement with the data,

with the important exception that 3� � �� � ��, assumed as constant, was actually variable.

A significant improvement was obtained by taking into account the coupling between

the FAC and the electrojet. The coupling was modeled as simple as possible, by just setting

'��	'� � '	'��3� ���� � ��� � const. Even for a relatively homogeneous and quiet arc, as the

one investigated here, a proper modeling is achieved only by taking into account the polarization,

the Hall term, and the FAC–electrojet coupling at the same time. The results obtained in these

conditions were shown to be reliable and not very sensitive to the possible error sources.

The current configuration associated with the arc, examined in the last Section, proved to

be quite peculiar. Although the magnetic field signature suggests a standard current topology, with

downward and upward FAC sheets connected through ionospheric Pedersen current, the two FAC

regions were found to be electrically separated. North of the CR the westward electrojet feeds

the upward FAC while south of the CR the downward FAC feeds the eastward electrojet; a small

fraction of the downward FAC crosses the CR as Hall current, to join the westward electrojet. This

uncommon behavior has its origin in the close proximity of the CR to the FR.

The consistency of the results hints to the prospect of a continuous monitoring of the high-

latitude ionosphere, with medium altitude satellites like FAST, on a spatial scale of �1km. By the

method introduced here it becomes possible to determine both the N–S and the E–W components

of the IEF with good accuracy, even at times when the satellite crosses the AAR and the electric

field cannot be mapped to the ionosphere. Once the electric field is found one can also infer the

3D current flow in the vicinity of the satellite ionospheric footprint.



Chapter 7

Summary and future work

The central theme of the present study was to provide an accurate electrodynamic characterization

of an auroral arc, by using high resolution satellite measurements and ground optical images. The

method developed to determine the ionospheric electric field and current in the vicinity of the

arc is based on the current continuity equation and incorporates an extended set of satellite data,

taken well above the current closure region: particles (both electrons and ions), electric field, and

magnetic field. The results are internally consistent and supportive for future investigations of arc

electrodynamics. The optical information allows an independent check of the results.

The data examined in this work were obtained by instruments onboard the NASA satellite

FAST and by a TV camera of MPE on February 9, 1997, around UT 8:22:00. After a brief presen-

tation of the main types of data used to investigate the aurora we introduced the FAST payload,

the data analysis software, and the ground optical equipment. A key point that we emphasized is

the high resolution of the FAST measurements, comparable to the width of the discrete arcs.

The geophysical indices and the ground magnetograms show that the arc developed during

the growth phase of a small substorm, in the most quiet period of a disturbed interval. At the time

of the FAST overpass the visible arc was stable and �70km wide, corresponding to the more

energetic part (�5keV) of a broader inverted-V. A slow southward motion of the arc, equivalent

to �10mV/m westward IEF, is visible in the optical data. The electric field measurements locate

the arc north of the CR. The associated inverted-V encompasses several ion beams, indicating

alternate passes of FAST below and above the bottom side of the AAR.

The particle data enabled the calculation of the ionospheric conductance. Although both

the proton and electron induced conductances were discussed, only the electrons were shown to

make a significant contribution for the examined inverted-V. The solar ionization is not important

during the winter time in the polar ionosphere. Special attention was given to the calculation of the
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conductance during ion beam events. The errors were also carefully examined: small errors are

expected inside the arc, where stationarity is a good assumption and the counting statistics of the

plasma instrument is high; outside of the arc the relative errors are presumably large. Nevertheless,

the arc parameters were shown to be not very sensitive to these errors.

The highly variable conductance pattern points to the need of taking into account the iono-

spheric polarization. Representing the auroral oval as a strip of increased, homogeneous conduc-

tance, provides a model which is good for large scale M–I coupling studies, but not to investigate

small scale structures. In addition, the large scale models often neglect the longitudinal component

of the electric field — and the Hall contribution to the meridional closure of the FAC — as well as

the coupling between the FAC system and the electrojet. We built an arc model that depends on the

following parameters: i) the polarization coefficients, �6�������� ; ii) the electric field along the

arc, 4�; iii) the current supply transverse to the arc, ��; iv) the coupling between the FAC system

and the electrojet, ���; v) the flow direction of the electrojet, �. In order to clarify the importance of

each parameter we explored several instances of the model, depending on reduced parameter sets.

The polarization coefficients were instrumental in expressing the variation of the IEF:

�� � ��� �
���

��� 6�7�. The series expansion is based on Legendre polynomials, which satisfy

the condition
� �
�� 7���� �� � �. Because of this property ��� does not depend on 
� and it is

equal to the average electric field, that can be computed from measured data. ��� can be found

even for time periods that include intervals when the magnetic field lines below the satellite are

not equipotentials — and the satellite measurements cannot be directly mapped to the ionosphere.

The polarization scale size can be tuned to the data by the appropriate choice of 
�.

An important ingredient, necessary to obtain a consistent description of the arc electrody-

namics, is �� , the electric field parallel to the arc. Given the relative homogeneity of the arc in

longitudinal direction, and the fact that the IEF can be considered, to a good approximation, as

electrostatic, we took �� � 4� � const. The results obtained by this choice were in reasonable

agreement with the optical data and were found to be consistent with the expected relationship

between electric field and current implied by Ohm’s law in the anisotropic ionosphere.

A model that takes into account only the polarization and the meridional Hall current to

close the FAC is not self- consistent. The parameter �� was found to vary across the arc, indicating

that the FAC-electrojet coupling cannot be neglected; by taking it into account, through the param-

eter ���, the results were radically improved. The length scale of the electrojet, related to ���, was

found to be in the range �200–500km, in good agreement with the expectations. The minimum

set of parameters necessary to model the arc includes the polarization, the longitudinal electric

field, and the FAC–electrojet coupling, even if the arc is reasonably quiet and homogeneous.
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The flow direction of the electrojet, �, can be either 1) determined by fit, or 2) assumed

as parallel to the arc and derived from the magnetic data. Both choices led to electric fields in

slight disagreement with the optical data, implying proper motion of the arc; in case 2 the proper

motion corroborated better with the growth phase of the substorm. Including � among the fit

parameters provides an additional degree of freedom and allows for an electrojet direction which

is not parallel to the arc. In this case the parameter set can be found by nonlinear minimization of

a 8� expression. When the electrojet is assumed parallel to the arc the model becomes linear and

the fit problem can also be solved by regression; the results obtained by the two different methods

were shown to be identical, providing a double-check for the numerical technique.

The parameters obtained in case 2 above were used to check the current configuration close

to the arc. Although the magnetic field signature suggests a standard Boström Type 2 topology, the

inferred configuration appears to be quite uncommon, consisting instead of two times the Boström

Type 1 topology. The downward and upward FACs appear to be electrically separated in the

ionosphere and the current continuity is achieved on the expense of the electrojets. This peculiar

configuration is related to the close proximity of the CR and FR.

It is appropriate to conclude the whole work by pointing out some possible directions of

future development. The next task to be addressed is to check whether the uncommon topology

of the current flow unraveled by this case-study repeats for other FAST orbits. One could first

examine only the relative position of the CR and FR. An automated software procedure could be

devised allowing the efficient browsing through an extended set of orbits. Subsequently, a more

detailed analysis of some selected orbits could be performed (if it is the case), by using the method

introduced in this work. In parallel, the method should also be tested on a few standard cases, for

which ground magnetic, radar, and/or optical data are available.

In the present study we were able to derive the parameter set for an inverted-V event, dur-

ing the winter time, with the conductance induced almost exclusively by electron precipitation.

More work is required to extend the method to the downward current region and/or to summer

time conditions, by considering in addition the conductance induced by proton precipitation and/or

solar radiation. Deriving the parameter set in the downward current region is presumably a more

challenging task because of the higher uncertainty in conductance. Although in this region the pre-

cipitation is relatively flat and the polarization is expected to be less important, obtaining reliable

estimates for 4� and ��� not only north but also south of the CR would add quantitative precision to

the rather qualitative evaluation of the current flow topology.

The arc investigated in this work — as well as the associated inverted-V — was broad

and stationary, features characteristic before break-up. The deviation from the ideal infinite and
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straight geometry was small enough, so that a theory developed in cartesian coordinates proved to

be satisfactory. Nonetheless, even for this trivial geometry, the fit procedure can still be improved.

Although one cannot hope to overcome the limit imposed by the data, that lack 2D coverage, using

orthogonal curvilinear coordinates and less restrictive conditions for the longitudinal electric field

might lead to a more accurate modeling of the arc and, eventually, of more complicated forms.

The time dependence might also be of concern. We assumed the auroral structure to be sta-

tionary, on the �1 min time scale of the satellite overpass. Thus we could equate the high-altitude

and the ionospheric potential drops. This procedure can lead to wrong results if the structure under

investigation varies faster than the time needed by the satellite to cross it. In such a case another

method to estimate the ionospheric potential drop is required.

A topic that was just touched upon refers to the relation between the ion beam energy and

the FA potential drop. Once the AAR electric field is measured, and the IEF is determined with

good accuracy, the FA potential drop below FAST can be readily computed. By comparing it to the

ion beam energy a better characterization of the non-electrostatic interactions of particles, that take

place in and below the AAR, could be obtained. The FAST data could be evaluated in conjunction

with Cluster-2 measurements at higher altitude and/or low-altitude radar observations.

An important achievement of this work refers to the possibility of performing a systematic

surveillance of the ionosphere, with very good spatial resolution. The method developed here is

particularly appropriate for time intervals when the satellite crosses the AAR and the measured

electric field cannot be simply mapped to the ionosphere. Even when the mapping is possible

one could double-check the results (which are affected by measurement errors). In addition, it is

possible to obtain the DC E–W electric field, which is not measured on FAST, and to evaluate the

coupling between the FAC and the electrojet. The value of the results derived from satellite data

would be substantially enhanced, provided that conjugated ground information is available. As

a prospect for the more distant future, one could think about using ground optical information to

perform systematic studies, for different classes of auroral forms.

The FAST database comprises, at present, more than 25000 orbits, with data collected

during all seasons and at all local times. By extending and testing the method developed in this

work one could obtain a reliable routine tool for the remote sensing of the high-latitude ionosphere.

As the present case-study shows, unexpected features could be disclosed, which might shed new

light on aurora and related phenomena.
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Software tools

We give here a more detailed presentation of the software packages used to process the data. We

only describe the end-user tools, starting with data in Level Zero Processing (LZP) files. For a

more comprehensive text on the processing performed until this stage, beginning with the teleme-

try data, see McFadden et al. (2001).

A.1 Science Data Tool (SDT) and Data Manager (DM)

The first evaluation of the data is done with the SDT program, developed for Sun-Solaris platform.

Real Time (RT) and Data Analysis (DA) windows are available, allowing both on- and off-line

inspection of the data. The RT feature was necessary in the commissioning phase and was also

heavily used during campaigns. The regular processing is, however, done off-line, via menu-driven

commands offered by the DA option.

An SDT session of type DA can start from scratch, by choosing the satellite, the desired

data, and the time interval. SDT can access various data types from a larger number of missions

(most recently electric field and ion data from Cluster were added), through decomutators that

know how to read the specific data files, and how to communicate the content to SDT. Once the

mission is chosen — FAST in our case — a second window opens, containing the available data

types. After choosing the data types, the user has also to fix the time interval. In this way the

selection basis is determined and SDT can retrieve the data from files organized according to

the orbit number and to the particular data contained. For example, Survey EESA data for orbit

1859 are stored in the file fast p DSS-29 orbit1859 r ap1024. The orbit is given as orbit1859 and

the data type information is coded in ap1024. Each particular data has an APplication IDentifier

(APID) — for Survey EESA this is 1024. The rest of the file name gives the ground station used

144
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to receive the telemetry flux (DSS-29) and some extra information related to processing done on

the ground (p and r).

The management of the data files is done through a client-server system, with a central

database at UCB/SSL and a client program, datamgr (DM), at the user site. Once the user selects

the needed files, DM interrogates the central database and finds out what files are already stored

on the local system and what files are missing and have to be transferred from the FAST archive.

The decision on the files to be actually transferred can be tailored according to the data volume

and to the local network connection. When the transfer is finished the new data is plotted by just

returning the control to SDT.

Alternatively to starting from scratch, an SDT session can use an existent configuration

file. When working on a certain scientific problem, once the selection of the necessary data and

time intervals is done, this information can be stored and then called by just choosing the appro-

priate configuration file.

A.2 General IDL routines

Interactive Data Language (IDL) is a higher level programming language, developed by Research

Systems, Inc. IDL was designed to assist data processing and interpretation by offering the basic

structures of a programming language, as well as a comprehensive library of routines. These

routines can be further assembled into self-standing programs, to accomplish specific tasks.

The FAST software package includes a large number of IDL routines, that gives more de-

tailed and flexible access to the data than SDT does. Here we mention some of these routines. The

list is not complete and is just meant to hint upon the variety of operations that can be performed.

� Orbit related quantities, like:

– position, velocity

– altitude, geographic and magnetic latitude/longitude

– model magnetic field at FAST altitude and at the ionospheric footprint

are calculated with get fa orbit.

� The ionospheric magnetic footprint of FAST trajectory is displayed with plot fa crossing

(e. g. Fig. 3.2)

� The data are loaded from the SDT buffers into IDL by means of get fa * routines. For some

data types there are several routines, accommodating the different time resolutions:
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– get fa ees/get fa eeb for Survey/Burst EESA data.

– get fa ies/get fa ieb for Survey/Burst IESA data.

– get fa tso/get fa tbo for Survey/Burst TEAMS O+ data; for H+, He+, He++ the ’o’ is

changed to ’p’, ’h’, ’a’ respectively, in the name of the routine.

– get fa fields for electric and magnetic field quantities.

� With ucla mag despin one obtains despun components of the magnetic field in one of the

following coordinate systems: Spacecraft (SC), Geocentric Equatorial Inertial (GEI), So-

lar Magnetic (SM), Mean Field Aligned (MFA), Satellite Associated System (SAS). The

transformation matrices are also stored. The SC system has its � and � axes in the spin

plane (� pointing to the sun) and � along the satellite spin axis. The GEI, MFA, and SM are

well-known coordinate systems. For the definition of the SAS see p. 27. The perturbation

magnetic field is obtained by subtracting the model from the measured field.

� The electric field components �� and �� (p. 17) are obtained with ff despin svy long /

fa fields despin and fa fields despin 4k / fa fields despin 16k. The first two routines are

used for Survey data, frequency range up to 0.25/1 kHz. The other two routines are used for

Burst data, frequency range up to 4/16 kHz.

� To get particle spectrograms one uses:

– get en spec for energy spectrograms. The pitch-angle range can be chosen at will.

– get pa spec for pitch-angle spectrograms. The energy range can be chosen at will.

� Electric and magnetic field spectra are obtained with:

– fa fields spec for waveform data.

– load ac fields for DSP and SFA data.

� There is a full set of routines for computing moments of the particle distributions. The

energy and pitch-angle ranges can be set by the user. One can identify two groups:

1. Routines that compute primary moments, through summation over the data:

– n 2d fs for density, 
.

– j 2d fs for number flux, �� .

– p 2d fs for pressure, ,.

– je 2d fs for energy flux, �� .
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2. Routines that use the primary moments to compute derivative quantities:

– v 2d fs for bulk velocity, � � ��	
.

– ec 2d fs for average energy, �	 � ��	�� .

– t 2d fs for kinetic temperature, � � ,	
.

– vth 2d fs for thermal velocity, �� �
�

��	�.

A general frame for computing moment time series is provided through get 2dt. By calling,

e. g. get 2dt, ’n 2d fs’, ’fa ees’, t1=*�, t2=*�, one computes the electron density (Survey

data) for the time interval [*�� *�]. Instead of n 2d fs one can use any of the moment func-

tions listed above. Other particle data types can be chosen as well, by changing ’fa ees’

accordingly.

� Plotting time series is done by means of the tplot routine. For (multi)line/spectrogram plots

tplot calls mplot/specplot. A large variety of options can be set by using related routines:

options, tplot options, (xyz)lim. The tplot quantities are stored in the heap memory, via a

pointer mechanism, by using store data. To get access to tplot data one uses get data. The

procedure tplot file enables saving/restoring tplot data to/from the computer hard-disk.

� Detailed views of the particle distributions are given by spec2d/pitch2d and contour2d. With

spec2d/pitch2d one can plot energy/pitch-angle spectra, having the freedom to choose the

pitch-angle/energy range and the unit for the dependent variable: counts, rate, differential

flux, differential energy flux, or distribution function. With contour2d one can get contour

plots of the distribution function, represented in either �>� ��, or �>��>��, or ���� ���

coordinates (> is the energy, � the pitch-angle, and ��� refer to the direction with respect

to the magnetic field).

A.3 Specific IDL code

New IDL code was written to accomplish the tasks implied by the present work. Some of it is

listed below:

� The procedure read iff makes the reading of digitized pictures into IDL independent of the

digitization software, installed at MPE on a DEC-VMS computer. By means of read iff it

was possible to process the IFF image files on a Sun-Solaris machine.
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� Electron and proton induced conductances (Chapter 4) are stored as tplot quantities by

store ph and store ph prot. These routines implement the formulas given byRobinson et al.

(1987) / Galand and Richmond (2001) for electron / proton Pedersen and Hall conductances.

� Error calculation sections were added to the functions computing particle moments, enu-

merated in Section A.2. Part of this code was necessary in the evaluation of the conductance

errors (see Appendix C for details on error calculation).

� The routine fit ortho was used to approximate the conductance and magnetic field with or-

thogonal polynomials (Section 6.2.2); the variation of 8�� with the degree of the polynomial

was obtained with rchi iter.

� The IEF and the currents ����� ����, derived in Sections 6.2 and 6.4, were calculated with

ief nl2. This routine has a flexible design and can easily accommodate new arc models.

For each model an IDL function returning the value - (Eq. 6.2) has to be written. The

user can choose which optimization routine ief nl2 should call to find the minimum of - —

there are three possibilities, amoeba, powell, and dfpmin, all of them part of the standard

IDL distribution. Details on the minimization algorithms and on the structure of ief nl2 are

presented in Appendix F.

� Two other routines, ief lin and ief iter2, were used to make some numerical checks: ief lin,

which is based on linear regression instead of non-linear minimization, was used with the

linear model in Section 6.4.5; ief iter2 was used to check the dependence of the results

obtained by non-linear minimization, on the starting point in the parameter space. See

Appendix F for more details.

� The rotation angle of the current sheet, ����, was found by variance analysis, implemented

through the IDL routines bvar and bv arr2 (for a short presentation of the variance analysis

and of the two routines see Appendix G).



Appendix B

Geometric calibration of optical data

The data measured by FAST at 4000km altitude are magnetically conjugated with the light emis-

sion, which takes place at�110km and is recorded on video tape. For a meaningful comparison of

the two data sets one has first to find the satellite footprint at ionospheric level, and then to project

it into the image plane. The operations necessary to accomplish this task are summarized in the

following list (J. Vogt, personal communication):

1. Tracking the satellite position. One can either use the Satellite Situation Center web tool

(SSCWeb, http://sscweb.gsfc.nasa.gov), or some other software available on the local ma-

chine. The general IDL FAST package (Appendix A) provides the routines get fa orbit and

plot fa crossing for calculating and displaying the satellite orbit.

2. Mapping the satellite position along the magnetic field line, down to the ionosphere. One

has to choose the right magnetic field model, corresponding to the epoch of the observation.

Deviations as small as a fraction of a degree (�0.1Æ) in the latitude or longitude of the

projection are equivalent to distances of�10km, comparable to or larger than the arc width.

3. Given the position of the observer and the position of the satellite footprint one can calculate

the elevation and the azimuth of the viewing direction. These local coordinates can be fur-

ther transformed to right ascension (RA) and declination (D). The RA and D are expressed

in the Geocentric Equatorial Inertial (GEI) system, which is appropriate for the astronomical

input data to be used for the next step.

4. Finding the correspondence between the viewing direction and the pixel position, i. e. be-

tween (RA,D) and the coordinates (x,y) in the image plane, makes use of the camera � axis

direction (perpendicular to the image plane), and is based on the assumption that the trans-

formation consists of a rotation and a radial mapping, scaled by a factor that depends on the
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focal distance of the optical system. The rotation is characterized by the angle between the

image y axis and the celestial North direction while the radial mapping is done with a third

degree polynomial that models the distortion function of the optical system. The experi-

mental determination of the transformation coefficients is achieved by using a calibration

image, with well-known bright stars. For these stars the pixel coordinates can be read in the

image whereas the RA and D can be found in catalogs or star databases. The transformation

coefficients are further determined by numerical fit.

5. Using the transformation from step 4 with the (RA, D) coordinates from step 3 yields the

pixel coordinates of the satellite footprint. One has to take care to add the necessary cor-

rection if the calibration image was taken at a different time as compared to the data. If the

orientation of the camera in the local reference system was not changed it is only the RA that

needs adjustment. In case the orientation of the camera was changed new transformation

coefficients have to be found, either by calculating them from the old ones or by repeating

the whole calibration procedure.



Appendix C

Errors associated with conductance

calculation

The calculation of conductances is based on the assumption of stationarity, '	'! � �. In the first

part of the Appendix we expand the discussion on the validity of this assumption, made in Sec-

tion 4.4.1. The second part details the measurement error calculation, performed in Section4.4.2.

C.1 Methodological errors: The assumption of stationarity

The gradients in the electron precipitation are associated with changes in the ionospheric plasma

density, implying variations of conductance. As an approximate measure for the conductance

variation we shall investigate the variation of the plasma density, 
, at the height �� where the

ionization production maximizes. In the calculations to follow we shall disregard the variation

of �� with the energy of the precipitating electrons; nevertheless, for the numerical estimates we

shall use parameters corresponding to the actual ��. The reader is warned that the results to be

obtained are not exact. A rigorous approach implies determination of the plasma density over the

full ionospheric altitudinal range important for current conduction.

Considering a drifting stable arc, the spatial variation in the arc system implies a time

variation at a fixed point in the ionosphere system. The width of the gradient, ���%* , and the drift

velocity of the arc, ��, provide the external time scale, !
��
%* � �

��
%* 	��. By solving the time

dependent equation Eq. 4.6 one can identify an internal time scale, !���%* , that can be associated with

the change in plasma density from 
% to 
*. The smaller !
���
%*	!

��
%* is, the better '
	'! � � holds

(in the drifting arc system the quantities to be compared are �
���
%* � !

���
%*�� and �

��
%* ). After giving

the analytic solution of Eq. 4.6 we shall illustrate the discussion above with numerical values

corresponding to our arc.
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We assume that at ! � � the precipitation suddenly changes, such that the ionization

production ( is modified from (� to (�. The ionosphere is considered to be in equilibrium for

! % � and 
� �
�

(�	�. With 
� taken as ’background’ and ( � (� � (�, Eq. 4.6 writes:

�


�!
� �(� � (��� ��
� � 
��� (C.1)

This can be easily transformed to:

��

�!

�
?� � �
�
*�	�

(C.2)

�
 �




�
� ?� � � �

(� � (�
�
��

�
(�
(�

�

��

��

� *�	� �
�

�
�

*�	� is the recombination time (Eq. 4.8) corresponding to the initial plasma density 
�.

Eq. C.2 can be solved by separation of variables:

�
 � �
��� �����
����� ���� �

/���� �

� � �����
����� ���� �

/���� �

(C.3)

�
� � ? �

�

�

� *�	� �
*�	��
� �

�

�
�

�
� is the value of �
 at ! � �, when 
 has reached the new equilibrium value 
�; *�	� is the

corresponding recombination time. An immediate check of the solution Eq.C.3 can be done by

calculating �

��� � � and �

��� � �
�. The solution is valid for both increase ((� � (�) and

decrease ((� % (�) of the precipitation level. In the first case �
� � �, in the second one �
� % �.

A measure of the time necessary to change the plasma density from 
� to 
� is provided

by *�	�	�. It is interesting to remark that the increase of the plasma density is faster than the

decrease; the transition time scales with the recombination time of the final state. A more accurate

time constant is !�, defined by 

�!���
�
 � 
�� �

� (the definition holds for both � % �, which

applies when (� � (�, and � � �, which applies when (� % (�). Solving Eq. C.3 with respect to !

yields:

!� �
*�	�

�
 �

� 
�
� � �
�
� � �
 � � �


�� �

�

(C.4)

A reasonable choice for the internal time scale is !��� � !�!�. This implies an error of �10% due to

non-stationarity, which is comparable to the measurement error, as long as the precipitation level

can sustain a conductance �1mho (Section 4.4.2). We have estimated !��� for the three intervals

of precipitation gradient near to and inside our visible arc, I��=8:22:04–8:22:12, I��=8:22:12–

8:22:19, and I��=8:22:35–8:22:38.
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� The parameters required by Eq.C.4, together with the quantities necessary for their calcula-

tion, are collected in Table C.1. In the columns 3 and 4 are listed � and �� corresponding

to the times in column 2 (outside of the visible arc, precipitation peak, and northern part

of the visible arc, respectively); each of them is associated with a roughly constant precip-

itation level. The numbers are extracted from the left plot of Fig. 4.2 (compare also with

Fig. 3.12). In columns 5 and 6 we give @ � (����	�� and ��, taken from Fig. 2 of Rees

(1963). Although Rees (1963) worked with isotropic and monoenergetic distributions, his

results are presumably good enough for our rough evaluation. Column 7, (�, is obtained by

multiplication of columns 4 and 5. Column 8, ��, gives the recombination coefficient (from

Evans et al. (1977)), column 9, 
�, the plasma density (Eq. 4.7), and column 10, *��	, the

recombination time (Eq. 4.8). There is a factor of 2 variation in �� because the values cor-

respond to the actual heights of maximum ionization production. This is not consistent with

the assumption that � is constant, made when solving Eq.C.2. We regard this inconsistency

as tolerable for our approximate calculation.

� Table C.2 lists the time and length scales associated with the six possible transitions between

the three states of Table C.1. This is meant to emphasize the substantially longer time

necessary to reach the equilibrium when the precipitation decreases (the second group of

three lines). The length scale ���� in column 3 and the time !�� in column 4 were calculated

for a drift velocity of the arc �� � ���m/s, as yielded by our optical data. In the columns

2, 5, 6, 7 were added entries only for the precipitation gradients actually measured.

C.2 Measurement errors

First, the analytical formulas are processed, in order to express the number and energy fluxes, ��

and �� , as function of the experimental quantities. Then we proceed to the calculation of the

errors in �� and �� , that are further used to obtain the error in the average energy, �. Finally, the

relative errors in the Pedersen and Hall conductances are computed.

C.2.1 Computation of �� and �� from the experimental data

The 
-th order moment of the particle distribution is a 
-rank tensor:

; �

�
��-��� ��� ;��!!!�� �

�
���    ���-��� �� (C.5)



C.2. MEASUREMENT ERRORS 155

where -��� is the particle distribution function and /�� + + + /� are one of �, �, or �. The number and

energy fluxes used in this work write as:

�� �

�
�(-��� �� (C.6)

�� �

�
�

�
���(-��� �� (C.7)

The number flux is the first order moment (a vector) while the energy flux is the trace of the third

order moment (also a vector) multiplied by �	�. We are interested only in the � components

because only the fluxes along the magnetic field line reach the ionosphere and do matter for the

conductance evaluation.

We shall further detail the computation of the energy flux. By expressing the integral in

spherical coordinates and assuming isotropy around the field line one obtains:

�� � �:

� �

�

� 0

�
��- ��� � �� � ���� (C.8)

The upper angle integration limit, : instead of �:, takes into account the 360Æ FoV of the plasma

instrument on FAST, in a plane that contains the magnetic field line.

Equation C.8 can be further processed by considering the relation between the distribution

function and the differential number flux (e. g.Baumjohann and Treumann, 1996, p. 121):

- �
�

��
0� (C.9)

By expressing 0� in terms of the differential energy flux, 0� � 0�	�, and by changing the

integration variable from � to �, one obtains:

�� � :

� �

�

� 0

�
0���� �� ��� � �� � �� �� (C.10)

If the plasma detector has I energy and K angular channels, and if the energy-angle range of the

instrument fully covers the investigated distribution (which is most of the time the case for FAST,

in particular for our test orbit 1859), the energy flux can be written as:

�� � :
�
��*

� ���
�	�
�

����	�
�

� 1��
���
�

1�����
�

0���� �� ��� � �� � �� �� � :
�
��*

��* (C.11)

Each of the terms ��* can be calculated by using the average property of the integral:

��* � 0����
� � �

�
*�

� ���
�	�
�

����	�
�

��

� 1��
���
�

1�����
�

��� � �� � �� (C.12)

�
�

�
0����

� � �
�
*���� ������*� ��� ��* (C.13)
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By dropping the index � of the angular windows (which are all equal on FAST) we get:

�� �
:

�

�
��*

0����
� � �

�
*���� ������*� ��� �� (C.14)

Equation C.14 is rigorous; no approximation has been made, except for the assumption that the

energy–angle range of the detector covers the full distribution.

The terms ���, �*, and �� in Eq. C.14 are all known. The angular window, ��, only

depends on the geometry of the detector; the angles �* are determined by the sampling rate and

by the spacecraft spin phase; for a top-hat electrostatic analyzer the energy windows, ���, are

proportional to the respective middle energies, ��� � ?�� (the middle energies are in turn fixed

by the potential difference applied to the analyzer). See Table2.1 for the values of �� and ?.

The only unknown terms in Eq. C.14 are the differential energy fluxes, 0����
� � �

�
*�. If no

assumption is made about the particle distribution over the �/� �� energy–angle bin, neither can one

precisely determine ��� and ��*, nor can one rigorously relate 0����
� � �

�
*� to the measured counts

of the detector, 
�% . Usually the energy–angle bin is considered to be narrow enough, so that the

particle distribution can be approximated as uniform. For the calculations to come we imply this

assumption is true.

If the distribution over bin �/� �� is uniform than ��� � ��, ��* � �*, and the differential

energy flux can be calculated from 
�*:

0��� �

�*��

�=*��*����!
�


�*

�=*��*?�!
�


�*

7�*�!
(C.15)

with 7�* the geometric factor of bin �/� �� and �! the sampling time (the total geometric factors

for the FAST particle detectors, i. e. integrated over all angular bins, are given in Table2.1). By

using the notation $�* � �	�7�*�!�, the 1-count differential energy flux, we obtain the following

expression for �� :

�� �
:

�

�
��*


�*$�*��� ������*� ��� �� �
:

�

�
��*


�*$�*?�� ������*� ��� �� �
�
��*

�$	�* 
�*

(C.16)

The �$	�* coefficients are fully determined constants.

The derivation of the number flux, �� , in terms of experimental data, is analogue to the

derivation of �� . One starts from Eq. C.6, which can be transformed to (compare with Eq.C.10):

�� � :

� �

�

� 0

�

0���� ��

�
��� � �� � �� �� (C.17)

By assuming the distribution function is uniform over each energy–angle bin one obtains:

�� �
:

�

�
��*


�*$�*? ������*� ��� �� �
�
��*

�$��* 
�* (C.18)

with �$��* constants coefficients.
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C.2.2 Calculation of the errors in ��, �� , and �

Getting the errors in �� and �� , �$	 and �$� , is a straight process. By applying the error propa-

gation formula to Eq. C.16 one obtains:

��$	 �
�
��*

��$	�* ������� �
�
��*

��$	�* ��
�* (C.19)

where we used the fact that 
�* is Poisson distributed and ����� � 
�*. The error in �� is obtained

by the same equation, except for using �$��* instead of �$	�* .

When calculating the error in � one has to take into account that �� and �� are correlated.

Intuitively, once the number flux increases, one expects that the energy flux increases as well.

Consequently, one has to use the full form of the error propagation formula, which includes the

correlation term,
��
�

�
� �

��$	
��
�

�
��$�
��
�

� �
��$	$�
����

(C.20)

instead of the reduced form,
��
�

�
� �

��$	
��
�

�
��$�
��
�

(C.21)

which is based on the assumption that �� and �� are not correlated. Because of the positive

correlation between �� and �� the error calculated correctly, with Eq. C.20, is lower than the

result obtained with Eq. C.21 (one can see this in the bottom panel of Fig. 4.9).

To find the correction added by correlation, in terms of the experimental data, one has to

consider the explicit dependence of � on the counted particles, 
�*:

� �
��
��

�

�
��* �$	�* 
�*�
��* �$��* 
�*

�

��
�

�
� �

��
�

��
�

�
��*

�
2$	
2���

�� � 2$�
2���

��

��
�

��

�����

�

�
��*

�
2$	
2���

	�
�����

��
�

�

�
��*

�
2$�
2���

	�
�����

��
�

� �

�
��*

2$	
2���

2$�
2���

�����
����

�
��$	
��
�

�
��$�
��
�

� �

�
��* �$	�* �$��* 
�*

����
(C.22)

The correlation error, ��$	$� , is:

��$	$� �
�
��*

�$	�* �$��* 
�* (C.23)

As the IDL routines calculating �� , �� , and �, explicitly compute the coefficients �$	�*

and �$��* , Eqs. C.19 and C.22 are easy to implement as add-ons to the existing code.
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C.2.3 Calculation of the errors in �� and ��

As already mentioned in Section 4.4.2, we neglect the proton induced conductances. To keep this

Section self-consistent, we write again the formulas for electron induced conductances (Eqs.4.9):

�� �
	��

�� � �
��

� �
� (C.24)

��

��
� �+	
�

�!
�
(C.25)

and for calculating �� and � from satellite data (Eqs. 4.15, with slightly changed notations):

�� � ����
� � �

��
�
� (C.26)

� � �


� �
�

(C.27)

The quantities on the r.h.s. of EqsC.26 and C.27 are derived from measured satellite data; � and /

identify electrons and ions respectively, while �� is the magnetic field ratio, �� � ������	����.

To calculate the errors one has to apply the error propagation formula:

� First, to Eqs. C.24 and C.25, and express ��� and ��� �� in terms of �$	 and ��.

� Second, to Eqs. C.26 and C.27, and express �$	 and �� in terms of the measured quantities

�
� , �

� , �

, and �

�
.

A rigorous calculation should also take into account the correlation between �� and �

in Eq. C.24,

as well as the correlation between �� and �
� in Eq. C.26. Practically, this comes to expressing

the quantities entering Eqs. C.24–C.27 in terms of the primary variables, 
�* and 
�
�*, and then

calculating the errors analogue to the procedure used for �� in Section C.2.2. This task, however,

is significantly more difficult and, as pointed out in Section 4.4.2, it appears that the effort is not

necessary. Instead, we calculate the errors as if the implied quantities were not correlated. The

resulting formulas are easy to transpose into computer code:

���
��

�

�
����

�

�� � �
�

��
�

�
� �

�

	

��$	
��
�

�� �

(C.28)

��� ��

��	��
� �+�


��
�

(C.29)

�$	 � ��

�
��$�	

� �
�
���

�
� � ��$��

�
��
�� �

(C.30)

�� �
�
��
�
� � ��

�
�

	� �
(C.31)

The error in the Hall conductance can be obtained immediately by:

�� �
��

��
�� � ����

��
�

�
���� ��

��	��
� �

����
��
�

(C.32)



Appendix D

Current closure in orthogonal

curvilinear coordinates

For a real arc, which is neither infinite nor straight, Eq. 5.26 can no longer be simplified to the

form 5.27. Still, the ideal case of the infinite straight arc suggests a possible approach: if an

orthogonal curvilinear coordinate system, (�� �), can be found, such that the arc electrodynamics

only depends on �, then the formalism developed in Sections5.4.2 and 5.4.3 could be generalized.

In the following we derive a general form of the current closure equation, valid in arbitrary

orthogonal curvilinear coordinates. We start from Eq. 5.19, by writing �  � in the system (�� �� A)

(e. g. Morse and Feshbach, 1953):

�  � � �

$�$�$3

�
'

'�
�$�$3 �� �

'

'�
�$�$3 �� �

'

'A
�$�$� 3�

�
(D.1)

where $�� $� � $3 are the Lamé parameters:

$� �

����'r
'�

���� � $� �

���� 'r
'�

���� � $3 �

����'r
'A

����
By choosing a coordinate system with

� � ���� ��� � � ���� ��� � � A

the Lamé parameters become

$� � $���� �� �

��
'�

'�

��

�

�
'�

'�

��
�� �

� $� � $���� �� �

��
'�

'�

��

�

�
'�

'�

��
�� �

� $3 � �

and the current continuity takes the form

' (
'�

� � �

$�$�

�
'

'�
�$� �� �

'

'�
�$� ��

�
(D.2)
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Equation D.2 can be further processed to:

' (
'�

� �
�

�

$�

' �
'�

�
�

$�

' �
'�

�
� �

$�$�

�
 �

'$�
'�

�  �
'$�
'�

�
(D.3)

By integrating Eq. D.3 with respect to altitude (similar to the procedure used to get Eq.5.23) one

obtains:

 ���� �

�
�

$�

'��
'�

�
�

$�

'��
'�

�
�

�

$�$�

�
��

'$�
'�

� ��
'$�
'�

�
(D.4)

where

�� � ���� � ����� �� � ���� � ����

The first term on the r.h.s. of Eq. D.4 is the analogue of the term on the r.h.s. of Eq. 5.23, whereas

the second term results because the coordinate lines are no longer straight.

An immediate check of the relation D.4 can be done by performing a particular coordinate

transformation, a rotation of angle �:

� � �� � � � ��� � �� � � � ��� � � � �� � �� $� � $� �
�
��� � � ���� �

��� ��
� �

Consequently, Eq. D.4 writes:

 ���� �
'��
'�

�
'��
'�

(D.5)

identical to the cartesian form Eq. 5.23

To obtain the desired generalization of Eq.5.26, we have to express  ���� �  ( � �����(

in curvilinear coordinates as well:

 ���� �
�

$�$�

�
'�$�3��

'�
� '�$�3��

'�

�
�

�

$�

'3�

'�
� �

$�

'3�

'�
�

�

$�$�

�
3�

'$�
'�

�3�
'$�
'�

�
(D.6)

From Eqs. D.4 and D.6 it results:
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Equation D.7 takes a simpler form if one expresses the derivatives of $�� $� with respect to �� �

through the curvature radii of the coordinate lines. In order to do this we compare the derivatives

of the local unit vectors, a� and a � (Morse and Feshbach, 1953, p. 26)

'a�
'�

� � �

$�

'$�
'�

a��
'a�
'�

� � �

$�

'$�
'�

a� (D.8)

with the Frenet relations
�

$�

'a�
'�

� � �

��
a��

�
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'a�
'�

�
�

��
a� (D.9)
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where ��� �� are the local curvature radii of the coordinate lines. The signs are chosen such that

�� � � if the arc is seen as convex when crossed in � direction. One obtains:

�

$�

'$�
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�
$�
��

(D.10)
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Finally, Eq. D.7 writes:
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or:
'
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where the second form explicitly indicates that the derivatives are taken with respect to the arc

elements along the coordinate lines.



Appendix E

Orthogonal polynomials

The concepts related to orthogonal polynomials are covered under the wider theme of series expan-

sions of arbitrary functions. A detailed account on this topic can be found inCourant and Hilbert

(1953), Chapter 2. In the first Section here we enumerate some important systems of orthogonal

polynomials, explain the choice that we made for Legendre/Jacobi polynomials, and summarize

some important relations. In the second Section we compare numerical results obtained by using

Jacobi and Legendre polynomials.

E.1 Brief review

Given an arbitrary interval, 6 	 � 	 4, and two arbitrary piecewise continuous functions, -���

and B���, the integral

�-� B� �
� �

�
-���B��� �� (E.1)

is called the inner product of the functions - and B. The number
�

�-� -� is called the norm of the

function - . A system of functions �0�� is called orthogonal if �0% � 0*� � �� � �� �. If the norm

�0�� 0�� � �� �/, the system is called orthonormal. An example of orthonormal system over the

interval ��� �:� is given by the trigonometric functions:

��
�:

�
�� ��

:
�

�����
:

�
�� ���

:
�

��� ���
:

�   

The numbers �� � �-� 0�� are called the Fourier coefficients of the function - with respect to the

orthonormal system �0��. It can be shown that the mean square error, ;

; �

� �

�

�
- �

��
*��

@*0*

��

�� (E.2)
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takes its minimum value for @* � �*. If ; can be made arbitrary small by increasing 
, in other

words if

 �!
���

� �
- �

��
*��

�*0*

��

�� � � (E.3)

the system �0�� is said to be complete. The functions �
��

*�� �*0*�� are said to converge to the

function - in the mean.

It can be shown (see Courant and Hilbert (1953) for details) that for any interval,

6 	 � 	 4, and for any non-negative weight function, ,���, defined over this interval, one can build

a complete system of orthogonal functions, �
�

,���C������. C���� are polynomials of degree /,

termed orthogonal polynomials belonging to the weight function ,���, that can be determined

uniquely by normalizing conditions. Some frequently used systems of orthogonal polynomials are

listed below:

� Legendre polynomials, �5��: 6 � ��, 4 � �, ,��� � �, �5�� 5�� � �
���� .

� Tchebycheff polynomials, ����: 6 � ��, 4 � �, ,��� � �	
���� , �

�
,���

�
,��� � 0

�����
.

� Jacobi (or hypergeometric) polynomials, ����: 6 � �, 4 � �, ,��� � ������ � �����

�( � �� ��( � ���. We are only interested in the case ( � � � �, which provides ,��� � �.

For this case ���� ��� � �
���� . For the rest of this Appendix by Jacobi polynomials we

understand this particular choice.

� Hermite polynomials, �3��: 6 � ��, 4 � �, ,��� � ���
�

, �
�

,3��
�

,3�� � ��
"
�

:.

� Laguerre polynomials, ����: 6 � �, 4 � �, ,��� � ���, �
�

,���
�

,��� � �
"��.

Any finite interval, ���� ���, can be mapped to ��� �� by � � ����
����� , or to ���� �� by � � � ����

����� ,

with �� � �����
� .

We need orthogonal polynomials appropriate for the expansion Eq.5.38 — which implies

a finite interval — constrained by the condition Eq.5.37. The finite interval rules out the Hermite

and Laguerre polynomials. The condition Eq. 5.37 rules out the Tchebycheff polynomials, or any

other polynomials system with ,��� �� �. If ,��� �� � then�
Æ�� �� �

���
���

6�

�
7� �� (E.4)

is not necessarily � (�7�� is a generic system) and ��� looses its meaning of average electric field,

that can be calculated by ��� � ���	� (Eq. 5.32). On the contrary, with �5�� and ���� each

term of the sum Eq. E.4 is 0. This results by just writing the definition of orthogonal polynomials�
,���7����7*��� � �� �/ �� � (E.5)
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Figure E.1: Legendre polynomials, �� . . .��. Left: Even order. Right: Odd order.

for ,��� � � and � � �, by taking into account that 7���� � const. The Jacobi polynomials can

be obtained from Legendre polynomials by a simple transformation:

����� � 5���� ���� � 	 � 	 � (E.6)

One can immediately check that ���� defined by Eq. E.6 verifies the orthogonality relation with

,��� � �. It may be shown further that the norm of the so defined ���� agrees with the general

norm of Jacobi polynomials (not written in this Appendix). It results that Eq.E.6 defines indeed

the Jacobi polynomials belonging to the weight function ,��� � �, as the weight function and the

norm uniquely determine the polynomial system.

The first six Legendre polynomials are listed below:

5���� � �

5���� � �

5���� �
�

�
���� � ��

5���� �
�

�
�
�� � ���

5���� �
�

�
��
�� � ���� � ��

5���� �
�

�
����� � ���� � �
��

The graphs of 5� . . .5� are given in Fig. E.1.

The orthogonal polynomials can be easily handled in computer codes by means of re-

cursion formulas. For Legendre polynomials a general expression of the recursion formula is

(Bundke, 1967):

5
���
������ � �� � ; ���

� ��5 ���
� ����; ���

� 5
���
������ with ; ���

� �

 � �


�� � �
(E.7)

where � � �� �� �� + + + gives the order of the derivative and 
 � �� �� �� + + + gives the order of the

polynomial. For � � � and � � � Eq. E.7 reduces to, respectively:

�
 � ��5������ � ��
 � ���5����� 
5������ (E.8)

5 �
��� � �5 �

� � �
 � ��5� (E.9)
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Figure E.2: The IEF obtained with Jacobi polynomials (black solid line) and with Legendre polynomials
(red dash-dotted line). As the two curves are identical the result is a dashed black-red line. Left: Model
YPYH36. Right: Model YPYHX36.

E.2 Numerical results: Jacobi vs. Legendre polynomials

We consider an arbitrary point, 5 ���, between the ends of the investigated interval, 5����� and

5�����. As already mentioned, the interval 5�5� can be mapped to ��� �� by means of:

� �
�� ��
�� � ��

(E.10)

and to [-1,1] by means of:

� � �
�� ��
�� � ��

� with �� �
�� � ��

�
(E.11)

The first mapping is appropriate for using Jacobi polynomials in Eq.5.38 and further in Eq. 5.39,

the second one for using Legendre polynomials. As the two polynomial systems are related one to

each other by Eq. E.6, one would expect to get identical results, irrespective of the choice made.

One and the same point is mapped to either � or �. The quantities that depend on the point 5

in Eq. 5.39 are the same, either if expressed with respect to � or to �, and the minimization of -

(Eq. 6.2) should lead to the same result.

However, a close examination of the mapping relations, Eqs.E.10 and E.11, shows that the

numerical problem is not completely trivial. A simple calculation leads to � � ���� � �������.

As 5����� � �����5���� (Fig. E.1) it results, by using Eq. E.6, that

����� � �����5���� (E.12)

Consequently, even if the minimum of function - is the same, the point in the parameter space, C,

where function - reaches his minimum should depend on the choice of the polynomial system:

6�� � �����6�� (E.13)
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with the indices “J” and “L” standing for Jacobi and Legendre polynomials. The rest of the param-

eters, ��� �, 4�, ��, and �� (for models that take into account the FAC–electrojet coupling), should

be the same.

The numerical results confirm Eq. E.13 and accordingly, the physical quantities do not

depend on the choice of the polynomial system. FigureE.2 illustrates this point with the electric

field obtained from the models YPYH36 and YPYHX36, by using both Jacobi and Legendre

polynomials.

Comparing the results obtained by using Jacobi and Legendre polynomials provides a good

analytical benchmark for the minimization procedure (to be described in AppendixF). Consid-

ering the large number of parameters (40 for model YPYHX36), the requirement Eq.E.13 is not

trivial. The fact that the results obtained are in rigorous agreement with the theoretical expectation

stands for the reliability of the minimization procedure.



Appendix F

Arc models: the numerical fit

The derivation of the ionospheric electric field and current in Chapter6 is based on the numerical

minimization of the function - , Eq. 6.2. In Section F.1 we discuss the method of least squares

(MLS) and the statistical significance of - . Next, in Section F.2, we mention some of the algo-

rithms that can be used to find the minimum of - and briefly present the computer code written

to accomplish this task. The content to follow is only intended as a brief review. For more details

related to Section F.1 the reader is referred to e. g. Bevington and Robinson (1992) and Press et al.

(1997), Chapter 15. The theme discussed in Section F.2 is treated, e. g., in Gill et al. (1981) and

Press et al. (1997), Chapter 10.

F.1 The Method of least squares and the goodness-of-fit test

The method of least squares (MLS) is used to fit analytic functions to measured data: Con-

sidering the independent variable �, a set of measured data ��������, and the analytic function

������� + + + � ���, by using the MLS one finds the parameters ���� + + + � ��� that maximize the

probability to measure the set ��������. Additionally, one can also evaluate if the parametrization

properly models the data, by means of the goodness-of-fit test.

The MLS is appropriate for processing data whose presumed error distribution is gaussian,

i. e. the probability to measure a value, ������, is given by:

,� �
�

��
�

�:
�����

�

�
�� � �����

��

��

(F.1)

where �� is the uncertainty in ��, which depends on the measuring process. The probability, 5 , to

measure the set ���� is the product of the individual probabilities, ,�:
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���

,� �
��
���

�
�

��
�
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��
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��

(F.2)
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with � the total number of measurements. To maximize the probability 5 one has to minimize

the exponent:

8� �

��
���

�
�� � �����

��

��

(F.3)

Minimization of 8� implies that its partial derivatives with respect to �% vanish:

'8�

'�%
� ��

��
���

�
�

���
��� � ������

'�����

'�%

�
� � (F.4)

This is equivalent to a system of � equations for the � unknown parameters �% . If � depends

linearly on all �% one obtains a linear regression problem, which can be solved by techniques based

on matrix inversion. If the dependence in not linear in all the parameters, then 8����� + + + � ��� is

treated as a hyper-surface in an �-dimensional space, which is searched for the minimum. Some

searching algorithms are enumerated and briefly described in the next Section.

The minimum value obtained for 8� provides an estimate for the quality of the fit. If the

model function, �, is adequate, and if the uncertainties �� are correctly evaluated, then each term

in Eq. F.3 should be, on average, close to 1. This can be easily explained intuitively: If the model

function is adequate it means that ����� �� ��������, where by angular brackets we denote the mean

value. If the values �� are evaluated correctly then, by the definition of the standard deviation, we

get: �
��� � ���

���

�
�� ���� � �������

���
� � (F.5)

Consequently, from Eq. F.3 we get: 8� �� � . A rigorous calculation shows that the mean value of

8�� should be equal to 1, where 8�� is defined by:

8�� �
8�

� �;
(F.6)

with � the number of measurements and ; the number of parameters ���� (see Chapter 11 of

Bevington and Robinson (1992) and references therein). If the value of 8�� is significantly larger

than 1 it is either because the analytic function does not correctly model the measured data, or

because the uncertainties �� are underestimated, or both. If 8�� is very small, then it is a good

chance that the uncertainties are overestimated.

One should note that 8�� �� � is still not proving that the model is good, even if the uncer-

tainties �� are correctly evaluated. 8�� �� � is a necessary, but not a sufficient condition, which only

says that the model is compatible with the data, from a statistical point of view. An illustration for

this idea can be found in the first unit of Section6.4.3, where considering ��� � as small parameter

leads to a better 8�� , but the respective results contradict the experimental evidence (Table6.8).



F.2. NUMERICAL MINIMIZATION 169

F.2 Numerical minimization

Finding the minimum of a function comes under the larger cover of the optimization problems. In

general, the minimization (or maximization) of an “objective function”, & �D�, has to be done by

observing additional constraints, imposed on the value of the function and/or on the range of the

independent variable D (by D we mean a point in an arbitrary, multi-dimensional space). In some

cases one can obtain an unconstrained optimization problem by either disregarding the constraints

or by suitable changes of variable and/or function.

For unconstrained optimization there is still a large selection of algorithms (see the refer-

ences mentioned at the beginning of this Appendix). The choice is different for one-dimensional

and multi-dimensional problems. One can use a method which requires the calculation of the

derivative(s) or not. For the multi-dimensional case, one can make or not explicit use of a one-

dimensional algorithm.

The IDL user can choose between three library routines performing unconstrained mini-

mization in a n-dimensional space:

1. amoeba: The algorithm is searching for the minimum by ’trial and error’. The name of the

routine is suggestive about how the search proceeds. The function to be minimized has to

be implemented as a separate IDL routine, func. Given the point D , the routine func has to

return the value & �D�. The derivatives of the function are not required. amoeba calls func

repeatedly, until the fractional change in & between two successive calls, Æ&	& , decreases

below a predefined tolerance, � (the default tolerance is � � ����; this can be changed by

the user). Apart from the name of the routine func, the user has to provide the starting point

for the search, 5�, and a scale, �, which determines the length of the starting search step.

2. powell: The algorithm is based on the Powell’s method which, at each step, chooses a set of


 directions, ����, and performs one-dimensional minimization along each direction of the

set. The key problem is to come up with a good algorithm for choosing the directions set,

in order to minimize the number of steps. Powell discovered a method to produce such 


“conjugate” directions, which requires only the calculation of the function value. As with

amoeba, the user has to provide the name of the routine func, calculating & �D�, a starting

point 5�, and a tolerance � (if different from the default one). An initial set of directions is

also necessary. One common option is to take the unit vectors, ��� + + + � ��.

3. dfpmin: The algorithm is, to some extent, similar to that used by powell, in that it proceeds as

a sequence of one-dimensional minimizations along directions chosen in the n-dimensional
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Figure F.1: Contour plots of the function � around the minimum in a ���� �� � �� 2-dimensional cut.
Left: Model NPYH. Right: Model YPYH18.

space. However, the choice of the direction is different and relies on the calculation of the

gradient. Consequently, the user has to provide dfpmin the names of two functions: func,

returning the scalar value & �D�, and dfunc, returning the vector �&4 .

The routine ief nl2 was written as an interface between the experimental data, the arc

model, and the minimization procedure. The output consists of ����, ����, and the IEF, as well

as the goodness-of-fit estimator 8�� , which is equal to the minimized value of - divided through

� �; . The operations performed by ief nl2 can be summarized as follows:

� Input of the experimental data, through ief nl2 get. The user can choose the time period and

set the average electric field, ��� (this option is useful when there are gaps in the electric

field data).

� Initialization of the input parameters for the minimization procedure. The following degrees

of freedom can be manipulated by the user:

– The name of the function func (and dfunc, if the minimization is done by dfpmin) is

set according to the arc model chosen.

– It is possible to switch on/off the use of a fit function - linearized in ��� � and the use

of the weighting factors �	��* (see Section 6.4.3).

– The starting point can be set at will. The default starting point is the origin of the

parameter space.

– If ��� � is determined from the magnetic data instead of considering it a fit parameter

(Section 6.4.5) the user can choose the desired form of ��� �.
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Figure F.2: The IEF obtained by non-linearminimization (black solid line) and by regression (green dashed
line) with model YPYHXL36. The calculations were done by assuming ��� � � 	���. The curves look
bi-color because the results obtained by the two methods are practically identical. Left: � . Right: ��.

� Minimization of - . The minimization algorithm can be chosen among the three options:

amoeba, powell, dfpmin.

� Calculation of ����, ����, and IEF. The output is returned as arrays that can be readily

displayed in graphic form.

The results presented in Chapter 6 were obtained by using the powell minimization al-

gorithm. Some of them were checked with amoeba but no significant difference was found. No

check was done for dfpmin. Writing the analytic form of the gradient is straight but tedious. Given

the very good agreement between the results obtained with powell and amoeba, a triple check with

dfpmin was not considered necessary. As a more detailed illustration, Fig.F.1 shows 2-dimensional

cuts of the parameter space, around the minimum, for the models NPYH and YPYH18.

A different test was performed with respect to the starting point. The routine ief iter2 al-

lows the user to check the results obtained when the polarization is taken into account. In this

case the number of parameters can increase considerably, due to the polarization coefficients

6�, (Eq. 5.38). Consider, for example, the model YPYHX36, which depends on 40 parameters

(��� �, �6������!!!��	, 4�, ��, ��). At the beginning, the routine ief iter2 assumes the non-polarized

model NPYHX, which only depends on 4 parameters, and finds their values by starting the search

from the origin of the 4-dimensional space. The result is completed with 6� � � and used as

starting point for the model YPYHX1. The process is continued iteratively: the result from model

YPYHXn is completed with 6��� � � and used as starting point for the model YPYHXn+1. The

final results were identical to that obtained with ief nl2, by starting the search from the origin of

the 40-dimensional space.



172 APPENDIX F. ARC MODELS: THE NUMERICAL FIT

When ��� � derived from the magnetic data is used, the 8� function becomes quadratic

(Eq. F.3) and the system of derivatives linear in the parameters (Eq. F.4). Consequently, one

should be able to derive the parameters by using linear regression instead of non-linear minimiza-

tion. This task is accomplished by the routine ief lin. Its structure is similar to that of ief nl2,

except for calling the IDL library function regress — instead of amoeba, powell, or dfpmin. The

results obtained by using ief nl2 and ief lin are practically identical (Fig.F.2), which is another

confirmation that the minimization routine is reliable.
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Variance analysis

One standard procedure to determine the orientation of a FAC sheet is the variance analysis. In

this Appendix we only consider auroral FAC sheets at not too high altitudes (not more than �3–4

��), with the current flowing parallel to the quasi-dipolar magnetic field of the Earth. For a more

general discussion of the variance analysis technique the reader is referred to the original paper of

Sonnerup and Cahill (1967) and to the recent tutorial review, Sonnerup and Scheible (1998).

For an auroral FAC sheet the direction of the current coincides with the direction 	 of

the magnetic field. Considering a coordinate system with the � axis along 	, to determine the

orientation of the sheet one only has to find the angle, �, between the normal to the sheet, �, and

the � axis of the coordinate system. We use the notation ���� for the angle � when the � axis is

perpendicular to the �-shell (see the cartoon on the right side of Fig.3.4). This particular choice of

the � axis (and of the associated MFA coordinate system) is motivated by the fact that the auroral

current sheets tend to be aligned with the �-shell.

The direction � is determined by the condition that the component of the (measured) mag-

netic field along (the sought-after) � direction, �  �, has minimum variance:

�� �
�

�

��
*��

�
��*�
� � ����

	�
�

��
*��

��
��*� � ���

	
 �

 �
� minim (G.1)

By adding the condition �� � �, implemented through the Lagrange multiplier, �, one comes to

solving the homogeneous linear system:

'

'
�

�
�� � ��
�� � 
���

�
� �

'

'
�

�
�� � ��
�� � 
���

�
� � (G.2)
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After performing the differentiation the system can be written in matrix form as:

;��
� � ;��
� � �
�

;��
� � ;��
� � �
� (G.3)

with

;,5 � ��,�5� � ��,���5� (G.4)

where each of < and � stands for either � or �. Solving the systemG.3 is equivalent to finding the

eigenvalues and the eigenvectors of the matrix ; . As ; is symmetric (Eq.G.4), the eigenvalues,

�� % ��, are real, and the respective eigenvectors, � and �, are orthogonal. The normal � is

identical to �,the eigenvector corresponding to ��. Both eigenvalues are positive and equal to

the variance of the magnetic field along the direction of the respective eigenvector. This can be

checked by writing the matrix ; in the coordinate system ��� ��, where it takes the diagonal form

; �

!" �� �

� ��

#$ (G.5)

Once the eigenvectors were determined, the angle ���� can be found by using either � or �:

��� ���� �
��
��

� ���
��

(G.6)

We implemented the variance analysis through the IDL routine bvar. The code is based on

the library function eigenql which computes the eigenvalues and eigenvectors of real, symmetric

matrices. The user has to supply the magnetic data and the time limits for the investigated current

sheet, and has the option to choose between 2D and 3D calculation (the routine can be used not

only for auroral FAC sheets but also for the more general case of finding the normal to an arbitrary

layer, like discontinuities or current sheets in the distant magnetosphere). For the 3D case the

calculation proceeds analogous to the 2D one, except for the matrix ; which has �� � elements

and is built by using the full set of magnetic data.

By means of the IDL routine bv arr2 the variance analysis can be performed on a contin-

uous basis: given the magnetic data, the time limits, !� and !�, and a temporal window, * , bv arr2

calls bvar for each interval * obtained by moving the window between !� and !�. The temporal

window can be chosen equal to the time scale of a characteristic structure embedded in the current

sheet. Thus, one can check for the variability of the current sheet on that particular time scale.
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E., Peterson, W., Möbius, E., Kistler, L., Elphic, R., Strangeway, R., Cattell, C., and Pfaff, R.,

FAST observations in the downward auroral current region: Energetic upgoing electron beams,

parallel potential drop, and ion heating, Geophys. Res. Lett., 25, 2017–2021, 1998b.

Carlson, C., McFadden, J., Turin, P., Curtis, D., and Magoncelli, A., The electron and ion plasma

experiment for FAST, Space Sci. Rev., 98, 33–66, 2001.

Casserly, R.T., Jr., Observation of a structured auroral field-aligned current system, J. Geophys.

Res., 82, 155–163, 1977.

Cattell, C., The relationship of field-aligned currents to electrostatic ion cyclotron waves, J. Geo-

phys. Res., 86, 3641–3645, 1981.

Chamberlain, J., Physics of the aurora and airglow, vol. 2 of International Geophysics Series,

Academic Press, New York, 1961.

Chapman, S. and Cowling, T., The Mathematical Theory of Non-Uniform Gases, Cambridge

Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge,

1939.

Chiu, Y. and Schulz, M., Self-consistent particle and electrostatic field distributions in the

magnetospheric-ionospheric auroral region, J. Geophys. Res., 83, 629–642, 1978.

Chiu, Y., Cornwall, J., Fennell, J., Gorney, D., and Mizera, P., Auroral plasma in the evening

sector: Satellite observations and theoretical interpretations, Space Sci. Rev., 35, 211–257, 1983.

Comfort, R., Wu, S., and Swenson, G., An analysis of auroral � region neutral winds based on

incoherent scatter radar observations at Chatanika, Planet. Space Sci., 24, 541–560, 1976.



178 BIBLIOGRAPHY

Coroniti, F. and Kennel, C., Polarization of the auroral electrojet, J. Geophys. Res., 77, 2835–2851,

1972.

Courant, R. and Hilbert, D., Methods of mathematical physics, Interscience, New York, 1953.

de la Beaujardière, O., Vondrak, R., and Baron, M., Radar observations of electric fields and

currents associated with auroral arcs, J. Geophys. Res., 82, 5051–5062, 1977.

de la Beaujardière, O., Vondrak, R., Heelis, R., Hanson, W., and Hoffman, R., Auroral arc electro-

dynamic parameters measured by AE-C and the Chatanika radar, J. Geophys. Res., 86, 4671–

4685, 1981.

Debye, P. and Hückel, E., Zur Theorie der Elektrolyte, Phys. Z., 24, 185–206, 1923.

Eather, R., Auroral proton precipitation and hydrogen emissions, Rev. Geophys. Space Phys., 5,

207–285, 1967.

Elphic, R., Bonnell, J., Strangeway, R., Kepko, L., Ergun, R., McFadden, J., Carlson, C., Peria,

W., Cattell, C., Klumpar, D., Shelley, E., Peterson, W., Möbius, E., Kistler, L., and Pfaff, R.,
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