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ABSTRACT

Absitract

In my Ph.D. thesis | investigate with test-kinetic and particle-in-cell simulations
the interaction of three-dimensional plasma elements/clouds with transverse non-
uniform magnetic fields. The plasma motion across transverse magnetic fields is a
fundamental problem of plasma physics that is highly relevant for both laboratory and
space plasmas. In our simulations, the plasma and electromagnetic field configurations
are typical for the terrestrial magnetosphere. The numerical results obtained in the
present thesis are important for understanding the physical processes responsible for
the transfer of mass, momentum and energy in space plasmas.

The first objective of my thesis is to study the kinetic effects at the boundaries of
a proton stream injected across a non-uniform transverse magnetic field typical for a
one-dimensional tangential discontinuity, by using forward and backward test-kinetic
simulations. The numerical results obtained suggest a physical mechanism that can
explain the formation of energy-dispersed structures at the edges of proton beams
interacting with non-uniform magnetic fields. We identified kinetic effects that lead to
the formation of ring-shaped and non-gyrotropic velocity distribution functions within
the energy dispersed structures.

The second objective of my thesis is to study the kinetic structure of tangential
discontinuities by using one-dimensional electromagnetic particle-in-cell simulations.
The numerical results obtained revealed the formation of a finite width transition region
at the interface of two magnetized plasmas with different macroscopic parameters. The
transition region has properties typical for a tangential discontinuity. The particle-in-cell
results are in good agreement with the theoretical kinetic solutions and provide an
independent validation of the hypothesis assumed by these models.

The third objective of my thesis is to study the interaction of a small Larmor
radius plasma element/cloud with transverse non-uniform magnetic fields by means of
three-dimensional full-electromagnetic particle-in-cell simulations. The plasma elements
considered are streaming in vacuum and perpendicular to a background magnetic field
typical to a tangential discontinuity. The simulations results revealed the physical
mechanisms that enable the forward propagation of the cloud and the effects of non-
uniform magnetic fields on the plasma dynamics. This is for the first time when the
interaction of a plasma element with a magnetic field discontinuity is investigated with
three-dimensional particle-in-cell simulations. We evidenced physical processes advocated
previously by theoretical models and revealed in laboratory experiments.
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INTRODUCTION

Introduction

In my PhD thesis | use numerical simulations to study the interaction of non-
diamagnetic plasmas with transverse magnetic fields typical for planetary magnetospheres.
The plasma motion across transverse magnetic field is a fundamental problem of plasma
physics that is highly relevant for both laboratory and space plasmas. The physical
mechanisms that describe the interaction of solar wind irregularities (or blobs, or jets, or
plasmoids) with the terrestrial magnetopause are not yet fully understood and still
continue to represent an active research topic. The aim of this work is to analyse kinetic
effects and their role on the dynamics of non-diamagnetic three-dimensional plasma
elements/clouds across non-uniform magnetic fields using kinetic numerical simulations,
namely test-kinetic and particle-in-cell simulations. The thesis is focused on three main
objectives, each of them treated in a separate chapter of the thesis, as described below.
The last chapter is dedicated to the summary and conclusions of my work.

First objective

In the first chapter of my thesis | investigate the kinetic effects observed at the
boundaries of a proton cloud injected across a non-uniform magnetic field configuration
typical for a tangential discontinuity. | study the physical mechanisms responsible for the
formation of energy-dispersed structures with non-Maxwellian velocity distribution
functions at the edges of the proton cloud. | use both forward and backward Liouville
approaches of the test-kinetic simulation method to compute the velocity distribution
function in different areas of the proton cloud. The formation of non-Maxwellian
distribution functions, as ring-shaped or non-gyrotropic ones, is still a topic of active
research in the field of magnetospheric physics, as the mechanisms responsible for their
formation are not fully understood.

Experimental measurements performed on-board different spacecraft around
the Earth revealed the presence of energy-dispersed ion structures inside the terrestrial
magnetosphere (e.g. Bosqued et al., 1986; Zelenyi et al., 1990; Keiling et al., 2004a, 2004b).
The ion energy-latitude dispersion relations have been investigated in the ionospheric
high-latitude mapping of the plasma sheet boundary layer by Bosqued et al. (1986) and
Zelenyi et al. (1990). Also, multiple energy-dispersed ion structures have been emphasized
in the plasma sheet boundary layer using Cluster data (Keiling et al., 2004a, 2004b). The
physical mechanisms that could generate this kind of structures are still actively
investigated since they are not completely understood. Among them we mention the
time-dependent effects resulting from the spacecraft encounter with successive ion
beams that belongs to the same source (Sauvaud and Kovrazhkin, 2004) or the energy-
dependent structure of the injection source itself (Keiling et al., 2004a).
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Non-Maxwellian velocity distribution functions have been frequently observed
inside the terrestrial magnetosphere. For instance, ring-shaped distribution functions
(Saito et al., 1994) or non-gyrotropic distribution functions (Frank et al., 1994,
Grigorenko et al., 2002; Meziane et el., 2003; Wilber et al., 2004) have been measured
in-situ on-board different circumterrestrial satellites. Various mechanisms have been
proposed to explain the formation of such kind of distributions. It has been suggested
that non-Maxwellian velocity distribution functions are the result of non-adiabatic
acceleration of ions inside a current sheet (Frank et al., 1994). Meziane et al. (2003) and
Lee et al. (2004) showed that non-gyrotropic distribution functions might be formed due
to the remote sensing of a thin current sheet. On the other hand, the kinetic models of
tangential discontinuities (Sestero, 1966; Lemaire and Burlaga, 1976; Roth et al., 1996;
Echim and Lemaire, 2005) are based on anisotropic velocity distribution functions that
asymptotically tend towards isotropic/drifting Maxwellians.

Test-kinetic simulations provide a useful tool to investigate the charged particles
dynamics in systems in which a good approximation of the actual electromagnetic fields
can be obtained (Marchand, 2010). The electric and magnetic fields considered here are
prescribed a priori and not computed self-consistently during the simulation. Over time,
the test-kinetic method has been applied in various problems of space plasma physics.
Speiser et al. (1981) applied the test-kinetic approach to map velocity distribution functions
from the terrestrial magnetosphere into the magnetosheath. Curran et al. (1987) and
Curran and Goertz (1989) mapped velocity distribution functions along test-particle
orbits to study the plasma dynamics in an X-line magnetic topology. Also, the test-kinetic
approach has been used to investigate the ion dynamics into the terrestrial magnetotail
(Ashour-Abdalla et al., 1994). The penetration of the magnetosphere by the solar wind
ions has been studied by Richard et al. (1994) using the test-kinetic method with electric
and magnetic field profiles obtained from a global magnetohydrodynamic simulation of
the terrestrial magnetosphere. Rothwell et al. (1995) developed test-particle simulations
in order to investigate non-adiabatic effects introduced by sharp spatial variations of the
electromagnetic field. Also, Delcourt et al. (1994, 1995, 1996) used test-particle simulations
to investigate the ion dynamics in the near-Earth plasma sheet. More recently, the test-
kinetic approach has been applied by Mackay et al. (2008) and Marchand et al. (2008) to
study the kinetic effects in collisionless perpendicular shocks in the vicinity of the Earth’s
bow shock and also to check consistency with a magnetohydrodynamic solution.

Second objective

In the second chapter of my thesis | investigate the kinetic structure of a one-
dimensional tangential discontinuity, with and without velocity shear, using electromagnetic
particle-in-cell simulations. | study the stability of the plasma and field profiles across
the discontinuity and test the hypothesis assumed in theoretical kinetic models. Also,
the problem of a plasma slab drifting across a uniform magnetic field in the presence of
a background stagnant plasma is analysed and discussed.
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The study of discontinuity regions and their associated current sheets plays a key
role in understanding the physical processes responsible for the transfer of mass,
momentum and energy in space plasmas. Measurements of the magnetic field
performed by Cluster satellites in the solar wind plasma (Horbury et al., 2001; Knetter et
al., 2003, 2004) have emphasized that the presence of tangential discontinuities is much
more numerous than it was thought in the past (Neugebauer et al., 1984). On the other
hand, under some circumstances, the terrestrial magnetopause can be considered a
tangential discontinuity (Papamastorakis et al., 1984).

Tangential discontinuities may be viewed as finite-width current sheets separating
two magnetized plasmas with different macroscopic properties, e.g density, temperature,
bulk velocity. In such a discontinuity there is no plasma transport in the normal direction
to the boundary surface. Also, the magnetic field has only tangential components and
the total pressure is conserved across the transition region. Steady-state Vlasov
equilibrium solutions have been found for different classes of tangential discontinuities.
One-dimensional solutions at the interface of two stagnant plasmas with different
macroscopic properties have been obtained by Sestero (1964) for a unidirectional
magnetic field and by Lemaire and Burlaga (1976) for a sheared magnetic field. Sestero
(1966) and Roth (1976) computed one-dimensional solutions for plasmas moving across
unidirectional magnetic fields. Roth et al. (1996) obtained Vlasov equilibrium solutions
for one-dimensional tangential discontinuities with both the magnetic field and plasma
bulk velocity shears. De Keyser and Roth (1997) applied the equilibrium solutions for
configurations typical for the Earth magnetopause and discussed the range of parameters
for which the equilibrium was found. Echim (2004) has shown that steady-state one-
dimensional solutions can be extended to the more general two-dimensional case.
Echim et al. (2005) and Echim and Lemaire (2005) applied their kinetic model to study
self-consistently the dynamics of a one-dimensional plasma slab and of a two-dimensional
plasma flow across an external magnetic field and a background stagnant plasma. More
recently, Echim et al. (2011) applied the theoretical model of Roth et al. (1996) to study
the kinetic structure of the terrestrial and Venusian magnetopause.

The particle-in-cell method is a very powerful tool that allows the investigation of
plasma physics phenomena at temporal and spatial kinetic scales (Birdsall and Langdon,
1991). In particle-in-cell simulations, the electrons and ions trajectories are followed in
their self-consistent electric and magnetic fields computed from Maxwell’s equations.
Thus, in contrast to the test-kinetic method, the plasma internal contribution to the
electromagnetic field is taken into account here. Starting with the 1960’s, particle-in-cell
simulations have been used to study various problems of both laboratory and space
plasma physics. A comprehensive description of the method and its applications is given
by the reference book of Birdsall and Langdon (1991). To our knowledge, no full-particle
electromagnetic simulations have been performed to study the structure of a tangential
discontinuity and directly cross-check the results with a theoretical kinetic model.
Nevertheless, hybrid one-dimensional simulations have been carried out by Cargill
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(1990) and Cargill and Eastman (1991). In their code, the electrons are considered as a
massless fluid and only the ions are treated as particles. These authors performed their
study for parameters typical to the solar wind and the terrestrial magnetopause.

Third objective

In the third chapter of my thesis | investigate the interaction of a localized three-
dimensional plasma cloud/element with a transverse uniform/non-uniform magnetic
field by means of full-electromagnetic particle-in-cell simulations. The plasma element
considered here is streaming into vacuum and perpendicular to a background magnetic
field. The simulations reveal the physical mechanisms that enable the forward propagation
of the cloud and the effects of non-uniform magnetic fields on the plasma dynamics. The
results obtained are compared with theoretical models.

In-situ experimental measurements performed on-board different spacecraft
revealed the presence of magnetospheric ions inside the terrestrial magnetosheath (e.g.
West and Buck, 1976; Scholer et al., 1981). Also, plasma elements originating from the
magnetosheath have been observed inside the terrestrial magnetosphere (e.g. Woch
and Lundin, 1992; Yamauchi et al., 1993; Lu et al., 2004). More recently, Karlsson et al.
(2012) studied the three-dimensional morphology of localized density enhancements
observed by Cluster satellites in the magnetosheath and analysed their importance for
the penetration of the terrestrial magnetopause.

The interest for the interaction of plasma elements with magnetic discontinuities as
the magnetopause is raised by recent statistical studies of the dynamical properties of
large amplitude transient dynamic pressure enhancements or jets (Archer and Horbury,
2013; Plaschke et al., 2013). These studies show that the magnetosheath inhomogeneities
are dominated by velocity increases with respect to the background plasma (up to 15 times
the background level). Archer and Horbury (2013) show that about 82% of the magnetosheath
jets exhibit also an excess of density. As discussed by Plaschke et al. (2013), a large
fraction of the high-speed jets are propagating anti-sunward in the frontside magnetosheath
and are likely to interact with the magnetopause.

The physical mechanisms that mix the two different plasma populations, solar
wind and magnetospheric, and also the role played by both the interplanetary magnetic
field and the geomagnetic field continue to represent an active research topic in the
physics of planetary magnetospheres. Therefore, the studies of plasma-field interaction
are of great importance for understanding of the transfer of mass, momentum and
energy at the interface between the solar wind and the terrestrial magnetosphere.

Starting with the second half of the 1950’s, the propagation of plasma elements
across transverse magnetic fields has been investigated extensively by numerous
laboratory experiments (e.g. Bostick, 1956; Wetstone et al., 1960). All the experiments
performed in different geometries of the magnetic field evidenced the formation of a
polarization electric field at the boundaries of the plasma cloud that enable its forward
convection across the magnetic field. At the beginning of the 1960’s, Schmidt (1960)
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developed a theoretical model that is able to explain the propagation across transverse
magnetic fields of non-diamagnetic plasma elements with a large dielectric constant.
According to Schmidt’s model, a plasma cloud injected into a non-uniform increasing
magnetic field is slowed-down and eventually stopped and reflected backwards when
the magnetic field becomes larger than a certain critical value. This process, called
adiabatic breaking, has been confirmed later in the laboratory experiments carried out
by and Demidenko et al. (1967, 1969, 1972).

Lemaire (1977, 1985) applied the theoretical kinetic model of Schmidt (1960) to
investigate the penetration of solar wind plasmoids into the terrestrial magnetosphere.
Thus, the impulsive penetration mechanism has been developed in order to describe the
dynamics of plasma irregularities at the Earth’s magnetopause. Similar to the model of
Schmidt (1960), the impulsive penetration mechanism is a kinetic model that uses the
guiding center approximation to describe the self-consistent motion of electrons and
ions during their interaction with the transverse magnetic field. A detailed review of the
impulsive penetration mechanism is given by Echim and Lemaire (2000).

Numerical simulations have been widely used to investigate the plasma interaction
with transverse magnetic fields. Galvez (1987) developed one-dimensional electrostatic
particle-in-cell simulations to study the dynamics of a non-diamagnetic plasma element
injected in vacuum across a uniform magnetic field. His results revealed the polarization
of the plasma cloud and its propagation across the background magnetic field, in
agreement with the theoretical model of Schmidt (1960). Later on, two-dimensional
electrostatic particle-in-cell simulations have been performed by Livesey and Pritchett
(1989). Note that both Galvez (1987) and Livesey and Pritchett (1989) have considered
only large gyroradius beams, i.e. the width of the beam is small compared with the ion
Larmor radius. The first three-dimensional electromagnetic particle-in-cell simulations of
plasma elements injected in transverse magnetic fields have been carried out by
Neubert et al. (1992). This time the authors analyzed the dynamics of small gyroradius
clouds, i.e. the width of the beam is large compared with the ion Larmor radius, across a
uniform magnetic field in vacuum and in the presence of a background plasma. The total
simulation time considered by Neubert et al. (1992) covered two ion cyclotron periods.
More recently, Hurtig et al. (2003) and Gunell et al. (2009) have studied the plasma
motion across curved magnetic field lines with three-dimensional electrostatic particle-
in-cell simulations. All five aforementioned particle-in-cell numerical simulations are
listed below for comparison.

The plasma-field interaction is by its own nature a three-dimensional problem.
Indeed, there is (i) convection along one direction, (ii) self-polarization along the
direction that is normal to the background magnetic field and the initial injection
velocity and (iii) expansion along the third direction parallel to the external magnetic
field. Thus, three-dimensional geometries allow the simultaneous investigation of the
change of momentum along the x-axis, the formation of the space charge layers along
the y-axis and the plasma expansion along the z-axis. The numerical simulations
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discussed in the third chapter of my thesis are performed using a three-dimensional full-
electromagnetic relativistic particle-in-cell code. The plasma clouds considered here are
large compared with the ion Larmor radius and the total simulation time covers up to
four ion cyclotron periods. No background plasma is taken into account due to the
limited computational resources. | tested uniform and non-uniform magnetic field
profiles. The non-uniform magnetic field is unidirectional and is increasing along the
injection direction over a transition region with a length scale of few ion Larmor radii. No
electric field is assumed initially.

Particle-in-cell simulations identified in the literature that investigate the interaction of plasma elements
with transverse magnetic fields. The following notations are used: E = electrostatic code, EM =
electromagnetic code, & = cloud’s width along the direction normal to both the background magnetic field
and the initial injection velocity, r;; = ion Larmor radius.

Simulation Simulation Magnetic field Plasma cloud Surrounding
geometry configuration lateral width medium
Galvez, 1987 1ID-E ur[::zrlm h=3.3r;; vacuum
Livesey and Pritchett, 1989 2D-E uniform h<<ry; vacuum
p<<I background plasma
Neubert et al., 1992 3D-EM uniform >>ry, vacuum
p<<1 background plasma
Hurtig et al., 2003 3D-E C[L;Lield h<<ry; vacuum
Gunell et al., 2009 3D-E curved h=(i.5rL,- vacuum
ﬁ<<1 h—I’L[
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Chapter 1

Kinetic effects at the boundaries of a proton
sfream injected info a fransverse magnetic field:
test-kinetic simulations

In the first chapter of my thesis | investigate the physical mechanisms that lead
to the formation of ring-shaped and non-gyrotropic velocity distribution functions
(VDFs) at the edges of a proton cloud streaming across a transverse non-uniform
magnetic field. The velocity distribution function is numerically reconstructed using the
forward and backward Liouville approaches of the test-kinetic simulation method. A key
feature of the test-kinetic simulations discussed here is the formation of an energy-
dispersed structure (EDS) where the energy content varying with the distance from the
center of the stream. The EDS is characterized by non-Maxwellian velocity distribution
functions. The results presented in Chapter 1 of my thesis have already been published
(Voitcu and Echim, 2012; Voitcu et al., 2012) and blocks of text and figures from the two
papers will be reused here.

1.1 Vlasov equation

The space and time evolution of the velocity distribution function, f, for each
component species, a, of a collisionless plasma is described by the Vlasov equation
(Delcroix and Bers, 1994):

df, o | o ;5 = 3y 9L
Lty —=2L+-2(E+vXB)—%=0
o TV T ¢ aFE (£.1)

o

where the electric and magnetic fields are due to both external and internal plasma
charges and currents. A self-consistent solution of equation (1.1) is obtained when the
electromagnetic field is computed from Maxwell’s equations:

VXB:“O(jext+jint+goaa—fJ

ot (1.2)

where p.,; and p;,; are the external and internal plasma charge densities, while J,,, and

J,,: are the external and internal plasma current densities. The internal source terms pj,
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and :]),»n, in equation (1.2) are computed from the zeroth and first order moments of the
velocity distribution function of each component species:

PP =24, [ £,(F9.00d°
R (1.3)
T F0=Yq, [v£,F.5.0d%

where the integration is performed over the entire three-dimensional velocity space. As
can be noticed, obtaining a solution of the non-linear partial differential equation (1.1) is
not straightforward in most of the problems of practical interest. The Vlasov equation
(1.1) coupled with Maxwell’s equations (1.2) describes the velocity distribution function
of each plasma component species and treats self-consistently the coupling between the
plasma dynamics, external forces and electromagnetic field. In the following we use the
method of characteristics to compute the velocity distribution function in a prescribed
configuration of the electromagnetic field.

1.2 The test-kinetic simulation method

The test-kinetic simulations are based on numerical integration of test-particle
trajectories in prescribed electric and magnetic fields and can be classified in four
different approaches according to Marchand (2010): (i) trajectory sampling, (ii) forward
Monte Carlo, (iii) forward Liouville and (iv) backward Liouville. The latter two will be
described below. The test-kinetic method is a useful tool to study the kinetic structure of
plasmas using prescribed electric and magnetic fields provided either by theoretical
models, magnetohydrodynamic simulations or experimental data. The usefulness of the
method is evident. It provides a description at the microscopic level that is consistent
with electromagnetic configurations determined at a macroscopic level, theoretically or
experimentally. | will use both forward and backward Liouville approaches to analyze
the kinetic structure of a proton cloud injected into a given magnetic field, assuming
that the initial velocity distribution function is known.

The characteristics of the Vlasov equation for collisionless plasmas can be obtained
by solving the Newton-Lorentz equation of motion for a system of charged particles
injected into given profiles of the electric and magnetic fields (Delcroix and Bers, 1994):

2— -
d—fzi(Eer—er) (1.4)
dt m
This is equivalent to Liouville’s theorem applied to the velocity distribution function f, which
states that the numerical value of fremains unchanged at each point along a test-particle orbit:
¥ _o
dt
One can compute numerically any number of Vlasov equation characteristics and then

(1.5)

map the velocity distribution function along them by applying Liouville’s theorem.
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1.2.1 The forward Liouville approach

In the forward approach one defines a uniform grid of guiding centers with
NxN, nodes placed inside the so-called “source region” from where test-particles are
injected into the simulation domain. The velocity distribution function is prescribed in
the source region. To each of the N,xN, mesh points, n, particles are “attached” with
the initial velocities (vxo,v)0,v-0); distributed according to the velocity distribution
function defined for the source region. In order to reconstruct the VDF in other regions
of the simulation domain, 6xn,xN,XN, equations of motion (1.4) are numerically
integrated in the time range £>0 and provide 3xn,xN <N, components of the final test-
particles velocities (v,1,,v-); at time ¢. These velocities define a scattered distribution of
points in the three-dimensional velocity space.

at time =0 at time 7> 0

Displaced Maxwellian: L > f at the end of the simulation

SO Vi Vo) FORWARD APPROACH: Sy, 2 v, v, V)
positive time step A7> 0

~ PN

5 ; Liouville’s theorem: s .
fosSdoen ) 4 D o S )
along a particle trajectory df/dr=0

Figure 1.1 — Schematic diagram of the forward Liouville approach; a positive time-step is used to integrate
test-particle orbits in given electric and magnetic fields.

Since the velocity distribution function does not change along each of the orbits,
the value of f'in each point of the velocity space defined by the final velocities (vy,v,,v.);
is equal to the value of the initial distribution function computed at =0 for the initial
velocities (vy0,v0,v-0);, as stated by the Liouville theorem (1.5). This is basically the
procedure to Liouville map the three-dimensional velocity distribution function from a
point in configuration space to another, when the profiles of the electric and magnetic
fields are known. In practice we need a sufficient number of characteristics to achieve a
reasonable sampling of the velocity space. Therefore, we “collect” the VDF from a bin in
the three-dimensional configuration space. The procedure outlined above is applied at
time ¢ in those spatial bins of the configuration space populated by a sufficiently large
number of particles such that a satisfactory sampling of / to be obtained. A schematic
diagram describing the forward Liouville approach is shown in Figure 1.1.
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1.2.2 The backward Liouville approach

A limitation of the forward approach is its reduced spatial resolution resulting
from the binning of the spatial domain in cells whose size depends on the total number
of test-particles and the resolution desired in the velocity space. When one needs a very
good spatial resolution then better results are obtained by the backward approach.

In the backward approach a three-dimensional velocity grid (vy,v,,v:); with N,
vertices is constructed at a precise position in the configuration space. A test-particle is
assigned to each vertex of the grid and its equation of motion is integrated backward in
time back to =0. To each node of the grid a single test-particle is assigned. The initial
velocities of the test-particles are precisely equal to the velocities corresponding to the
grid vertices. Thus, the particles are injected in the system from the spatial region where
the distribution function is unknown, contrary to the forward approach that considers
particles injected from a source region and propagated forward in time until they reach
the region where the VDF needs to be computed.

at time =0 attime 7> 0

N=N'+N 4. +N
X

N N N N N N ’1
’\0 J 0 <0 ‘.\'0 ‘/\'0 z0
A N,
X7

Jo s Vi Vygr Vo) if the particle’s

guiding center is localized in the \/ \/
< l

source regi on

1
V.
X
1 _
\vl
Vi
1 1 il
v v v
y ‘\" - ‘\"r
M
v,

v
N N
V. V.

—or—
/=0 1f the particle’s guiding center
1s localized outside the source
region

~ PN

R N Liouville’s theorem: 5 v
fosfo s fs) q D fosfdon )
along a particle trajectory df/dr=0

Figure 1.2 — Schematic diagram of the backward Liouville approach; a negative time-step is used to
integrate test-particle orbits in given electric and magnetic fields.

BACKWARD APPROACH: f in the region of interest
negative time step Ar <0 Sy, z v, v, )

In order to reconstruct the velocity distribution function with the backward
approach, the 6xN, equations of motion (1.4) are numerically integrated backward in
time, thus providing 3N, components (vxo,1,0,V-0); Of the test-particles velocities at time
=0. If the particle’s i guiding center is localized inside the source region, at time =0, we
assign to that particle the numerical value of the distribution function computed at =0
for the velocity components (vyo,vy0,V-0)i. Otherwise, the value of the VDF is set to zero.
Using Liouville’s theorem (1.5) we assign to each vertex of the grid, (vi,v,,v:); the
numerical value of the distribution function computed at =0. In this way the VDF is
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determined on the discrete mesh in the 3D velocity space. This procedure is applied at
time ¢ for N, points of interest in the configuration space. A schematic diagram
describing the backward Liouville approach is shown in Figure 1.2.

It should be mentioned that in both forward and backward approaches, the
source region is defined in terms of the guiding centers positions and not based on the
actual positions of the particles. More exactly, in the forward approach we define at =0
a uniform grid of guiding centers and we compute the actual positions of all the particles
assigned to those guiding centers based on their initial velocities and fields configuration
in the injection region (Northrop, 1963):

S - m
r—rgc+q?B><wL (1.6)

where 7 is the position of a particle with the guiding center localized in Fgc, while the last
right term in equation (1.6) is the Larmor radius vector; w | is the gyration velocity in the

perpendicular plane to the magnetic field of induction B. A schematic diagram is shown
in Figure 1.3. The blue circles illustrate different orbits of the particles (green dots) that
gyrate around their guiding centers (red dots). It can be noticed that even though the
initial distribution of sources (guiding centers) is structured as a uniform grid, the
particles are randomly localized inside and nearby the source region at /=0. In this way a
more realistic initial distribution of particles in the configuration space is obtained, in
contrast with the more straightforward possibility of injecting the particles directly from
the grid nodes. In the backward approach, the source region is also defined based on
guiding centers positions in order to have consistency with the forward approach. Only
that this time the equation (1.6) is applied to compute the guiding centers positions,
since the final positions of the particles at the end of the simulation, i.e. at =0 in the
backward approach, are known.
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Figure 1.3 — Schematic diagram of the source region defined in terms of guiding centers positions. The
blue circles illustrate different orbits of the particles (green dots) that gyrate around their guiding centers
(red dots).
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1.3 Simulation setup

In the test-kinetic simulations the magnetic and electric fields introduced in
equation (1.4) are prescribed a priori. The magnetic field used in our computations is
stationary, it varies with the x-coordinate and is confined everywhere in the yOz plane:

Bx)= %erfc(%)wL%{Z—erfc(%ﬂ (1.7)

where 1_3)1 is the asymptotic field in the left hand side of the transition region (x——), 1_3)2
is the asymptotic field in the right hand side (x—+) and L represents the characteristic
scale length of the transition region. This type of magnetic profile has been obtained
self-consistently from kinetic models of one-dimensional tangential discontinuities (TDs)
(e.g. Sestero, 1964; Lemaire and Burlaga, 1976; Roth et al.,1996). The magnetic profile
will be hereinafter also termed discontinuity although there is no discontinuous variation
of it inside the simulation domain. We investigate a particular configuration of the B-
field, namely an antiparallel profile, which is obtained by setting B,=0 and B,.=—B,. in
(2.7). In this case the B-field is everywhere parallel to Oz and changes sign at x=0.
The electric field is everywhere normal to the magnetic field and is derived from
the two-dimensional Laplace equation solved in the xOy plane:
D I
+ =
ox> 9y’
The equation (1.8) is integrated on a rectangular domain defined by x;<x<xz and

0 (1.8)

ve<y<yr. The following Neumann boundary conditions are considered:

| oo _,
ax X=X - ax X=X -
' - (1.9)
R R X
ay V=Yg ay Y=yr

where V) is the plasma bulk velocity at the left hand side of the transition region. The
boundary conditions (1.9) have been chosen such that the electric field at y=y5 and y=yr
sustains a quasi-uniform electric drift in the x direction: E,(x)/B(x)=V,. The boundary
conditions at x=x; and x=xr correspond to a vanishing E, component at the two sides of
the simulation domain. The electric field obtained from equations (1.8) and (1.9) is a
two-dimensional generalization of the one-dimensional electric field used in previous
test-particle simulations (Echim and Lemaire, 2003). Taking xz=—x; and y;=—yg, the
electric field intensity has the £, and E, components:

oS oo 2 i 22

X, mol X, 2x, (1.10)
T~ . | mmx mury
E (x,y)=—— sin cosh
() 2me2_1‘nm [2xL ) (ZxL ]

where m=1, 3, 5, etc. The n,, coefficients are given by:
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2x V.B i 2
n, = X o1 Jerf( all QJSin(me)dQ
eosh| s |\ L
2xL

The solution of Laplace’s equation (1.8) with boundary conditions (1.9) may be viewed
as an electric field simulating the one sustained by space-charge layers forming at the

(1.11)

boundaries of a moving non-diamagnetic plasma element in the presence of a magnetic
field (e.g. Schmidt, 1960; Galvez et al., 1990) and illustrated by the particle-in-cell
simulations described in the third chapter of the thesis.

The simulations presented here have been performed for an electromagnetic
field configuration scaled to reproduce parameters typical for the terrestrial magnetotail.
The magnetic field profile would correspond to a tangential discontinuity. A possible
origin of the electric field can be a localized perturbation of the dawn-dusk electric field.
Another region of the magnetosphere where such electric and magnetic fields could be
observed is the magnetopause.

The initial velocity distribution function specified for the particles injected from
the source region is described by a displaced Maxwellian:

2,2, 2
(Veo=¥) +Vyo+":o]

32 m[
— m 20e,T,
fM(vxoavyoasz)_NO[anB%j e (1_12)

where Vj is the average velocity parallel to the positive x-axis and perpendicular to the
magnetic field, while Ny and T are the density and temperature of protons. In both
forward and backward approaches the initial (r=0) source region, where the velocity
distribution function is known, is localized in the left hand side of the transition region in
the xOy plane perpendicular to the magnetic field. A schematic diagram of the simulation
setup is shown in Figure 1.4.

A

grad B

> CIrr

Bx grad B

Figure 1.4 — Schematic diagram of the simulation geometry. The source region (red rectangle) where the
initial velocity distribution function is known is localized in the xOy plane perpendicular to the magnetic
field, at the left hand side of the transition region.
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1.4 Numerical results: forward Liouville approach

1.4.1 Ring-shaped and non-gyrotropic VDFs observed by Cluster satellites
in the terrestrial magnetosphere

Lee at al. (2004) and Wilber et al. (2004) have thoroughly analysed data from the
four Cluster spacecrafts (Escoubet et al., 1997) on 1* of October 2001 and discussed the
kinetic properties of the plasma in the vicinity of the neutral sheet. It is shown that the
current sheet became very thin, of the order of the Larmor radius of a 5 keV proton
gyrating into a magnetic field of 10 nT. The thinning of the current sheet coincided with
observations of highly anisotropic ion VDFs; the B, gsm component turned from negative
to positive values (Lee et al., 2004). Examples of ion VDFs corresponding to these
observations are illustrated in Figure 1.5 and show projections in the space of
perpendicular velocities at three different moments of time.

0 -~ " » -~ P ) ~
. -l— 'l . -l' 4 b ,- £
-2000 , RS ST
-2000 0  +2000  -2000 0  +2000  -2000 0  +2000
Vi, Vi, Vi,

Figure 1.5 — Example of ring-shaped and non-gyrotropic (crescent-like) ion VDFs observed by Cluster (C1)
CIS instruments (Reme et al., 1997) at 09:25:40 UT (left panel), 09:36:32 UT (middle panel) and 09:46:11
UT (right panel) on 1% of October 2001. All panels illustrate sections in the velocity plane perpendicular to
the local magnetic field; the units are km/s on both axes (from Lee et al., 2004).

Before the thinning of the current sheet, the proton velocity distribution
functions observed by Cluster spacecraft (see Figure 1.5) are nearly isotropic with a
small central cavity. Nevertheless, later on, the velocity distribution function, although
remains still gyrotropic, shows that a significantly larger central region of the velocity
space is voided of particles. The distribution function becomes highly non-gyrotropic
toward the end of the analysed time interval, with the ions being restricted to a limited
sector in the space of perpendicular velocities. Similar features of velocity distribution
functions have been reported by observations of ion shell or ring-shaped velocity
distribution functions in the plasma sheet (Nakamura et al., 1991) or plasma sheet
boundary layer — PSBL (Nakamura et al., 1992), triggering instabilities, waves and
auroral emissions (Olsson et al., 2004; Keiling et al., 2006; Ashour-Abdalla et al., 2006).

Based on test-particle simulations without any electric field, Lee et al. (2004)
explained the crescent-shaped non-gyrotropic velocity distribution functions as an effect
of the remote sensing of particles with Larmor radius larger than the thickness of the
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neutral sheet. The velocities of the test-particles simulated by Lee et al. (2004) had the
initial velocities distributed according to a Maxwellian distribution function with a low-
energy cut-off matching the observed velocity distribution functions. The VDF in various
regions of the simulation domain has been computed by accumulating particles passing
through the corresponding spatial cell in 25 ion Larmor periods and not by tracing VDFs
along integrated orbits as in this study.

1.4.2 Case I: Antiparallel magnetic field and non-uniform electric field

Inspired by the previous example of experimental and numerical results we
performed test-kinetic simulations for the setup described in section 1.2, similar to the
one imagined by Lee et al. (2004). The test-kinetic method adopted here enables the
direct computation of the velocity distribution function by Liouville mapping. The
antiparallel magnetic field is shown in Figure 1.6 (left panel), while the non-uniform
electric field is shown in Figure 1.6 (right panel). This simulation geometry may be
viewed as describing a neutral sheet and a superimposed electric field with E, changing
sign whenever the B. reverses sign. One important aspect of our electromagnetic
configuration is that although B, changes sign at x=0, the gradient-B drift remains
parallel to +Oy since VB also changes sign at x=0.

4
Bz [nT] 4 E [mV/m]
L 30 31)(_1\0—TW 10
i it A/
20 2| | 54 fiic:f 8
10 111 : :
= . 6
0 = 07 | L
> B S 4
-10 -1‘| | i)
20 21 N E
-30 3. - 0
4 2 0 2 4 4 4
xtkml 340 x10*

Figure 1.6 — Left panel: magnetic field profile in the simulation domain; the B-field is unidirectional and
changes orientation at x=0. Right panel: electric field profile in the simulation domain; E, changes sign
whenever B, reverses sign. The simulation domain is limited by: —40000 km < x < +40000 km, —30000 km
<y <+30000 km.

Our numerical experiment consists in injecting test-particles on the left side of
the neutral sheet (x<0, see Figure 1.6 — left panel) and integrating their orbits until they
intersect the magnetic transition region. The initial velocity distribution function of the
test-particles is given by the drifting Maxwellian (1.12) without any low-energy cut-off.
All the trajectories are integrated numerically over a time interval t. The simulation
domain is defined between [-40000, +40000] km along the x-axis and [-30000, +30000]
km along the y-axis, the particles that reach regions outside these limits are removed
from the simulation. We use the forward Liouville approach (see Figure 1.1) to compute
the VDF of the test-protons. The input parameters assumed are given in Table 1.1.
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Table 1.1 — Input parameters of the test-kinetic simulations: Ny, k3T, V, are the density, thermal energy
and average velocity of the drifting Maxwellian (1.12); B,., B,. are the asymptotic values of the magnetic
field; L is the length scale of the TD; R; is the Larmor radius of the thermal protons; I; is the proton
cyclotron period; N.xN, is the number of injection sources; n, is the number of test-particles injected from
each source; xy, ), are the coordinates of the first source; dx,, dy, are the separation distances between
sources along Ox and Oy.

No kgTy Vo By, By, L R T N=N i X0, Yo dxy, dyy
[m?>] [keV] [km/s] [nT] [nT] [km] [km] [s oy r [km] [km]
Casel 104 3 2000 -30 +30 6000 260 2.2 12 20000 —-20000,-550 200, 100

4

Casell 10 7 200 +30 +90 6000 400 2.2 12 75000 -20000,-1100 200, 200

In Figure 1.7 we illustrate the positions of the protons in the xOy plane,
perpendicular to the magnetic field, after 120 seconds of gyration and drift (roughly 55
gyration periods). The local number density is color coded; one density value is assigned
to each bin of a 2D mesh of 60x60 spatial cells. After 120 seconds the protons are still in
the region with a smooth variation of the magnetic and electric fields, on the left side of
the discontinuity, and continue to drift towards the discontinuity. The spatial variation
of the VDF in various regions of the cloud is shown in Figure 1.8. As expected, in the
central region of the cloud the VDF is a drifting Maxwellian similar to the initial one.

After another 100 seconds of drift, the protons move inside the transition region
where they interact with the non-uniform field. Their positions in the xOy plane,
perpendicular to the magnetic field, are shown in Figure 1.9 for =225 seconds (or
roughly 100 proton gyro-periods). The overall shape of the proton cloud is deformed
and shows significant asymmetries; the test-protons are scattered in the positive
direction of the y-axis. While initially the spatial scale of the proton cloud in the y-
direction was roughly 6000 km, after 225 seconds the cloud expands over 20000 km in
the positive direction of y-axis. We assign this asymmetric expansion of the cloud to the
positive gradient-B drift (Northrop, 1963):

7o mwj
VB 2qB3

where w | is the perpendicular velocity in the guiding center frame of reference.
Indeed, in the geometry chosen here the gradient-B drift described by equation

(1.13) is the most important one. This charge and energy dependent gradient-B drift acts

BxVB (1.13)

inside the transition region where the electromagnetic field is non-uniform. The VDF of
protons in various spatial bins inside the cloud is computed for each spatial bin defined
in the xOy plane and identified by the combination of letters (rows) and numbers
(columns) in Figure 1.9. The size of a spatial bin is defined such that it contains a large
number of particles for a good sampling of the VDF. The bins of the mesh shown in
Figure 1.9 have a spatial resolution of 280 km in x-direction and 2500 km in y-direction,
adapted to the geometry of the cloud and the total number of simulated particles.

The spatial variation of the VDF in the bins illustrated in Figure 1.9 is shown in
Figure 1.10. These results evidence a key feature of the proton velocity distribution
function: the formation of a cavity in the central region of the perpendicular velocities
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space. An example is given by the ring-shaped velocity distribution functions obtained in
the lateral spatial bins D3, E3, D4 and E4. The size of the central, low-energy cavity has
the tendency to increase with the distance from the center of the ion cloud; the central
void of particles is larger close to the upper boundary (i.e. for larger y-values) than in the
center (compare, for instance, the VDFs of bins E3 and E4). The kinetic properties of the
front and trailing edge of the proton cloud show additional interesting features. The
velocity distribution function is highly non-gyrotropic on the front-side and trailing edge
of the cloud, as illustrated by the VDFs obtained for instance in spatial bins A4, B4, G4
and H4, shown in Figure 1.10. These aspects will be discussed in more detail below.

Further, Figure 1.11, Figure 1.13, Figure 1.15 and Figure 1.17 show the positions
of the protons in the xOy plane after 275, 300, 350 and 600 seconds of gyration and drift
illustrating the subsequent stages of the interaction of the proton cloud/beam with the
region of magnetic field gradient. The proton cloud continues to drift towards the right
side of the discontinuity. The overall shape of the cloud is strongly deformed and shows
significant asymmetries. The spatial variation of the velocity distribution functions
corresponding to the cloud’s position illustrated by Figure 1.11, Figure 1.13, Figure 1.15
and Figure 1.17 are shown in Figure 1.12 for t=275 s, Figure 1.14 for =300 s, Figure 1.16
for =350 s and Figure 1.18 for /=600 s. These results obtained confirm that the ring-
shaped VDFs observed at the edges of the proton cloud/beam are preserved even when
the cloud exit outside the region of magnetic transition. In some sense they are a
“hallmark” imprinted on the cloud’s kinetic structure by the interaction with the TD.

In Figure 1.15 one can identify the formation of two proton populations with
different dynamics: P1, a population that is captured in the interior of the discontinuity
and P2, a population that penetrates inside the discontinuity and moves across it into
the right side. The formation of these two populations is an effect of the combination of
the electric drift and gradient-B drift acting inside the simulation domain.

As shown in Figure 1.10, Figure 1.12, Figure 1.14, Figure 1.16 and Figure 1.18, the
lateral edges of the cloud (in the direction perpendicular both to Vand 1_3)) are mainly
populated by the most energetic particles of the cloud and the velocity distribution
functions in these regions are ring-shaped. The physical mechanism that explains the
formation of the central cavity in the velocity space and the creation of a ring-shaped
distribution in the space of perpendicular velocities is related to the gradient-B drift.
Indeed, the particles with a larger perpendicular thermal energy are deflected by T/)VB to
larger distances along the y-axis (see (1.13)). The velocities of the particles deflected by
the gradient-B drift populate the ring shaped VDFs observed, e.g., in bins D3, D4, D5, E3,
E4, E5, F4, F5 of Figure 1.10. The protons with smaller thermal velocities are deflected
less by VVB and therefore their number decreases in the positive direction of the y-axis,

away from the center of the cloud. The regions close to the edges are virtually not
accessible to particles with small thermal energy. Thus, the velocity space corresponding
to the smaller energies is void and a cavity is formed in the central part of the VDF (see
bins D3, D4, D5, E3, E4, E5, F4, F5 of Figure 1.10).
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Figure 1.7 — Distribution of protons in the xOy plane after 120 seconds (~557;) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
cloud moved in a region of virtually uniform electric and magnetic fields. The spatial mesh on which the
VDF is reconstructed is also shown; each bin is identified by a combination of letters and numbers as
shown on the left side and bottom side of the figure.
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Figure 1.8 — Projection in the space of perpendicular velocities, for v.=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at =120 seconds. The spatial bins are defined in Figure 1.7.
One notes the drifting Maxwellian VDF obtained in the central core of the cloud and non-gyrotropic VDFs
at the edges of the cloud; the latter result from the large Larmor radius particles with gyro-centers inside
the cloud. Note the different regions of the velocity space populated in bins C1-11 compared to C5-I5.
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Figure 1.9 — Distribution of protons in the xOy plane after 225 seconds (~100T;) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
cloud has spent some time in the region of non-uniform fields and its shape is elongated into the +y-
direction under the action of the gradient-B drift. The spatial mesh on which the VDF is reconstructed is
also shown.
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Figure 1.10 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at =225 seconds. The spatial bins are defined in Figure 1.9.
A drifting Maxwellian VDF is obtained in the core of the cloud, in bins D1-F1, D2—F2. Ring-shaped VDFs
are obtained close to the edges of the cloud, bins D4—F4, E5—F5. Crescent-like VDF are obtained close to
the trailing and leading edges, A2—A4, B4—B5, C4—C5, G4—G5, H4—H5, 14—I5.
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Figure 1.11 — Distribution of protons in the xOy plane after 275 seconds (~1257;) from injection in the
electromagnetic field illustrated in Figure 1.6. This snapshot illustrates the initial stage of the interaction
between the proton cloud and the region of the most rapid variation of B; some parts of the cloud
intersected the plane x=0 where B=0. The local value of the number density is color coded. The spatial
mesh on which the VDF is reconstructed is also shown.
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Figure 1.12 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at A7=275 seconds. The spatial bins are defined in Figure
1.11. During this initial stage of the interaction of the cloud with the discontinuity one identifies the
Maxwellian core of the cloud (bins B1-B2) and non-gyrotropic VDFs at the leading edge (e.g. bins D5-I5).
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Figure 1.13 — Distribution of protons in the xOy plane after 300 seconds (~13577;) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
spatial mesh on which the VDF is reconstructed is also shown. The figure illustrates a later stage of the
interaction between the cloud and the central region of the discontinuity where the magnetic field
vanishes. A significant number of protons moved in the region of positive B..
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Figure 1.14 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons at Ar=300 seconds. The spatial bins are defined in Figure 1.13. We note
that in the region of positive B, the VDFs of protons are ring-shaped (bins G4—14, H5—I5) or crescent-like
(bins G3—13, E5—G5).
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Figure 1.15 — Distribution of protons in the xOy plane after 350 seconds (~16077;) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
spatial mesh on which the VDF is reconstructed is also shown. One notes the splitting of the cloud into
two populations: population P1 that does not cross the surface where B=0 and remains trapped in some
region on the left side of the discontinuity (x<0) and respectively population P2 that penetrates into the
right side of the magnetic discontinuity. At later stages the two populations disconnect. In the reminder of
the paper we follow only P2.
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Figure 1.16 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at A7=350 seconds. The spatial bins are defined in Figure
1.15. Only VDFs of the P2 population are shown. Ring-shaped and crescent-like VDFs are observed in the
large majority of spatial bins.
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Figure 1.17 — Distribution of protons of the population P2 in the xOy plane after 600 seconds (~27077})
from injection in the electromagnetic field illustrated in Figure 1.6. The local value of the number density
is color coded. The spatial mesh on which the VDF is reconstructed is also shown. The protons move in a
region of uniform magnetic and electric field, on the right side of the discontinuity.
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Figure 1.18 — Projection in the space of perpendicular velocities, for v.=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at A=600 seconds. The spatial bins are defined in Figure
1.17. All the VDFs obtained for this stage of propagation are either ring-shaped or crescent-like, a
signature of the interaction of the cloud with the region of magnetic field gradient.
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An additional key feature associated with the same physical process is the
formation of a velocity-dispersion structure at the edges of the cloud. Since grad-B drift
displaces most efficiently the particles with higher thermal velocities, the outer edges of
the proton cloud/beam are populated by the particles with the highest energies. Thus,
the kinetic energy of the protons decreases from the outer layers towards the core of
the cloud. This velocity dispersion is revealed for instance by the VDFs in bins F5, F4, F3,
F2, F1 of Figure 1.10. Our simulations results suggest a mechanism to explain the
formation of velocity-dispersed ion structures based on the gradient-B drift that can
imprint energy-dispersed features in regions close to the boundaries of spatially confined
plasmas. This mechanism is additional to the ones proposed in the literature (e.g. Zelenyi
et al., 1990; Keiling et al., 2004; Sauvaud and Kovrazhkin, 2004).

The kinetic properties of the front-side and trailing edge of the proton cloud
show interesting additional kinetic features. The proton velocity distribution function is
non-gyrotropic in these regions and it has a crescent shape with increased phase density
in certain areas of the perpendicular velocities space. This effect is seen, for instance, in
bins A3, A4, H2-H5 of Figure 1.10, A3, A4, H3, H4, 14 and I5 of Figure 1.12, A2, A3, H3
and 13 of Figure 1.14, A2, A3, D1, E2, F3, G3, H4, |14 of Figure 1.16. These crescent-like
shaped VDFs observed at the front and trailing edges of the cloud are an effect due to
the remote sensing of the protons with guiding centers localized in the interior of the
cloud and whose Larmor radius is large enough to enable the orbit to penetrate along x
in regions behind and ahead of the bulk of the cloud. For example, most of the particles
localized in bins D1, E2, G3 and 14 from Figure 1.16 have a negative gyration velocity v,
due to the clockwise gyration of protons in the positive B-field. At the same time the
particles in bins A3, B4, C5 shown in Figure 1.16 have a positive gyration velocity v, due
also to the clockwise gyration. Therefore, the gyro-phase restricted effect observed at
the front-side and trailing edge region can be associated with the remote sensing of
particles whose guiding centers pertain to the interior of the cloud. Similar conjectures
have been made by Lee et al. (2004) for in-situ data from the magnetospheric tail and by
Meziane et al. (2003) for high energy ions near the terrestrial foreshock.

1.4.3 Case ll: Parallel magnetic field and uniform electric field

In order to confirm the findings on the effects of the gradient-B drift on the
formation of ring-shaped and non-gyrotropic velocity distribution functions, we carried
out additional test-kinetic simulations. We use a unidirectional, non-uniform and increasing
magnetic field and a uniform electric field. The magnetic field is everywhere parallel to
the positive z-axis and its magnitude increases from 30 to 90 nT without changing of
sign. The electric field is computed as a convection field determined by the orientation
and the magnitude of the asymptotic magnetic field 1_3)1 and the bulk velocity T/)O of
plasma on the left side of the transition region:

E =B xV, =const. (1.14)
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Thus, in this case the electric field is everywhere parallel to the positive y-axis. The input
parameters assumed for this simulation are given in Table |. The positions of the test-
protons in the xOy plane, at the end of the simulation, are shown in Figure 1.19. The
local number density is color coded and represented on a spatial mesh of 80x80 bins.

In Figure 1.19 it is shown that the protons are scattered in the direction of the
gradient-B drift, i.e. the positive y-axis. Figure 1.20 illustrates the spatial variation of the
velocity distribution function of protons. The spatial resolution used to compute the VDF
is equal to 150 km along x-direction and 3000 km along y-direction. The results show
that ring-shaped VDFs similar to the ones obtained in case | are obtained in bins D3, D4,
E3, E4, F3 and F4. The size of the central cavity formed in the perpendicular velocities
space increases as we approach to the upper edge of the cloud. Crescent-like, non-
gyrotropic distribution functions are obtained on the front and trailing edge of the
cloud, similar to case | (see for instance the VDFs corresponding to the bins 11 to I5 and
to the bins Al to A5). The results obtained in case Il, for a parallel magnetic field and a
uniform electric field confirm the role of the gradient-B drift on the formation of non-
Maxwellian distribution functions. They also demonstrate that the kinetic effects found
with these simulations are not dependent on a particular configuration of the electric
and magnetic fields.

The simulations discussed here are based on input parameters (velocity
distribution functions, magnetic field) consistent with experimental data from the
terrestrial magnetosphere and emphasize the role of the gradient-B drift at sharp
transitions to contribute to the formation of non-Maxwellian distribution functions
(ring-shaped and crescent-like) as those observed by Cluster in the plasma sheet.

The velocity distribution functions obtained numerically show similarities with
those observed experimentally by Cluster satellites in the terrestrial magnetotail. We
compared the proton velocity distribution functions measured by Cluster CIS
instruments and shown in Figure 1.5, with the proton velocity distribution functions
computed numerically using our test-kinetic approach and illustrated in Figure 1.16 and
Figure 1.20, and found relevant similarities. Both measured and computed VDFs have
cavities in the central region of the perpendicular velocities space, like those illustrated
by the left and middle panels of Figure 1.5 and respectively by the VDFs corresponding
to the spatial bins C2 and D3 from Figure 1.16. In our simulations the central cavity
results from of a physical process related to the spatial dispersion of particles due to the
gradient-B drift and is not due to an ad-hoc low energy cut-off imposed onto the initial
velocity distribution function of the test-particles. On the other hand, crescent-like, non-
gyrotropic VDFs are revealed by satellite data (right panel from Figure 1.5) and also by
our simulated data (e.g. bins E2 and G3 from Figure 1.16, or bins H4-H5 and 14-15 from
Figure 1.20). This kinetic effect is a consequence of the remote sensing, in regions
outside the cloud, of particles whose guiding centers are found inside the cloud.

25




KINETIC EFFECTS AT THE EDGES OF A PROTON STREAM: TEST-KINETIC SIMULATIONS

15000 L T
i 4
10000 1o 8.3
t 3
= 31 25
=, 5000 1 ¥ -
> .I I I. 2
2 L] 3
-y 15
°11 ’ 1
0.5
AB|CIDIE|FIGH|I
-5000 T T T
1.65 1.7 1.75 1.8 1.85 1.9
4
X [km] x 10

Figure 1.19 — Distribution of protons in the xOy plane after 360 seconds (~16077;) from injection on the
left side in the case of a unidirectional, non-uniform, parallel magnetic field and a uniform electric field.
The local value of the number density is color coded. The spatial mesh on which the VDF is reconstructed
is also shown. The deformation of the shape of the cloud is due to the gradient-B drift.
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Figure 1.20 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at A7=600 seconds for a parallel magnetic field and a uniform
electric field. Spatial bins are defined in Figure 1.19. Note the formation of the central cavity due to the
gradient-B drift in bins of the upper three rows; non-gyrotropic VDFs are obtained in bins from the column
A B,C, G Handl.
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1.5 Comparison between forward and backward results

In the following, we compare the velocity distribution functions computed at
=225 seconds with both forward and backward Liouville approaches. Nine spatial bins
have been selected in order to reconstruct the velocity distribution function with the
two approaches. In Figure 1.21 we illustrate the number density of the test-protons in
the xOy plane, perpendicular to the magnetic field, at =225 s, together with the nine
spatial bins considered; Figure 1.21 represents a zoom in Figure 1.9.
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Figure 1.21 — Proton density distribution in the xOy plane, perpendicular to the magnetic field, at =225s
(~100T}) obtained with the forward approach. The local number density is color coded using a 2D mesh of
60x60 cells. The blue rectangles indicate the spatial bins used to compute the VDF shown in Figure 1.22.

The velocity distribution function of protons computed at =225 seconds using
the forward approach is shown in Figure 1.22. The VDF inside the cloud is computed for
each bin defined by the blue rectangles in the xOy plane and identified by the
combination of letters (columns) and numbers (rows) in Figure 1.21. The corresponding
velocity distribution functions obtained using the backward approach are shown in
Figure 1.23. The VDF is computed for the central point of each spatial bin defined by the
blue rectangles in the xOy plane illustrated in Figure 1.21.
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Figure 1.22 — Velocity distribution functions obtained at =225 s (~1007}) using the forward approach in
the spatial bins indicated by blue rectangles in Figure 1.21. The plots correspond to v,=0 cross-sections.
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Figure 1.23 — VDFs obtained at =225 s (~10077}) using the backward approach for the central points of the
bins indicated by blue rectangles in Figure 1.21. C1* is the middle point between C1 and C2.

There are significant differences between the forward and backward approaches
as illustrated by Figure 1.22 and Figure 1.23. Nevertheless, the velocity distribution
function, f, has the same variation tendency in both cases, i.e. (i) it is ring-shaped close
to the upper boundary (i.e. for larger y-values) while in the center is approximately
Maxwellian (comparing, for instance, f corresponding to C1 and C3 in Figure 1.22 and
Figure 1.23) and (ii) the anisotropy of the velocity distribution function is more
pronounced close to the trailing edge of the cloud (i.e. for smaller x-values) than in the
center (for example, comparing f for A2 and B2 in Figure 1.22 and Figure 1.23). The
explanation for the differences observed is related to the different methods used to
compute the distribution function with forward and backward approaches. In the
forward approach f'is sampled over a spatial bin whose size is defined such that it
contains a large enough number of particles and the statistical error resulting from
sampling is minimized. On the other hand, in the backward approach the computation
of ffor a precise point in configuration space is free from statistical errors; in our case, f
is computed for the central point of each spatial bin defined for the forward method.
The strength of the backward approach is related to its ability to produce detailed
velocity distribution functions at precise locations without statistical sampling errors.
The essential difference between the forward and backward approaches is that the
former necessarily relies on spatial binning and sampling, while the latter can be
calculated at precise locations in space. In many cases, the backward approach can lead
to filamentary structures in velocity (or momentum) space, while such structures are
always attenuated in the forward approach, owing to the spatial averages involved. In
contrary to the backward approach, the forward Liouville approach enables the
computation of both the velocity distribution function and general dynamics of the
particle cloud while advancing an initial distribution of particles into a non-uniform
configuration of the magnetic and electric fields. Thus, the strength of the forward
approach is related to its ability to investigate the evolution of a specific plasma source.
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A solution to eliminate these differences and to obtain comparable distribution
functions would involve spatial averages of f by a proper quadrature scheme applied in
the backward approach. For that purpose, the velocity distribution function obtained
using the backward approach is numerically integrated over a rectangular domain in the
x0y plane corresponding to the spatial bin used to compute the distribution function
using the forward approach. The resulting averages are presented in Figure 1.24 for
each bin defined by the blue rectangles in the xOy plane (see Figure 1.21). The averages
are computed by the trapezoidal integration rule with 10x10 points applied in each
spatial bin. The resulting averaged distribution functions are closer to those given by the
forward approach, as expected. Nevertheless, there are still some notable differences
particularly for bins B2 and C2 (see Figure 1.24). These two bins are localized in a region
characterized by a pronounced spatial variation of the velocity distribution function, as
can be seen from Figure 1.23 by comparing f for C1* and C2 (C1* is the middle point
between C1’s and C2’s centres). On the other hand, the results obtained for bin C1 using
both forward and backward approaches are very similar since the spatial variation of the
distribution function for that region is smooth (see f'for C1 and C1* in Figure 1.23). The
differences observed for the bins localized in regions with sharp spatial variation of the
VDF can be explained by analyzing in more detail the sampling method of the forward
approach and the averaging method of the backward approach. In order to better
understand the differences between the two, a schematic representation is shown in
Figure 1.25 and Figure 1.26.
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Figure 1.24 — Velocity distribution functions obtained at =225 s (~1007;) with the backward approach by
averaging over the spatial bins indicated with blue rectangles in Figure 1.21.

Let us consider the problem of calculating the velocity distribution function for a
spatial bin that is localized in a region of the configuration space characterized by a
steep spatial variation of f'along Oy direction. The VDF is computed using both forward
and backward approaches; for the latter approach, the averaging method is used. We
divide the spatial bin in two areas, A and B, characterized by two distinct velocity
distribution functions, as shown in Figure 1.25 and Figure 1.26. In area A the velocity
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distribution function is the inner core of a Maxwellian distribution function, £, while in
area B we retrieve the outer shell of the same Maxwellian distribution, /3.

For simplicity, let us assume that f'does not vary significantly in either A or B. By
using the forward approach, the particles localized in the both areas A and B will have
the velocities distributed according to their respective velocity distribution functions.
Thus, the less energetic particles will be found in area A, while the most energetic ones
will be found in area B (see Figure 1.25). This simplified model corresponds roughly to
our simulation results. All particles localized inside the entire spatial bin will be
distributed in velocity space as follows. Particles originating from area A, i.e. the less
energetic ones, will be found in the central regions of velocity space, while particles
originating from area B, i.e. the most energetic ones, will be found in the outer regions
of velocity space.

In order to reconstruct the velocity distribution function by using the forward
approach, a uniform grid in velocity space is defined. For each velocity bin j centred in v;,
the corresponding distribution functioanWD(\?}) is computed by averaging over all

numerical values “attached” to each particle i localized inside the considered bin:

()= Zf ) (1.15)

j i=1
where V,’ is the velocity of particle 7 localized inside the velocity bin j and #; is the total
number of particles inside bin j. Among these n; particles, let nf be the ones from area A

and n/ those from area B such that n;=n/'+n?. Thus, equation (1.15) becomes:

FWD(V )__ Zf (ql4)+2flk(qlﬁ (1.16)

wheref’A(_"A) fA(\_ﬁj“), since all i, particles are localized inside area A and likewise
f’B(_”B) =f,(¥?), as all iy particles belongs to area B. Furthermore, we consider that all

velocity bins are small enough such thath(_"A) =1.(%) andj;(_’”g) =/,(¥). In this
way, f computed using the forward approach for the velocity bin centred on vj is:

A

fFWD(v_,.)=—ff@){l——f}fg(v,) (1.17)
l’lj I’lj

In order to compute the velocity distribution function using the backward
approach, we define a uniform grid in configuration space having nxn points that cover
the entire area of the spatial bin to be sampled (see Figure 1.26). For each velocity
vertex j centred in V;, the corresponding distribution functionfBWD(?/j) is computed by

averaging over all numerical valuesfji “attached” to each point i of the spatial grid:

BWD(V)_ Zf( ) (1.18)
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Considering that m grid points are localized inside area A, while the other n*—m grid
points are localized inside area B, equation (1.18) becomes:

fBWD(?i):%(i‘f;j/i(?i)ﬁ- ’z‘ f;ﬂ(?i )) (119)

ip=m+l1
where];iA(Y’/j)=jf4(\?j), since all i, grid points are localized inside area A, and similarly
];iB(\_}j) =/, (¥;). Therefore, f computed using the backward approach for the velocity bin

centred on V; is given by:

fBWD<vj)=n—”ﬁfA(vj)+(1—§jfB<vj> (1.20)

We should mention that the average value (1.20) has been obtained simply by
computing the arithmetic mean of all n* function’s values instead of integrating the
velocity distribution function over the entire spatial bin using a 2D trapezoidal
integration rule, as it is done in our simulations. Also, we considered a uniform grid in
velocity space for the backward approach, while in our simulations an unstructured grid
has been used to compute the velocity distribution function. These simplifications
should not have major consequences on the final results.

In order to compare the velocity distribution functions obtained from both
forward and backward approaches we considered three representative velocity bins,
designated a, b and ¢ and centred atV,, v, and v/ (see Figure 1.25 and Figure 1.26), to
compute the numerical values of f given by equations (1.17) and (1.20). These three
velocity bins have been chosen such that: £, (¥,)#0 and f,(¥,)=0, f, (V) =f5(¥,)#0, while
£, ()=0 and f,(¥.)#0. Therefore, from equations (1.17) and (1.20), we obtain the values
of f'computed with both forward and backward approaches for velocity bins a, b and c.
The results are given in Table 1.2 and show that the velocity distribution function given
by the backward approach is smaller than the one obtained from the forward approach
for velocity bins a and ¢, while for bin b both values are equal.

Table 1.2 — Values of fobtained with both forward and backward approaches for three selected velocity
bins centered at @, b and c.

7, () o)

7, IXCA S NCARFACA
5, IXCARRACA IXCARRACA

7, 1,5 (1—§]f3<vc)<f3<ﬂ>

By applying this algorithm to all velocity space bins, a Maxwellian distribution
function is obtained with the forward approach, as can be seen in Figure 1.25. However,
fobtained with the backward approach presents a cavity in the central region of velocity
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space, as can be seen in Figure 1.26. Similar results are obtained, for instance, for bin C2
of our simulations depicted in Figure 1.22 and Figure 1.24, which is localized in a region
characterized by a steep spatial variation of the velocity distribution function. Indeed,
with the forward approach a Maxwellian distribution is obtained for bin C2, while with
the backward approach the distribution function is characterized by a central cavity in
velocity space. Thus, the simplified model described in Figure 1.25 and Figure 1.26
explains the differences obtained between forward and backward approaches in spatial
regions characterized by sharp gradients of f.
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Figure 1.25 — Schematic diagram illustrating the sampling method used to compute the velocity
distribution function with the forward Liouville approach.
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Figure 1.26 — Schematic diagram illustrating the averaging method used to compute the velocity
distribution function with the backward Liouville approach.

The velocity distribution functions given by equation (1.17), for the forward
approach, and (1.20), for the backward approach, have similar mathematical
expressions except for the weight coefficients of f; and f3. In the forward approach the

weight coefficients are expressed in terms of nf/nj, i.e. the ratio of the number of

particles localized inside velocity bin j and pertaining to spatial area A to the total
number of particles localized inside velocity bin j. In the backward approach the weight
coefficients are expressed in terms of m/n?, i.e. the ratio of grid points number localized
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inside area A to total number of grid points localized inside the entire spatial bin. By
analyzing the nf/nj ratio we can conclude that this quantity depends on the position of
bin j in velocity space. On the other hand, m/n* is equal to the ratio of region A area to
entire spatial bin area, which is independent on the position of bin j in velocity space:

m_ Ara(A) L (121)

n*  Area(bin) L, '
where L;l indicates the width of area A along the y-axis, while L, represent the width of
the entire spatial bin. Thus, the weight coefficients corresponding to forward and
backward distribution functions are not equal in general and the results provided by the
two approaches may also be different, independently of the number of particles injected
in the forward simulations or the number of grid points used in the averaging scheme
for the backward simulations.

The main point that distinguishes the averaging method (1.20) from the sampling
method (1.17) is that, in the backward approach, to a given point in velocity space
correspond n’ points in the configuration space that cover the entire area of the spatial
bin. In the forward approach however, a given bin in velocity space may originate from
only a subset of points in configuration space localized in a certain area of the spatial
bin. Therefore, in order to calculate the numerical value of the distribution function at a
certain bin in velocity space, the backward averaging method (1.20) will take into
account the contribution from the entire spatial bin, while the forward sampling method
(1.17) will take into account the contribution of only a part of the considered spatial bin,
thus possibly leading to different results. Nevertheless, frwp given by equation (1.17)
would be equal to fswp given by equation (1.20) if m=n". This condition is satisfied if we
increase the size of region A such that it will cover the entire area of the spatial bin. Only
in this case n_f/nj will also be equal to n; for all velocity space bins and the weight
coefficients corresponding to forward and backward distribution functions will be equal.
Therefore, by increasing the size of area A it is possible to obtain converging results with
both approaches as long as the initial assumption is satisfied, i.e. there are no significant
spatial variations of f'along area A. We should note that this assumption will always be
satisfied for region B since the size of this area continually decreases, as the size of A
increases. Indeed, in the simplified model described in Figure 1.25 and Figure 1.26 we
keep the total area of the bin, i.e. Area(A)+Area(B), constant. Therefore, if we increase
the area of A, the area of B will decrease accordingly such that the total area of the bin
to remain unchanged. In this case, since the area of B is decreasing, there will be no
significant spatial variations of f'along that region and the initial assumption is fulfilled.

This result can be generalized for three-dimensional bins with spatial variations
of the velocity distribution function along all three coordinate axes. In this case the
forward and backward approaches will return similar results only for those spatial bins
which are small enough such that the following inequality to be satisfied simultaneously
along all three coordinates axes:
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9f

L =—<<f (1.22)
ox,

where i = 1, 2, 3 for the x, y, z axes respectively. On the other hand, with bins covering
regions of configuration space characterized by sharp spatial gradients of f, the forward
and backward approaches will generally provide different results.

1.6 Conclusions

In the first chapter of my thesis | have imagined a configuration of the
electromagnetic field that enables the investigation of the dynamics of a proton
cloud/beam injected across sheared electric and magnetic fields. The parallel
component of the electric field is everywhere equal to zero and the perpendicular
component is computed by solving Laplace’s equation on a two-dimensional rectangular
grid (case 1) or is constant and uniform (case Il). We analysed the individual motion of
particles and the Liouville mapping of an initial velocity distribution function of the
protons. The test-particles move across regions with sharp variations of a sheared
antiparallel (case ) or parallel (case Il) magnetic field. The global dynamics of the cloud is
asymmetric due to the gradient of B drift that is oriented in the +Oy direction. The
asymmetry is imprinted on the cloud morphology while it traverses the transition
region. However, the cloud remains asymmetric at large distances from the magnetic
transition region, in the region of uniform field.

The asymmetry of the cloud is retrieved in its kinetic structure. Indeed, the layer
formed at the outer edge of the cloud, in the positive y-direction perpendicular to the
bulk velocity and magnetic field, is populated by particles whose velocities varies with
the distance from the cloud’s core, forming an energy-dispersed structure. This kinetic
feature is obtained in both simulations, case | and I, when the magnetic field profile is
parallel and antiparallel. The test-kinetic simulations illustrate that the energy of the
particles increases towards the fringe of the cloud. We have shown that this effect is due
to the gradient-B drift that efficiently disperses protons in the +Oy direction,
proportionally to their kinetic energy.

The reconstruction of the velocity distribution function shows the formation of a
central cavity in the space of the perpendicular velocities. Such ring-shaped distribution
functions are obtained in spatial bins localised close or within the outer energy-
dispersed layer. Since the particles with a smaller thermal energy are less deflected they
populate mainly the core of the cloud at lower y-coordinates where the velocity
distribution function is close to a Maxwellian. On the front-side and in the trailing edge
of the cloud the velocity distribution function is non-gyrotropic and has a crescent like
shape in some of the spatial bins. This anisotropy is an effect due to the remote sensing
of particles whose guiding centers pertain to the inner cloud.
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One of the advantages of the forward Liouville approach is that it enables the
investigation of the VDFs and also gives an idea of the general dynamics of the cloud
while convecting in the non-uniform field configuration. A disadvantage of the forward
method is that the velocity distribution function is reconstructed for spatial bins with
rather coarse dimensions imposed by the total number of simulated particles.

The main conclusions of our study do not necessarily depend on the particular
profile of the electric field nor on the existence of a mechanism able to inject clouds of
ions in the neutral sheet. This is confirmed by the results obtained in case Il where the
electric field is uniform. Our simulations have been performed for a configuration that
reproduces some typical parameters for the terrestrial plasma sheet investigated
previously by Lee et al. (2004) and Wilber et al. (2004). In our simulations, however, we
introduce an electric field and a finite sized cloud of test-particles. A possible origin of
the electric field treated in our simulations may be the launching of bursty bulk flows
(BBFs) in the plasma sheet and considering their propagation across the neutral sheet
(Liu, 2001), or the ballooning instability (Pritchett and Coroniti, 1999), or the propagation
of bubbles in the geomagnetic tail related also to BBFs formation (Birn et al., 2004).
Testing of any of these mechanisms is beyond the scope of this work. But in all the three scenarios
mentioned above a localised perturbation of the dawn-dusk, cross-tail, electric field is observed
and can be considered a possible source for the prescribed electric field used in simulations.

Although we did not show the projections of the VDFs in the plane of velocities
including the parallel direction, the phase space density is equally distributed in the
parallel and anti-parallel direction of the magnetic field. The proton cloud expands along
the magnetic field lines due to the parallel velocity component assigned initially. In a
realistic magnetospheric configuration the particles with the larger positive parallel
velocities moving along B, populating the upper half of the cloud, will be reflected by the
mirror force at some ionospheric altitude and will travel back thus filling some regions of
the negative parallel velocity space.

The formation of the energy-dispersed structure and of the ring-shaped velocity
distribution function is a kinetic effect obtained at the edges of a localized plasma cloud.
In a magnetotail geometry when the cloud/stream moves in the zgsg direction, the B-
field being mainly along the xgsg, the ring-shaped VDFs and the energy-dispersed
structure will be observed at the lateral edges in the ygsg direction. Thus, the
localization of the non-Maxwellian velocity distribution functions and possibly their
properties would depend on the local magnetic field and the global geometry of the
cloud itself. In a future study we shall investigate in detail this relationship.

The test-kinetic simulations discussed in the first chapter of my thesis suggest a
physical mechanism that can explain the formation of an energy-dispersed structure at
the edges of a proton beam interacting with a non-uniform electromagnetic field. We
have also identified kinetic effects contributing to the formation of ring-shaped and non-
gyrotropic velocity distribution functions. Although these results are obtained for two
prescribed configurations of the electromagnetic field their relevance is more general.
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Our study emphasizes the role of the gradient-B drift on the edges of plasma structures;
the gradient-B drift is acting in any region with a non-uniform magnetic field, like for
instance, X-lines or X-planes. In more complex geometries and for time dependent
situations additional first order drifts may be included. Nevertheless, the main results of
our study should remain valid as all the first order drifts depend on the kinetic energy of
the particle. This is a key property emphasized by the kinetic effects described in this
thesis. A preliminary comparison with in-situ data from the terrestrial magnetosphere show
a rather good correlation and more in-depth data comparisons will be done in the future.

We compared the velocity distribution functions obtained with the forward and
backward approaches for different regions of the proton cloud. In the forward approach
fis sampled over a spatial bin that needs to be populated by a sufficiently large number
of particles so as to reduce statistical errors. On the other hand, in the backward
approach f'is computed without statistical errors, at precise positions in configuration
space. In order to compare the distribution functions obtained with both approaches, a
spatial averaging of f'is needed. The velocity distribution function given by the backward
approach is numerically integrated over a rectangular domain corresponding to the
spatial bin used to compute the distribution function with the forward approach.

Our simulation results show that there are significant differences between the
distribution functions given by forward and backward approaches. The differences are
observed especially for spatial bins from regions with a steep spatial variation of the
velocity distribution function, while in regions with smooth variations of f the two
approaches provide similar results. The differences and similarities can be explained by a
careful examination of the sampling method used in the forward approach and the
averaging method used in the backward approach. The main difference between the
two computational methods is due to the approach used to estimate the velocity
distribution function in a spatial bin: the backward method uses an averaging method
that takes into account the contribution of the entire spatial bin to calculate the
distribution function for a certain bin in velocity space, while, in certain cases, the
forward sampling method effectively only takes into account the contribution from a
part of the bin considered. The two approaches lead to similar results when averages
are calculated over bins in which the VDF varies smoothly in configuration space.
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Chapter 2
Kinefic simulations of tangential discontinuities

In the second chapter of my thesis | investigate the kinetic structure of a one-
dimensional tangential discontinuity (TD) using one-dimensional particle-in-cell (PIC)
simulations and comparison with theoretical kinetic models. | consider three different
cases: (i) TD without velocity shear across the discontinuity and different asymptotic
densities and temperatures, (ii) TD with velocity shear in the perpendicular direction to
the magnetic field and equal asymptotic densities and temperatures and (iii) a plasma
slab moving across a transverse external magnetic field and a background stagnant
plasma with equal densities and temperatures.

2.1 Particle-in-cell simulation method

In particle-in-cell simulations (Birdsall and Langdon, 1991) plasma dynamics is
studied by following the trajectories of a large number of particles in their self-
consistent electric and magnetic fields. The limited computing infrastructure, even
nowadays, makes it practically impossible to simulate the same number of particles per
Debye sphere as in real plasmas. Therefore, in particle-in-cell simulations, real particles
are replaced by finite-size superparticles with the mass and charge much larger than
those of real particles. The finite-size superparticles may be viewed as charge clouds
that can pass freely through each other without changing their internal charge
distribution. The use of charge clouds instead of point particles plays a key role in
smoothing the short-range electrostatic interactions between particles while keeping
the same long-range behavior as in real plasmas (Langdon and Birdsall, 1970). The
benefit of working with finite-size superparticles is that the same real plasma parameter
can be achieved even with a smaller number of simulated particles. In order to simulate
the same plasma system as in reality, the charge density, the mass density and the
thermal energy density of superparticles must match the same values as those of the
real particles (Matsumoto and Omura, 1984).

The self-consistent electromagnetic field is computed in PIC simulations from the
Maxwell’s equations that are solved using finite-differences in both space and time with
a centered-difference scheme. In explicit particle-in-cell codes, the discretization of
space and time cannot be done arbitrarily, but must fulfill certain requirements. The
most restrictive requirement is given by the Courant condition that enforces an upper
limit to the time-step A¢ for a given grid spacing Ax (Birdsall and Langdon, 1991):

c-At < Ax (2.1)
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where c is the speed of light in vacuum. Moreover, the time-step must resolve the
electron plasma oscillations too. In order to avoid the numerical instabilities that can
rise due to the discretization of the configuration space, the grid spacing must resolve
the electrons Debye length Ap (Birdsall and Langdon, 1991):

Ax <34, (2.2)

These very strict requirements for the discretization of space and time, expressed by
inequalities (2.1) and (2.2), can generate large simulation runtimes, especially for problems
with spatial and temporal scales much larger than the Debye length and the plasma period.

The electrical charge of a finite-size particle is distributed by interpolation over
the spatial mesh used to compute the electromagnetic field. With a first order
interpolation scheme, the charge g of the superparticle is distributed among its
neighboring grid points i and i+1 as follows (Birdsall and Langdon, 1991):

Xipg —X _XTX
Ax 9 4, = Ax

where x is the central position of the particle, while g; and g, are the electrical charges
assigned to the grid points i and i+/ localized at x;=i-Ax and x;+;/=(i+1)-Ax. In order to
achieve the momentum conservation and to avoid the non-physical acceleration of the

q,= q (2.3)

particles by the so-called self-force, the same interpolation scheme and the same grid
points that have been used to distribute the charges over the spatial grid must be
reused to compute the electric and magnetic fields in the actual positions of the
particles. For a first order interpolation scheme we have:

X=X -

Ax Ei+1

where E),» and E),-H are the values of the electric field at the grid points i and i+1. The
same formula is used also for the magnetic field.

- X. . —X =
E — i+1 E + 24
(x) e D (2.4)

The simulations presented here are performed using an adapted version of the
one-dimensional particle-in-cell code KEMPO1 (Omura and Matsumoto, 1993; Omura,
2007). KEMPOL1 is a 1d3v PIC code, i.e. only one spatial coordinate is considered, but all
the three components of the velocity vector are taken into account. The self-consistent
electromagnetic field is computed from the Ampere and Faraday’s laws:

BE_L(VXB_jJ

a el m, (2.5)
oB -

- _VxE

ot %

where Jis the total current density in the plasma, while ¢, and yo are the electrical
permittivity and the magnetic permeability of the vacuum. Equations (2.5) are solved
numerically by a finite-differences method using a centered-difference scheme that
enables the computation of the fields at any given time by knowing their values at the
previous time-step, for all the grid points inside the simulation domain (Omura and
Matsumoto, 1993). The finite-difference scheme is summarized below:
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EH—AI _ Et _JH—AI/ZAt

x,i+1/2 T T xil2 x,i+1/2
1+At/2 _ t+At/2
t+At t t+At/2 2 Li+1/2 Li=1/2
EY =F 4| -J™ -t 22 IAf
i i i Ax
1+At/2 _ 1+At/2
t+A? t t+A1/2 2 Jit+] )i
Ez,i+l/2 = Ez,i+1/2 + _Jz,i+l/2 +c . . At
Ax (2.6)

t t
+At/2 ~At/2 itl/2 -2
By L= BV C+ At

Ax

t

t
A2 _ pt-A2 Ty, Vi
Bz,i+1/2 - Bz,i+1/2 At
Ax

As can be seen in equations (2.6), two staggered grid sets are used for both space and
time discretization. The E, and B, components of the electric and magnetic fields are
defined in full-integer grid points localized at x,=i-Ax, while the E, E. and B.
components are given in half-integer grid points localized at x;+1,=(i+1/2)-Ax. The time
discretization is done at full-integer time-steps, t,=n-At, for the electric field and at half-
integer time-steps, #,+1,=(n+t1/2)-At, for the magnetic field. The current density is
defined in the same grid points as the electric field and at the same time-steps as the
magnetic field. Since the geometry of the code is one-dimensional, the B, component of
the magnetic field is constant in space and time. Therefore, taking into account that we
are interested in configurations typical for tangential discontinuities where the normal
component of the magnetic field is zero, we set the value of B, equal to zero.

The total current density at any given time and in any grid point is computed
from the individual contribution of each superparticle to a certain grid point inside the
simulation domain. In the case of J, and J. components of the current density, the
contribution of each finite-size superparticle is distributed among its neighboring grid
points by linear interpolation:

Nyt
t+A12 2 i+1/2 p t+A1/2
JFl2 T ,
i+ > Ax p y.p
(2.7)
x gl
t+A1/2 z i+1/2 p t+A1/2
z,iFl/2 T Ax P z,p

p

where p indexes all the particles that are localized between the grid points i—1/2 and
i+1/2 at time ++A#/2; v, and v; are the velocity components of the p particle at t+A#/2.
The J, component of the total current density is computed by the current deposition of
particles technique in order to ensure the fulfilment of the charge continuity equation at
each time-step during the simulation (Villasenor and Buneman, 1992):

t+At t t+At/2 t+At/2

p; p; n Jx,i+1/2 B Jx,i—l/2 ~0 (2.8)
At Ax
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where p; is the electrical charge density computed from equation (2.3). J; 412 at t+A#/2 is
thus obtained by taking into account the amount of charge that crosses over the half-
integer grid point i+1/2 between ¢ and t+At.

The equation of motion for each particle:

dx
@
e (2.9)
LA i(E +9x B)
dt m
is discretized in time using the leap-frog method:
xl+At _xt — vt+At/2
Al X (2.10)
G2 -2 _ E(Et . e y Et] .
At m

and it is solved explicitly by using the Buneman-Boris technique in three steps, as shown
below (Birdsall and Langdon, 1991):

v = ‘—)'t—At/Z +q_AtEt
! 2m
5 =7 4+ (v+7 xB)xB 2.11
vz—vl+m(vl+vl>< )X (2.11)
‘—}-Z+At/2:‘—}-2 q_Al‘—»,

2m

where b = (gAt/2m)B'. The computation of the velocity at time +A#2 using the
equations (2.11) ensures the strict conservation of the kinetic energy of a particle during
the pure gyration motion from #~A#/2 to t+A#/2, i.e. |V, |5V, | in (2.11). The position of a
particle along the x-axis at #+At is given by:

X = xR A (2.12)
where v, is computed from equations (2.11). Since the simulation code KEMPOL1 is one-
dimensional, only one spatial coordinate is considered. However, all the three velocity

components are taken into account. KEMPOL is a relativistic particle code and therefore

the relativistic equation of motion is actually solved instead of equation (2.9):
d—u:i(E+lﬁ><B’) (2.13)
dt  m, Y

where we used the notation u =YV, y is the relativistic factor and mj is the rest mass of

the particle. Nevertheless, the procedure described above still applies, but this time for

U in equation (2.13).

A schematic diagram of a one-dimensional particle-in-cell simulation cycle is
shown in Figure 2.1 (Birdsall and Langdon, 1991). The equation of motion (2.9) for each
charged particle initialized at =0 is integrated numerically over the time-step Atz using
the explicit formulas (2.11) and (2.12). Having the new positions and velocities of all the
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particles inside the simulation domain, the charge and current densities are computed
for the grid points using the linear interpolation schemes (2.3) and (2.7); for J, the
current deposition technique is used. The Maxwell’s equations (2.5) are then integrated
over the one-dimensional spatial mesh to obtain the electromagnetic field explicitly at
t+At, as shown in (2.6). The interpolation scheme (2.4) is used to calculate the electric
and magnetic fields in the position of each particle. The equation of motion is integrated
again over the time-step At, resulting the updated set of positions and velocities. The
cycle is continued until de end of the simulation. The time-step Az must fulfill the
Courant condition (2.1) of numerical stability. Also, the gird spacing Ax must resolve the
electron Debye length according to inequality (2.2).

Integration of equations of

motion; moving particles

(E,B), DV, x,

Interpolation A Interpolation
t
(E; B)| 9 (EI B)p (er)p 9 (pr J)I

Integration of Maxwell’s

equations on grid

(E, B), € (p,J);

Figure 2.1 — A typical cycle in a one-dimensional particle-in-cell simulation code. The quantities computed
in the position of each particle are indexed with p, while the grid quantities are indexed with i (adapted
from Birdsall and Langdon, 1991).

2.2 Simulation setup

The simulation domain is defined in the x-direction between 0<x<L and is split
in two regions of equal widths that are filled initially with the same number of electrons
and protons, forming the left (x<L/2) and right (x>L/2) plasma populations. We study
three different cases.

In the first case we consider a tangential discontinuity without velocity shear at
the interface between two plasma populations at rest and with different densities and
temperatures. The configuration of this case is illustrated schematically by Figure 2.2. In
the second case, the two asymptotic plasmas have equal densities and temperatures,
but there is a variation of the bulk velocity in the direction perpendicular to the
magnetic field; this is the case of a tangential discontinuity with velocity shear (see
Figure 2.3 for the simulation geometry). In the last case, we simulate a plasma slab
streaming across a transverse magnetic field in the presence of a background stagnant
plasma with equal densities and temperatures (see Figure 2.4 for the setup of the simulation).
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LEFT population RIGHT population

e +H* e +Hf
N,, T;; V,=0 N,<N,, T,<T,; V,=0

Figure 2.2 — Schematic diagram of the simulation geometry for case A: tangential discontinuity without
velocity shear. In this case there is no asymptotic variation of the plasma bulk velocity across the
discontinuity and the two plasma populations have different asymptotic densities and temperatures.

LEFT population RIGHT population
e +H' e +H'
N, T; V,=0 N, T; V,<0

Figure 2.3 — Schematic diagram of the simulation geometry for case B: tangential discontinuity with
velocity shear. In this case the plasma bulk velocity varies in the perpendicular direction to the magnetic
field, but the two populations have equal asymptotic densities and temperatures.

LEFT CENTER population =~ RIGHT

e +H" e +Hf e +H"
N,T; V,=0 N, T; V,<0 N, T; V=

Figure 2.4 — Schematic diagram of the simulation geometry for case C: plasma slab. In this case the central
plasma population is streaming across a transverse magnetic field and a background stagnant plasma with
equal densities and temperatures.

Initially, the electrons and the protons are uniformly distributed along the x-axis
inside the simulation domain. In all three cases discussed here, the initial velocity
distribution function is given by an isotropic/displaced Maxwellian with the same
temperature for both electrons and protons. In the second and third cases, the average
velocity for the right population (case B) and for the central population (case C) is
parallel to the negative z-axis and perpendicular to the magnetic field. The velocities of
the particles at =0 are distributed according to the isotropic/displaced Maxwellian
distribution function.
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In the first simulated case, the plasma density for the left population, N, is one
order of magnitude larger than the one for the right population, N,. The temperature of
the left population, 77, is two times larger than the one corresponding to the right
population, T5. For the other two cases, B and C, the densities and the temperatures of
the two plasmas are equal. The initial uniform magnetic field is oriented along the
positive y-axis everywhere inside the simulation domain for all three cases. In the last
two cases, a convection electric field, Eo=V B, is initialized for the right region (case B)
and for the central region (case C) of the simulation domain. Otherwise, the initial
electric field is set to zero everywhere. The plasma and field parameters for all the three
cases considered are given in Table 2.1.

Table 2.1 — Plasma and field parameters for the three cases considered in the second chapter: N = number
density, T = temperature, V. = bulk velocity, B, = magnetic induction and E| = electric field intensity at /=0
for case A (see Figure 2.2), case B (see Figure 2.3) and case C (see Figure 2.4); indices “1” and “2” denote
the values corresponding to the two plasma regions illustrated in the aforementioned figures.

Ny N, T, T, Va Va By, B, E, E,,
[m™] [keV] [km/s] [nT] [MmV/m]

20 10 0 0 180 218 0 0

20 20 0 —-1000 500 500 0 -500

Case A 10
CasesB & C 10

6

The boundary conditions assumed for the three cases discussed here are (i)
reflective for particles, while the fields are kept fixed at their initial value, in cases A and
B, and (ii) periodic for both particles and fields, in case C. The particles that leave the
simulation domain will be relocated inside the domain as follows:

e cases Aand B:
ifx,<Othenx,=-x,andv, =-v,
ifx,>Lthenx, =2L—x, andv,=-v,

e case C:
ifxp <0 thenxp =x,+L
ifx,>Lthenx, =x —L

where x, and v, are the position and the velocity of the particle moving outside the

simulation domain at any given time. On the other hand, all the grid quantities will be

updated at the boundaries of the simulation domain such that the following equalities
to be satisfied at any given time during the simulation:

e cases Aand B:

G =G and G, =G
e case C:

G;+L = G;
where the grid quantity G can be the electric field, the magnetic field or the total
current density. All these boundary conditions are applied at each time-step during the
simulation after the integration of the equation of motion, for particles, and after the
integration of Maxwell’s equations, for fields.
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The simulation parameters for the three cases considered are given in Table 2.2.
The total number of particles per species is 131,072 in case A, 262,144 in case B and
4,194,304 in case C. This corresponds to a number of 512 electrons and protons per grid
cell in the first two cases and to 8192 particles per grid cell in case C. The grid cell has a
width of 1.5 electron Debye lengths in all the three cases. The length of the simulation
domain covers 5 ion gyration radii in the first case and 28 ion gyration radii in the last
two cases. The total simulation time varies between 3 (case A) and 5 (cases B and C) ion
Larmor periods. The ion-to-electron mass-ratio used is 16.

Table 2.2 — Simulation parameters for cases A, B and C: nx = number of grid points, nt = number of time-
steps, L = length of the simulation domain, 7, = Larmor radius, T = total simulation time, 7; = Larmor
period, Ap = Debye length, Ax = grid spacing, At = time-step, ¢ = speed of light in vacuum; “e” and “/”
indices designates the electrons and ions corresponding quantities. In case A the gyration radius and the
cyclotron period are computed for the left population (see Figure 2.2).

nx nt L/I‘Le L/I’Li T/TLe T/TL,' Ax/lpe cAt/Ax
Case A 256 262144 20 5 54 3 1.5 0.9
CasesB&C 512 131072 112 28 76 5 1.5 0.9

2.3 Numerical results

2.3.1 Evaluation of the intrinsic particle-in-cell noise

In the following we discuss the intrinsic statistical noise that is typical to particle-
in-cell numerical simulations. For this purpose, we analyze the space and time evolution
of a uniform plasma in the presence of constant electric and magnetic fields. Initially,
the entire simulation domain is filled with electrons and protons having a number
density of 10°m™ and a temperature of 20 keV. Their velocity distribution function is a
displaced Maxwellian with the average velocity oriented along the negative z-axis and
equal to 500 km/s. The magnetic field equals 200nT and is pointing along +Oy, while a
convection electric field of 100 mV/m is considered at the beginning of the simulation.
The initial conditions together with other input parameters are summarized in Table 2.3.

Table 2.3 — Input parameters for the test-simulations with a variable number of particles: N = number
density, T = temperature, V; = bulk velocity, B, = magnetic induction, E, = electric field intensity, nx =
number of grid points, nt = number of time-steps, Ax = grid spacing, At = time-step and ion-to-electron
mass ratio m;/m.; Ap is the Debye length and c is speed of light in vacuum; “e” and “i” indices designates
the electrons and ions corresponding quantities.

Ne=Ni Te=Ti Vze= Vzi By Ex ¢ Ax/A At/Ax /
m3  [kev] [km/s]  [nT]  [mV/m] ™ " be € e
10° 20 500 200 100 512 2048 15 0.9 16

We performed three numerical experiments with (i) 4096 particles per cell, (ii)
65536 particles per cell and (iii) 262144 particles per cell. For the beginning, we analyzed
the plasma and electromagnetic field evolution over a short time scale of ~8 electron
plasma periods. Then we increased the simulation time to cover approximately 1000
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electron plasma periods or, equivalently, nearly 4 ion gyration periods, but with less few
simulated particles. The boundary conditions assumed here are reflective for particles,
while the fields are kept fixed at their initial value, as discussed in the previous section.

In Figure 2.5 we illustrate the space and time evolution of the electric field for
the first simulation. The number of particles per cell in this case was equal to 4096. A
notable feature of these simulations are the high amplitude fluctuations, one order of
magnitude larger than the actual value of the electric field, observed throughout the
entire simulation domain. In order to identify the origin of these electrostatic fluctuations,
we analyzed also the space and time evolution of the net charge density computed as
(n.—n;)/n;, where n, and n; are the electron and ion number densities. For each grid cell
of the simulation domain, we computed time-averages by taking the arithmetic mean of
all instantaneous values of the electric field and the net charge density:

nt

<Qi>:%ZQi(fn =n-At) (2.14)

with 7 indexing the grid points along the x-axis; Q is the physical quantity that will be
time-averaged. In our case we apply equation (2.14) for both the E, component of the
electric field and the net charge density (n.—n;)/n;. The results obtained are shown in
Figure 2.6 where on the left column we have the net charge density at the end of the
simulation (blue plot) and its time-averaged profile (red plot), while on the right we have
the same profiles but for the electric field. Each row of panels corresponds to one of the
three numerical experiments performed, i.e. with 4096 particles per cell (top panels),
65536 particles per cell (middle panels) and 262144 particles per cell (bottom panels).

The large amplitude fluctuations are clearly evidenced for both the net charge
density and the electric field intensity (see blue lines in Figure 2.6). On the other hand, it
can be easily noticed that these oscillations are removed by time averaging the
simulation results (see red lines in Figure 2.6). Their amplitude is considerably reduced
when much more particles are loaded into the simulation domain. Indeed, by increasing
the number of electrons and ions by 64 times, the amplitude of the electric field and net
charge density fluctuations has been reduced by one order of magnitude (compare top
and bottom panels of Figure 2.6). Consequently, the time-averaged profiles are also
smoother when more simulation particles are considered.

We increased the simulation time to span more than 1000 electron plasma
periods. On the other hand, in order to maintain a satisfactory computing time, we
reduced the number of particles to 512 per cell. In this case we use 256 grid cells instead
of 512 as in the previous three cases. In Figure 2.7 we show the variation profile of the
net charge density (left panel) and of the electric field (right panel) at the end of the
simulation (blue lines) and computed by time-averaging (red lines). As can be noticed,
the fluctuations are present even after approximately four ion Larmor periods from the
beginning of the simulations. As expected, their amplitude is larger now than previously
since the number of particles diminished. In this case too, by taking time-averages, we
obtain smoother profiles for both quantities.

45




KINETIC SIMULATIONS OF TANGENTIAL DISCONTINUITIES

3
x 10 ‘ ‘ . Ex
,.':\“:“}5’\ |”‘ ‘(l.l‘ 7 T i

1000

o
mV/m

-1000

x [km]

Figure 2.5 — Space and time evolution of the E, component of the electric field when 4096 particles per
grid cell are loaded into the simulation domain. The simulation time covers 8 electron plasma periods.
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Figure 2.6 — Net charge density (left column) and electric field intensity (right column) obtained with 4096
particles per cell (top panels), 65536 particles per cell (middle panels) and 262144 particles per cell
(bottom panels). The blue lines show the results obtained at the end of the simulations, while the red
ones illustrate the time-averaged profiles. The total simulation time covers ~8 electron plasma periods.

The results suggest that the observed electrostatic fluctuations are related to the
number of particles of the simulation. Their large amplitudes are significantly reduced (i)
by increasing the number of particles and (ii) by taking time-averages. Therefore, we
conclude that these fluctuations could be in fact a statistical (electrostatic) white noise.
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To emphasize the nature of the statistical noise observed, we calculated the time
histograms of the net charge density and electric field deviations from their averaged
values:

50,(0=0,-(0,) (2.15)
for the central region of the simulation domain (x=202 km). The results obtained are
shown in Figure 2.8 for the net charge density (left panel) and for the electric field (right
panel). The histograms have been fitted using a normal distribution with mean x~0 and
standard deviation 6~0.029 for the net charge density and 6=1218 mV/m for the electric
field (see red lines in Figure 2.8). The time-deviations from mean have a gaussian distribution
confirming that the large amplitude fluctuations evidenced in our simulations are indeed
a white statistical noise. Note that that the time interval chosen for averaging must be
much larger with respect to the plasma frequency. Indeed, our numerical tests revealed
that only when n¢-At>>1/v, (v, is the plasma frequency) the high amplitude statistical
fluctuations are indeed a gaussian white noise. The results obtained here clearly justify
the time averaging procedure (2.14).
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Figure 2.7 — Net charge density (left column) and electric field intensity (right column) obtained with 512

particles per cell for a total simulation time that covers ~1000 electron plasma periods or, equivalently, ~4
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ones illustrate the time-averaged profiles.
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Figure 2.8 — Histograms of the net charge density (left panel) and electric field intensity (right panel)
deviations from their time-averaged values, computed for the central region of the simulation domain
(x=202 km). The red line illustrates the fitting curve of the histogram using a normal distribution.

The gaussian noise present in our simulations is not limited only to the net
charge density or the E, component of the electric field, but it was observed for all the
plasma and electromagnetic field parameters analyzed. On the other hand, we performed
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additional numerical experiments, but not discussed here, and have shown that the
amplitude of the statistical noise is not influenced by the ion-to-electron mass ratio or
by the width of a grid cell compared to the electron Debye length. Note that the time-
averaging procedure discussed here should be used with care since it could interfere
with the physics. Indeed, we should consider time-averages only for the problems that
are stable over time and when time-dependent effects are not of interest.

2.3.2 Case A: Tangential discontinuity without velocity shear

We simulate a tangential discontinuity without velocity shear (Sestero, 1964), i.e.
there is no asymptotic variation of the plasma bulk velocity across the discontinuity and
the two plasma populations have different densities and temperatures, as illustrated
schematically in Figure 2.2. The input parameters are given in Table 2.1 and Table 2.2.

Figure 2.9 shows the numerical results obtained for case A. On the first row of
panels we have the E, component of the electric field, the second row shows the B,
component of the magnetic field, on the third row we show the electron number
density, while at the bottom of the figure we plot the net electrical charge inside the
plasma computed as (n.—n;)/n; ratio, where n, and n; are the electron and ion number
densities. The first column shows the time history of the aforementioned physical
quantities, on the second one we illustrate the time-averaged profiles, while on the last
column we show the results obtained with a theoretical kinetic model of tangential
discontinuities developed by Roth et al. (1996). Note that the kinetic model is run for
precisely the same asymptotic parameters as the PIC simulations. The theoretical model
is based on steady-state solutions of the Vlasov equation and can provide the equilibrium
structure of tangential discontinuities in collisionless plasmas. It is a generalized one-
dimensional model that is able to describe tangential discontinuities with and without
velocity shear. A full description of the model is given in the paper of Roth et al. (1996).

From the space and time evolution of the electromagnetic field shown in Figure
2.9 (left column, first two panels) we note that the transition profiles of the electric and
magnetic fields are established very quickly, soon after the beginning of the simulation.
The electric field is very noisy and it is characterized by high amplitude fluctuations that
are one order of magnitude larger than the electric field predicted by the theoretical
kinetic model. The noise is reduced by time-averaging, as shown also in the previous
section. To confirm the gaussian nature of the electrostatic noise for this particular
simulation geometry, we show in Figure 2.10 the time histogram of the electric field
deviation from its averaged value for the central region of the simulation domain (x=200
km). The histogram has been fitted using a normal distribution with mean x=0 and
standard deviation 6=600 mV/m (see the red line in Figure 2.10). The time-averaging
procedure (2.14) has been applied to all physical quantities of interest in our
simulations. The computation of time-averages of the PIC results is justified also by the
temporal stability of the PIC solution and by the fact that we compare our numerical
results with a theoretical steady state model of a tangential discontinuity.
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Figure 2.9 — Simulation results for a tangential discontinuity without velocity shear (case A). On the left
column we show the time history for the electric field (first row), the magnetic field (second row), the
electron number density (third row) and the net electrial charge (fourth row). The second column shows
the time-averaged profiles, while on the last column we have the results of a theoretical kinetic model for
a tangential discontinuity (Roth et al., 1996).
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Figure 2.10 — Histogram of the electric field deviation from average, E.(f)—<E\(f)>, computed for the
central region of the simulation domain (x=200 km). The red line illustrates the fitting curve of the
histogram using a normal distribution with mean x~0 and standard deviation 6=~600 mV/m. The averaged
electric field is equal to ~300 mV/m.

The time-averaged profiles shown in Figure 2.9 for the electromagnetic field
(middle column, first two panels) and for the plasma number density (middle column,
third panel) have the typical features of a tangential discontinuity and are in agreement
with the theoretical solution (third column, first three panels) computed using the
model developed by Roth et al. (1996) for the same input parameters as the ones used
in simulation. The panels from the last row of Figure 2.9 illustrate to what extent the
plasma quasineutrality condition is fulfilled at each time-step of the simulation (left
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panel) and also on average (middle panel). The results reveal the electric polarization of
the plasma inside the transition region and the formation of a positive space charge
layer in the central area of the simulation domain (x=250 km). The polarization of the
discontinuity is in agreement with the theoretical model as can be seen in the bottom-
right panel of Figure 2.9. Nevertheless, the value of the (n.n;)/n; ratio given by our
simulations is 2.5 times larger than the one calculated with the theoretical model. Also, the
same discrepancy is found for the electric field. We assume that the too low number of
particles loaded into the simulation causes this mismatch between the numerical result
and the theoretical solution.

2.3.3 Case B: Tangential discontinuity with velocity shear

The simulation geometry for the case of a tangential discontinuity with velocity
shear (Sestero, 1966) is shown in Figure 2.3. In this simulation the plasma bulk velocity
varies in the direction perpendicular to the magnetic field and the two plasma
populations have equal densities and temperature. Inside the right half of the simulation
domain the electrons and protons are initialized with a non-zero average velocity
pointing along the negative z-axis, while the particles from the left half of the simulation
domain are at rest. The input parameters for case B are given in Table 2.1 and Table 2.2.
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Figure 2.11 - Simulation results for a tangential discontinuity with velocity shear (case B). On the left
column we show the time history for the electric field (first row), the magnetic field (second row), the
electron number density (third row) and the net electrial charge (fourth row). The second column shows
the time-averaged profiles, while on the last column we have the results of a theoretical kinetic model for
a tangential discontinuity (Roth et al., 1996).
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Figure 2.11 illustrates the numerical results obtained with the same distribution
of panels as in Figure 2.9. Initially, the electric and the magnetic fields, the electron and
ion number densities and the plasma bulk velocity are characterized by infinitesimal
transition profiles at the boundary between the two different plasma regions. Soon after
the start of the simulation, the system evolves to transition region of finite width with a
scale length of approximately 3.5 ion gyration radii. Similarly to the previous case, all the
physical quantities are characterized by an intense statistical noise, especially the E,
component of the electric field (upper-left panel). Taking time averages, the amplitude
of these fluctuations are significantly reduced (see upper-middle panel).

The simulated profiles of the electric and magnetic fields (middle column, first
two panels) are similar to the theoretical solutions (right column, first two panels). On
the other hand, the number density and the net electrical charge, i.e. (n.—n;)/n; ratio,
are strongly affected by the large statistical noise (middle column, last two panels). The
averaged profiles of the density and net charge (right column, last two panels) are not
similar to the theoretical ones. A possible explanation is the rather small number of
simulated particles. This result emphasizes the critical role played by the number of
particle loaded into the simulation and illustrate that a too small number of particles can
generate incomplete results.

In Figure 2.12 we show the time-averaged profile of the ions bulk velocity across
the discontinuity computed as the ratio between the ion current density J.; and the ion
charge density p;. In the right asymptotic region of the simulation domain (x>450 km) we
obtain a bulk velocity of approximately 1000 km/s that points along the negative
direction of the z-axis, in agreement with the input value.
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Figure 2.12 — The simulated profile of the ions bulk velocity for case B. The transition layer between the
left asymptotic region (V.=0) and the right asymptotic region (V,=—1000 km/s) has a width of
approximately 3.5 ion Larmor radii.

2.3.4 Case C: Plasma slab streaming across a transverse magnetic field

In the last case we simulate the motion of a plasma slab across a transverse
uniform magnetic field in the presence of a background plasma. The geometry of the
problem is shown in Figure 2.4. The plasma localized in the central region of the
simulation domain is similar to a jet with the bulk velocity perpendicular to the magnetic
field. The jet is immersed into a stationary background plasma that has the same density
and temperature. The input parameters are given in Table 2.1 and Table 2.2.
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The numerical results obtained for case C are shown in Figure 2.13 with the same
distribution of panels as in the two previous cases, aside from the last column that was
not included here. At =0, the background plasma and the jet are separated by
infinitesimal discontinuities in the electric field and in the bulk velocity that are localized
in x=200 km and x=600 km. As in the previous two cases, we use time averages to
reduce the statistical noise and smooth the transition profiles. Two finite width
asymmetric boundary layers are formed at the edges of the plasma jet. The left
boundary layer is centered in x=200 km and has a width of approximately 221 km
(~7.671;), while the right boundary layer is localized in x=625 km and has a width of
approximately 296 km (~10.2r;), where 7;; is the ion Larmor radius.

The two asymmetric boundary layers are distinguished more clearly in Figure
2.14 where we show the time-averaged profile of the ion bulk velocity. It can be noticed
that the plasma localized in the lateral regions of the simulation domain (x<90 km and
x>770 km) is stationary, while the “central” plasma is streaming along the negative
direction of the z-axis with a convection velocity of approximately 1000 km/s, consistent
with the initial input of the simulation (see Table 2.1). On the other hand, Figure 2.14
shows the formation of two plasma “wings” at the edges of the slab that are
characterized by a small positive bulk velocity with respect to the slab’s convection
velocity. Similar results have been obtained by Echim et al. (2005) using a two-
dimensional steady-state theoretical kinetic model (Echim, 2004).
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Figure 2.13 — Simulation results for a plasma slab streaming across a transverse magnetic field (case C). On
the left column we show the time history for the electric field (first row), the magnetic field (second row),
the electron number density (third row) and the net electrial charge (fourth row), while on the right
column we show the time-averaged profiles.
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Figure 2.14 — The simulated profile of the ions bulk velocity for case C. Two asymmetric boundary layers
are formed at the edges of the plasma slab. The left boundary layer has a width of approximately 7.6 ion
Larmor radii, while the right boundary layer has a width of approximately 10.2 ion Larmor radii.

2.4 Conclusions

In this chapter | have investigated the space and time evolution of the plasma
and electromagnetic field parameters at the interface between two magnetized plasmas
having different macroscopic properties by using one-dimensional particle-in-cell
simulations. Three cases have been analyzed: (i) a tangential discontinuity without
velocity shear, (ii) a tangential discontinuity with velocity shear and (iii) a plasma slab
moving across a transverse magnetic field. | have used an adapted version of the
KEMPO1 electromagnetic PIC code (Omura and Matsumoto, 1993; Omura, 2007) to
compute the transition profiles across the simulation domain for different physical
guantities of interest as the magnetic field, the electric plasma, the electron and ion
number densities and the plasma bulk velocity. Also, we checked to what extent the
plasma quasineutrality condition is fulfilled through the entire simulation. We initialized
a number of electrons and protons per grid cell varying from 512 to 8192 particles, for
an ion-to-electron mass-ratio equal to 16. The time span of the simulation is of the order
of few ion Larmor periods.

The numerical results obtained using particle-in-cell simulations reveal that the
infinitesimal discontinuity assumed initially for all the three cases considered here,
evolves to a finite width transition region with a scale of the order of ion Larmor radius.
The transition region has properties typical for a tangential discontinuity and it was
stable over the simulation time of 3-5 ion cyclotron periods. Since the code is not
parallelized our computing resources were quite limited. We used a relatively small
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number of particles that leads to a significantly large numerical noise, especially for the
electric field and for the net electrical charge. By taking time-averages, we were able to
reduce the statistical noise and to smooth the transition profiles for the plasma
parameters and for the electromagnetic field. On the other hand, we emphasized the
critical role played by the number of particles initialized inside the simulation domain.

The time-averaged simulated profiles have been compared with a steady-state
theoretical solution of a tangential discontinuity using identical input parameters. The
theoretical kinetic model used (Roth et al., 1996) can provide the equilibrium structure
of one-dimensional TDs with and without velocity shear. The results of our simulations
are in relatively good agreement with the theoretical solutions. To our knowledge, this is
the first time when theoretical kinetic models are directly compared with particle-in-cell
simulations conducted under the same initial and asymptotic conditions.

The numerical experiments carried out into the second chapter of my thesis
played the role of an intermediate step for the transition from test-kinetic to three-
dimensional full-particle simulations. The primary goal was to simulate self-consistently
plasma configurations typical to the study of plasma elements dynamics across
transverse magnetic fields for which theoretical solutions are available.
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Chapter 3

Three-dimensional particle-in-cell simulations of
plasma elements transported across fransverse
non-uniform magnetic fields

In this chapter of my thesis | discuss the three-dimensional electromagnetic
particle-in-cell simulations devoted to the investigation of the interaction of a localized
plasma element/cloud with a transverse magnetic field. The plasma cloud is streaming in
vacuum and perpendicular to a background magnetic field. The simulations demonstrate
the crucial role of plasma processes taking place in the boundary layers at the edges of
the plasma cloud for the propagation across the ambiental magnetic field. The effects of
magnetic field gradients are also analyzed and discussed.

3.1 Three-dimensional particle-in-cell simulations

The simulations presented here are performed using a modified version of the
three-dimensional particle-in-cell code TRISTAN (Buneman, 1993). TRISTAN is a full
electromagnetic explicit 3d3v PIC code, i.e. all three spatial coordinates and all three
velocity components are solved. The electromagnetic field is discretized in space
according to the Yee lattice (Yee, 1966) shown in Figure 3.1. Thus, the E,, E,, E. and the
B,, B,, B. components of the electric and magnetic fields are computed numerically from
Maxwell’s equations in the staggered grid points located at:

E (i+1/2,j,k) E (i,j+1/2,k) E (i,j,k+1/2)

1
B(i,j+1/2,k+1/2) B(i+1/2,jk+1/2) B.(i+1/2,j+1/2,k) (3-1)

where i, j, k indexes the number of grid points inside the simulation domain along the
Ox, Oy and Oz axes. The Ampere and Faraday’s laws:
d0E 1(VxB -
= — J
at g,

. Ho (3.2)
B -

Z=_VxE

ot %

are solved numerically using finite-differences method with a centered-difference
scheme in order to obtain the electromagnetic field on the Yee lattice shown in Figure
3.1. In equation (3.2), J is the total current density in the plasma, while g and y are
the electrical permittivity and the magnetic permeability of the vacuum. All the
simulations included in the present chapter are performed with periodic boundary
conditions for the electric and magnetic fields (see Appendix A).
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The time-step and the grid spacing used to solve the Maxwell’s equations with
finite-differences must satisfy the Courant condition of numerical stability which takes
the following form for a three-dimensional problem (Birdsall and Langdon, 1991):

1 1 1 1
2 > 2 + 2 + 2
(c-Ar)”  (Ax)" (Ay)” (Az)
where Ax, Ay, Az represents the grid spacing along the Ox, Oy and Oz axes, At is the
time-step and c is the speed of light in vacuum. In TRISTAN, the same grid spacing is

(3.3)

used for all the three spatial coordinates, i.e. Ax=Ay=Az. In this case, the inequality (3.3)
is reduced to a more simplified form:
c-At<Ax/3 (3.4)
which is even more restrictive here than in the one-dimensional case (see Chapter 2).
Also, the time-step must resolve the electron plasma frequency, while the grid spacing
must be of the order of the electron Debye length Ap (Birdsall and Langdon, 1991):
Ax <34, (3.5)
to avoid the numerical instabilities related to the discretization of the configuration space.

(i,j.k+1) Y (i,j+Lk+1)

@i+1,j,k+1)

(i,j+1Lk)

4
(i+1,j,k) E, (i+1,j+Lk)

Figure 3.1 — Yee lattice (Yee, 1966) used to solve the Maxwell’s equations using finite-differences method
with a centered-difference scheme. The electric field is computed at the locations shown by blue dots,
while the magnetic field is computed at the locations shown by red dots (adapted from Yee, 1966).

The electric charge of a finite-size superparticle is distributed among its eight
neighboring grid points as a function of the distance between the exact position of the
particle and the grid points, following the volume weighting method (Buneman, 1993).
This latter is a first order interpolation scheme that operates in all the three spatial
coordinates and is a three-dimensional generalization of the linear interpolation scheme
used in the one-dimensional PIC simulations described in Chapter 2. In order to avoid
the self-force, the volume weighting method together with the same grid points used to
distribute the charges over the grid is also applied further to compute the electric and
magnetic fields in the actual positions of the particles (see Appendix A for details).
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The total current density is obtained from the so-called current deposition of
particles method (Villasenor and Buneman, 1992). All the three components of the
current density, both for electrons and ions, are calculated as the amount of charge that
crosses the faces of the grid cells used to integrate the Maxwell’s equations by finite-
differences (see Appendix A for details). The current deposition of particles method ensures
the conservation of the electric charge at each time-step during the simulation:

P v.5=0 (3.6)
ot
where p is the electric charge density.

The positions 7 and velocities v of the particles are obtained by integrating
numerically the relativistic equation of motion:

a1,

dt_y

i ! (3.7)
—u=i(l§“+—ﬁx§]

dt m 4

where we used the notation i =yv, y =1/+1—v>/c” is the relativistic factor and m is the
rest mass of a particle. The equations (3.7) are discretized by using the leap-frog method.
The velocity at a given time is computed explicitly with the Buneman-Boris technique
(Birdsall and Langdon, 1991). The boundary conditions for particles are periodic.

The normalization of temporal and spatial scales used in TRISTAN code is defined
such that the following quantities are equal to unity:

Ax=1, At=1, e/m =1, g =1 (3.8)
where e is the elementary charge and m. is the electron mass. A detailed description of
the normalization scheme used in our simulations is given in Appendix B.

A schematic diagram illustrating the three-dimensional particle-in-cell simulation
cycle implemented in TRISTAN is shown in Figure 3.2. At the beginning of the simulation,
the positions and velocities of the particles and also the electric and magnetic fields are
initialized according to the specific initial conditions that define the problem to study. It
is important to check that the initial electromagnetic field satisfies the Maxwell’s
equations. Once the initialization is done, the equation of motion (3.7) is integrated
numerically over the time-step A¢, for each simulated particle. Prior to the computation
of particles’ trajectories, a half-update of the magnetic field is performed, i.e. the
Faraday’s law is integrated in time over At/2, in order to provide the fields at the same
instance of time for the integration of equation (3.7). This step is required since the
electric and magnetic fields are staggered in time due to the centered-difference
discretization applied for the Maxwell’s equations. Thus, the new positions and velocities of
the particles are determined and the total current density is computed by the current
deposition technique. Periodic boundary conditions are applied for the particles that
intersect the boundaries and leave the simulation domain. Further, the Ampere and
Faraday’s laws (3.2) are integrated over the three-dimensional spatial mesh shown in
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Figure 3.1. The volume weighting method is then used to calculate the electric and
magnetic fields in the position of each simulated particle. Periodic boundary conditions
are considered also for the electromagnetic field. After updating the fields on the
positions of the particles, the equation of motion is integrated again over the time-step
At, thus providing the new set of positions and velocities. The cycle is continued until the
condition that defines the end of the simulation is satisfied. The time-step and the grid
spacing used must fulfill the numerical stability conditions expressed by the inequalities
(3.4) and (3.5). A description of the formulas used in our 3D-PIC code is given in Appendix A.

!

HALF-UPDATE 3 MOVE 3 CURRENT

of B-field particles computation

T 1 2 l 3
BOUNDARY BOUNDARY

CONDITIONS At CONDITIONS

for E-field for particles ,
BOUNDARY
FULL-UI?DATE ¢ CONDITIONS <€ HALF-UI?DATE
of E-field . of B-field

7 for B-field 4 5

Figure 3.2 — Schematic diagram of a three-dimensional particle-in-cell simulation cycle. Each of the 8 steps
illustrated above are performed iteratively until the end of the simulation. The time-step At must fulfill the
Courant condition of numerical stability (adapted from Cai et al., 2003).

3.2 The simulation setup

The simulation domain is defined between [3, mx—2] along the Ox axis, [3, my-2]
along the Oy axis and [3, mz—2] along the Oz axis, where mx, my, mz are the number of
grid points along the three coordinate axes, with the grid spacing Ax=Ay=Az=1. The
initial positions of the particles, electrons and protons that form the three-dimensional
plasma element, are uniformly distributed inside the simulation domain over a rectangular
region of width w, along the Ox axis, w, along the Oy axis and w. along the Oz axis. A
schematic diagram of the simulation geometry is shown in Figure 3.3.

The initial velocity distribution function (VDF) for both species is a displaced

Maxwellian with an average velocity ‘70 parallel to the positive x-axis. The electrons and
protons velocities are initialized according to their corresponding displaced Maxwellian
distribution function. The background magnetic field BO is constant and it is oriented along

the positive direction of the z-axis and perpendicular to the initial bulk velocity of the
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plasma element. We consider two different profiles for the external magnetic field: (i) an
uniform field and (ii) a non-uniform field that varies with the x-coordinate over a finite
width transition region having the length scale x,—x;:

B, forx <x,

X—Xx
B/(x)=4B +(B,—B) L, forx, Sx<x, (3.9)
X, =X

B,, forx > x,

where B is the asymptotic field in the left hand side of the transition region (x<x)),
while B; is the asymptotic field in the right hand side (x>x;). At /=0, the electric field is
set to zero everywhere inside the simulation domain.

y

Figure 3.3 — Schematic diagram of the simulation setup. The three-dimensional plasma element/cloud
(red rectangular box) is injected with a non-zero bulk velocity (blue arrow), in vacuum, across a transverse
magnetic field (black arrow).

In the following section | discuss the results of numerical simulations of a small
Larmor radius plasma cloud, i.e. a plasma cloud whose transversal dimension is much
larger than the ion gyration radius. The cloud is injected in vacuum across two different
profiles of the transverse magnetic field, i.e. uniform and non-uniform. | analyze and
discuss five different cases.

In the first two cases | simulate the dynamics of a plasma element with the initial
bulk velocity Vy=0 (case |) and V;#0 (case Il) immersed into a uniform magnetic field.
These cases are devoted to “calibrate” the simulation and test that the results are correct
for problems whose solution is known a priori. In the last three cases | investigate the
role of the initial velocity on the dynamics of the cloud in a non-uniform magnetic field.
The simulations describe the convection of a plasma element into the non-uniform
magnetic field given by equation (3.9) with an initial slow speed (case lll), intermediate
speed (case IV) and fast speed (case V) plasma bulk velocity. The input parameters for all
simulated cases are given in Table 3.1 and Table 3.2. The plasma element is formed from
only electrons and protons. The physical quantities are expressed in normalized units, as
discussed in Appendix B. Periodic boundary conditions for both particles and fields have
been considered throughout all the simulations performed here.
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Table 3.1 — Input parameters for all the simulations discussed in Chapter 3: m;/m, is the ion-to-electron
mass ratio; 7,/T; is the electron-to-ion temperature ratio; f, is the plasma-beta parameter for electrons; &
is the dielectric constant of the plasma element; w,, w), w. are the widths of the plasma element along Ox,
Oy, Oz axes; ry; is the ion Larmor radius; Ax is the grid spacing; Ap is the electron Debye length; At is the
time-step; c is the speed of light in vacuum; N, is the number of particles per grid-cell at /=0.

m;/m, T./T; Be & W /rLi wylrL; w.lry; Ax/lp  cAt/Ax N,
All cases 36 25 0.02 126 40 40 24 2.5 0.5 200

Table 3.2 — Input parameters for the five cases and the three sub-cases shown in Chapter 3: Vj is the initial
plasma bulk velocity; V7 is the ion thermal speed, VT,-=(2kBT,-/m,»)”2; B; and B; are the asymptotic magnetic
fields defined in equation (3.9); x; and x, define the non-uniform magnetic field region given by equation
(3.9); ry; is the ion Larmor radius; xo, Vo, Zo gives the starting position of the plasma element along the Ox,
Oy, Oz axes; mx, my, mz are the number of grid points along the Ox, Oy, Oz axes; T is the total simulation
time; Ty, is the ion Larmor period.

Vo/VT,' (Bz_Bl)/Bl (X2_xl)/l"L,' X1 X0 Yo 20 mx my mz T/TLi
Casel 0 0 - - 23,5 535 1385 155 155 305 0.1

Case Il 4.60 0 - - 235 535 1385 155 155 305 2
Case lll 1.15 50% 5 79 23,5 103.5 2385 155 255 505 3.75
Case V-1 2.30 50% 5 159 1035 785 1885 255 205 405 3
Case V-2 2.30 10% 5 159 1035 785 1885 255 205 405 3
Case V-3 2.30 67% 32 159 1035 785 1885 255 205 405 3
Case V 4.60 50% 5 85 235 535 1385 155 155 305 2

3.3 Numerical results

3.3.1 Case I: Stationary plasma element in uniform magnetic field

This first case is devoted to a plasma element at rest in a uniform and constant
magnetic field and is performed in order to check whether the three dimensional code
provides meaningful results for a simple physical situation. The input parameters for case |
are given in Table 3.1 and Table 3.2. All the physical quantities used here are expressed
in normalized units (see Appendix B). We analyze in detail the evolution of the plasma
element during a time interval spanning the first three electron Larmor periods.

Figure 3.4 shows the initial number density of the plasma element. Two relevant
cross-sections are illustrated inside the simulation domain: in the left panel the electron
number density is shown in the xOy plane perpendicular to the background magnetic
field, for z=153; in the right panel the electron number density is shown in the xOz plane
parallel to the background magnetic field, for y=78. Initially, the electrons and ions have
the same number density. As can be noticed in Figure 3.4, the initial shape of the plasma
element is a rectangular box with uniform density. The velocity distribution function, at
=0, inside the central region of the plasma element is shown in Figure 3.5 for both
electrons (left panel) and ions (right panel). The distribution functions are computed as
histograms in a 2D cross-section of the three-dimensional velocity space for v.=0; the
histograms are computed in a spatial region defined by 46<x<51, 68.5<y<88.5 and 3<z<303.
Figure 3.5 shows that the initial VDF is an isotropic Maxwellian with zero average velocity.
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Figure 3.4 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) sections of the
simulation domain. The uniform background magnetic field is parallel to the z-axis. The ions and electrons
are initialized with the same number density. At =0 the three-dimensional plasma element has a
rectangular shape and a uniform density.
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Figure 3.5 — Initial velocity distribution function of electrons (left panel) and ions (right panel) in the v,=0
section perpendicular to the background magnetic field. The VDFs are computed in the central region of
the plasma element for 46<x<51, 68.5<y<88.5 and 3<z<303. Note that the initial velocity distribution
function of both electrons and ions is an isotropic Maxwellian with zero average velocity.

In Figure 3.6 and Figure 3.7 we illustrate the number densities of electrons n,
(top panels) and ions n; (middle panels) and also the net charge density computed as
ni—n. (bottom panels) in the xOy plane perpendicular to the background magnetic field
(Figure 3.6), for the cross-section z=153, and in the xOz plane parallel to the background
magnetic field (Figure 3.7), for the cross-section y=78. On the left column of the two
figures we show the results obtained at =7}./2, while on the right column we have the
results at =37;., where T;. represents the electron Larmor period. The electric field
corresponding to the same cross-sections and to the same moments of time as in the
two aforementioned figures is shown in Figure 3.8 (E, and E, components perpendicular
to the background magnetic field) and in Figure 3.9 (parallel component E).

At the early stages of the simulation (¢<<T},), the particles located at the edges
of the plasma element will move outward with respect to the central core of the cloud.
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Therefore, the plasma will expand in vacuum due to the thermal motion of both
electrons and ions. Having a higher thermal velocity than the ions, the electrons will
expand more rapidly and space charge layers will be formed at the boundaries of the
plasma element. Indeed, as can be noticed in Figure 3.6 and Figure 3.7 (bottom-left
panels), at a half of the electron Larmor period, the plasma cloud can be divided into
three different main regions: (i) a quasineutral core with equal number densities for
both electrons and ions, (ii) a positive charge layer of protons surrounding the
quasineutral core and (iii) a negative charge layer of electrons at the outer edges of the
plasma cloud. Both space charge layers have a width of the order of few electron/ion
Larmor radii. As a consequence, an outward directed electric field is formed at the
boundaries of the plasma element, as can be seen in Figure 3.8 and Figure 3.9. The net
charge density fluctuations observed inside the quasineutral core of the plasma cloud
are in fact due to a statistical noise introduced by the limited number of particles loaded
into the simulation domain. By increasing the number of simulated particles one would
reduce the amplitude of these fluctuations.

At later stages of the simulation (77./2<t<<T};), the two space charge layers will
evolve differently in the plane perpendicular and parallel to the magnetic field. Let’s
analyze now the dynamics of the plasma cloud in the perpendicular plane to the
background magnetic field. The Lorentz force deflects the electrons and eventually stops
the outward expansion. Simultaneously, the ions are accelerated by the outward
directed electric field and, in combination with the thermal motion, will continue to
expand to larger radial distances than the electrons. Thus, the two space charge
boundary layers will develop opposite polarities now than in the early stages of the
simulation. When the ions also become magnetized, at t>7},/2, their thermal expansion
is hindered by the gyration motion in the background magnetic field. Nevertheless, on
average, a positive charge layer will persist at the outer edges of the plasma cloud since
the ion Larmor radius is larger than the one of electrons. Note however that this effect is
reduced in our simulations as the proton-to-electron mass ratio has been altered from
1836 to 36 in order to be able to perform a large enough number of simulation iterations
and to cover simulation times of the order of the proton Larmor period.

From the inspection of the net charge density in the xOy plane perpendicular to
the background magnetic field at =37, (see Figure 3.6, bottom-right panel), one can
notice that the structure of the plasma cloud has changed, compared to the early stages
of the simulation. A negative charge layer now surrounds the quasineutral core, while at
the outer edges of the plasma cloud a positive layer is formed. Moreover, by a closer
look at the bottom-right panel of Figure 3.6, we can notice that a slightly negative
charge density is distinguished at the outer boundary of the ion charge layer. The
electric field has a more complicated structure now than in the early stages of the
simulation (see Figure 3.8, right panels). An alternating inward-outward electric field is
observed at the edges of the plasma element in the xOy plane. In our computations the
electron .. and ion r;; Larmor radii have comparable values, i.e. ry;/r..=1.2. Therefore,
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since the electron and ion Larmor scales are approximately equal, the two space charged
boundary layers are not well separated and, as a consequence, an inward directed
electric field is not clearly evidenced at the edges of the plasma cloud for > Tj,.
Nevertheless, the numerical experiments performed using a larger r./ri. ratio
emphasized the presence of an inward directed electric field at the outer boundaries of
the plasma cloud for time scales larger than the electron Larmor period and up to 1.577};.
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Figure 3.6 — Number densities of electrons n. (top panels) and ions n; (middle panels) and the electric
charge separation computed as n—n, (bottom panels) at +=7;./2 (left column) and =3T}, (right column),
where T, is the electron Larmor period; xOy central sections perpendicular to the background magnetic
field are shown.
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Figure 3.7 — Number densities of electrons n, (top panels) and ions »; (middle panels) and the charge
separation computed as nn, (bottom panels) at =7;./2 (left column) and =37}, (right column), where
T;.is the electron Larmor period; xOz central sections parallel to the ambiental magnetic field are shown.

The plasma dynamics along the Oz axis parallel to the background magnetic field
has a different evolution from that in the xOy plane perpendicular to BO. The parallel

electric field created by the thermal motion of particles along the magnetic field lines
(see Figure 3.9) will tend to reduce the expansion rate of the plasma cloud in the
positive and negative directions of the z-axis. Indeed, the electrons located at the edges
of the plasma element will be slowed-down by the outward parallel electric field, while
the ions will be accelerated. As a result, the charge separation between the two species
will decrease and consequently the parallel electric field will be less intense (see Figure
3.9). Nevertheless, the particles expansion along the magnetic field lines will continue to
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exist and the plasma number density in the perpendicular plane to the background
magnetic field will decrease drastically. After only few ion Larmor periods the particles
reach the boundaries of the simulation domain and the number density inside the
central core of the plasma element is one order of magnitude smaller than it is initially.
The degradation of the plasma element along the magnetic field lines has a significant
impact on the propagation of a plasma element across a transverse magnetic field, as it
will be discussed further in the other simulated cases.
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Figure 3.8 — E, (top panels) and E, (bottom panels) components of the electric field at =7;./2 (left
column) and =3T;, (right column), where T;, is the electron Larmor period; xOy central sections
perpendicular to the background magnetic field are shown.
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Figure 3.9 — E. component of the electric field at =77./2 (left panel) and =37, (right panel), where T}, is
the electron Larmor period; xOz central sections parallel to the background magnetic field are shown.
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Figure 3.10 — The B, (top panels), B, (middle panels) and B. (bottom panels) components of the magnetic
field, at =T7./2 (T}, is the electron Larmor period), in the xOy plane (left column), xOz plane (middle

column) and yOz plane (right panel) inside the simulation domain, for the cross-sections specified in the
title of each of the nine plots.
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Figure 3.11 — The B, (top panels), B, (middle panels) and B, (bottom panels) components of the magnetic
field, at =3T;. (T;. is the electron Larmor period), in the xOy plane (left column), xOz plane (middle

column) and yOz plane (right panel) inside the simulation domain, for the cross-sections specified in the
title of each of the nine plots.
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The magnetic field for nine different cross-sections inside the simulation domain
is shown in Figure 3.10 for =7;./2 and in Figure 3.11 for t=37;.. We illustrate the B, (top
panels), B, (middle panels) and B. (bottom panels) components of the magnetic field in
the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), for
the cross-sections specified at the top of each plot. By analyzing the top and middle
panels of Figure 3.10 and Figure 3.11, we can notice that the B, and B, components of
the magnetic field are two orders of magnitude smaller than the ambiental magnetic
field oriented along the positive z-axis. Indeed, since the S-parameter of the plasma
cloud is of the order of 1072, the self-consistent contribution of electrons and ions to the
total magnetic field is negligible. Nevertheless, a diamagnetic cavity is formed in the
actual position of the plasma cloud, as can be observed in the bottom panels of Figure
3.10 and Figure 3.11. Inside the diamagnetic cavity the B, component of the total
magnetic field decreased by less than 1% from the background magnetic field value By
(By=0.0388 normalized units).

In Figure 3.12 we present the J, (top panels) and J, (bottom panels) components
of the total current density, at =717./2 (left column) and =37}, (right column), for a
central cross-section in the xOy plane perpendicular to the background magnetic field.
An electric current flows at the boundaries of the plasma element along the positive x-
axis at the top edge of the cloud (J:>0), along the negative y-axis at the right edge
(/,<0), along the negative x-axis at the bottom edge (/,<0) and along the positive y-axis
at the left edge of the cloud (J/,>0). This is a diamagnetic current, jD, that flows wherever
there is a kinetic pressure gradient inside the plasma (Chen, 1974):

Jp= B>;2vp
where p=n.kpT +nkpT; is the total kinetic pressure, T, and T; are the electron and ion

(3.10)

temperatures, while k3 is the Boltzmann’s constant. Indeed, in our simulations there is a
pressure gradient at the plasma-vacuum boundaries that is pointing radially inwards

with respect to the center of the cloud. Therefore, the Bx Vp current will be positive at

the top and the left edges of the plasma element and negative at the bottom and the
right edges, in agreement with the numerical results obtained.

Besides the diamagnetic current (3.10) circulating around the quasineutral core
of the plasma element, there is an additional current directed radially outward with
respect to the center of the cloud. It is positive at the right (/,>0) and top (/,>0) edges of
the plasma element and negative at the left (J,<0) and bottom (J,<0) edges. This current
is related to the thermal expansion of the electrons and ions at the plasma-vacuum
interface, as discussed previously. The gyration motion in the plane perpendicular to the
magnetic field has a direct effect on the expansion of the electrons at the boundaries of
the plasma cloud. Thus, the radially directed flux of electrons at the edges of the cloud
will oscillate with the Larmor frequency from positive to negative values. On the other
hand, for t<<T}; the flux of ions at the boundaries of the plasma is pointing radially
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outward with respect to the center of the cloud; the ions are virtually not magnetized at
these early moments of the simulation. This behavior is well illustrated in Figure 3.13
and Figure 3.14 where we plot the dependencies J.=J.(x) (Figure 3.13) and J,=J,(»)
(Figure 3.14) at =T../4 (top panels), =T../2 (middle-top panels), =2.5T;. (middle-
bottom panels) and =37}, (bottom panels), for both electrons (left column) and ions
(right column). It can be noticed that indeed the electron current density is oscillating in

the xOy plane perpendicular to BO , While the ions continue to expand radially outward

over the three electron Larmor periods simulated here. At =17./2, the current is carried
only by the electrons since their thermal velocity is higher than for the ions. This effect
in shown in the top panels of Figure 3.13 and Figure 3.14. On the other hand, at =377,
the electron and ion currents at the edges of the plasma cloud are flowing in opposite
directions. At this time, the current density for the ions being a bit larger than for the
electrons, a small radially outward total current density exists at the outer boundaries of
the plasma element, as can be observed also in Figure 3.12. The current density
fluctuations observed inside the quasineutral core of the plasma cloud are related also
to the limited number of particles loaded into the simulation domain, similar to the
statistical noise observed for the net charge density. As indicated previously, an increased
number of simulated particles should reduce the amplitude of these fluctuations.
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Figure 3.12 — J, (top panels) and J, (bottom panels) components of the total current density at =T7;./2
(left comlun) and =3T}, (right column), where T}, is the electron Larmor period; xOy central sections
perpendicular to the background magnetic field are shown.
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Figure 3.13 — Variation with x of the J, component of the current density for electrons (left panels) and
ions (right panels) at =T;./4 (top panels), =1;./2 (middle-top panels), =2.5T;, (middle-bottom panels)
and =37}, (bottom panels), where T}, is the electron Larmor period. The dependence J,=/J,(x) is shown
for y=78 and z=153.
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Figure 3.14 — Variation with y of the J, component of the current density for electrons (left panels) and
ions (right panels) at =T;./4 (top panels), =1;./2 (middle-top panels), =2.5T;, (middle-bottom panels)
and =37, (bottom panels), where T}, is the electron Larmor period. The dependence J,=J,(y) is shown
for x=49 and z=153.
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In Figure 3.16 and Figure 3.17 we show the velocity distribution function of both
electrons (Figure 3.16) and ions (Figure 3.17) at =37}.. The VDFs are computed as two-
dimensional velocity histograms in the (vy,v,) plane perpendicular to the background
magnetic field for v,=0. Five spatial bins have been selected to calculate the velocity
distribution functions and are marked with black rectangles in Figure 3.15 where we
illustrate a zoom in the top-right panel of Figure 3.6. The bins are located at the
following positions in the xOy plane: (left bin) 21<x<26 and 68.5<y<88.5; (right bin)
71<x<76 and 68.5<y<88.5; (top bin) 38.5<x<58.5 and 101<y<106; (bottom bin)
38.5<x<58.5 and 51<y<56; (middle bin) 46<x<51 and 76<y<8l. All five spatial bins
extend in the Oz direction, i.e. 3<z<303. Each (vy,v,) plot in Figure 3.16 and Figure 3.17
corresponds to a spatial bin illustrated in Figure 3.15.
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40
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Figure 3.15 — Number density of electrons at =3T;,, where T}, is the electron Larmor period, in the xOy
central section perpendicular to the background magnetic field. This is a zoom in the top-right panel of
Figure 3.6. The five black rectangles mark the spatial bins used to compute the velocity distribution
function for both electrons and ions.

The velocity distribution function inside the central region of the plasma element
is an isotropic Maxwellian with zero average velocity, for both electrons and ions. When
one compares the middle panels of Figure 3.16 and Figure 3.17 with Figure 3.5, one
notices the similarities with the initial VDF. On the other hand, at the edges of the
plasma cloud the velocity distribution function is non-Maxwellian. Indeed, the VDFs of
both electrons and ions for the left, right, top and bottom spatial bins are anisotropic
with an increased density in certain regions of the perpendicular velocity space. For
instance, the electrons localized inside the right spatial bin have a positive average
velocity along the Oy axis (see right panel of Figure 3.16), while the ones inside the left
bin have a negative average velocity along the Oy axis (see left panel of Figure 3.16). This

effect is induced by the diamagnetic drift of electrons flowing in the Vp X B direction at

the boundaries of the plasma element. In the case of ions, the velocity distribution
function at the edges of the cloud is a displaced Maxwellian with a long high-energy tail
(see Figure 3.17). Unlike the electrons, the ions are still unmagnetized at the very early
stages of the simulation. As a result, the gyration motion in the perpendicular plane to
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the magnetic field does not have yet a significant effect on the trajectories of the ions.
Thereby, the features of the velocity distribution function observed at the left, right, top
and bottom spatial bins emphasize the radially outward thermal expansion of the ions at
the boundaries of the plasma element. The formation of the high-energy tail is due to
the acceleration of the ions by the outward directed electric field acting at the edges of
the cloud (see Figure 3.8).

The numerical experiment performed in the first case shown here played the role
of a key-test for our PIC-3D simulation code in a plasma-field configuration that is of
interest for my PhD thesis. The main goal was to simulate the early evolution of a
stationary plasma element immersed in a uniform magnetic field and to recover what is
already known about this topic. The numerical results obtained here confirm and
generalize to three-dimensions the detailed simulations published previously by Galvez
et al. (1988) that have been performed using a two-dimensional electrostatic particle-in-
cell code.
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Figure 3.16 — Velocity distribution function of electrons at =37}, in the v,=0 section perpendicular to the
background magnetic field; 77, is the electron Larmor period. Each of the five (v,,v,) panels correspond to
a certain spatial bin that covers the entire simulation domain along the z-axis. The bins locations in the
xOy plane are shown with black rectangles in Figure 3.15.
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Figure 3.17 — Velocity distribution function of ions at =3T;. in the v,=0 section perpendicular to the
background magnetic field; 77, is the electron Larmor period. Each of the five (v,,v,) panels correspond to
a certain spatial bin that covers the entire simulation domain along the z-axis. The bins locations in the
xOy plane are shown with black rectangles in Figure 3.15.

3.3.2 Case lI: Plasma element streaming across a uniform magnetic field

In the second case we simulate the dynamics of a plasma cloud streaming with a
non-zero bulk velocity, Vy#0, across a uniform background magnetic field, By=const., as
shown in Figure 3.3. The input parameters for case Il are given in Table 3.1 and Table 3.2.
All the physical quantities are expressed in normalized units (see Appendix B). We analyze
the evolution of the plasma and electromagnetic field over two ion Larmor periods.

When a low-f plasma element is injected across a transverse magnetic field, two
space charge layers will be formed at the lateral edges of the plasma element along the
‘70 XBO direction, as shown in Figure 3.18 (panel b), since the electrons and ions are
gyrating in opposite directions in the perpendicular plane to the magnetic field (see
Figure 3.18, panel a). Therefore, a polarization electric field, Ep, will form inside the
guasineutral bulk of the plasma, as described by Schmidt (1960):

E, =-V,xB, (3.11)

where I_/)O is the initial bulk velocity of the plasma element injected perpendicular to the

ambiental magnetic field BO. Under some circumstances, the polarization electric field
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(3.11) will enable the convection of the plasma across the magnetic field with
approximately the injection velocity. The first requirement is that the kinetic energy
density of the plasma element to be much larger than the polarization electric field
energy density or, equivalently, that the dielectric constant of the plasma, ¢, to be very

large compared to unity (Livesey and Pritchett, 1989):
2

w,;
e=1+—->1 (3.12)

2
Li

where w,; is the ion plasma frequency and wy; is the ion Larmor frequency. Moreover, in
order to have the quasineutrality condition fulfilled inside the bulk of the plasma cloud,
a second requirement must be accomplished (Livesey and Pritchett, 1989):

m.
£> : (3.13)
m

e
where m; and m, are the ion and electron masses. An additional condition necessary to
enable the polarization of the plasma element is that the two space charge layers to be
much thinner compared to the width of the cloud (Livesey and Pritchett, 1989). Under
these circumstances, the plasma element will stream across the background magnetic

field with the bulk velocity Vp (Livesey and Pritchett, 1989):

4 =(1—1j\70 (3.14)

which is approximately equal to the injection velocity when e>>1.

Figure 3.18 — Schematic diagram of the two space charge layers forming at the edges of a plasma beam
injected across a transverse background magnetic field. Panel (a) illustrate the trajectories of the electrons
and ions immediately after injection, while panel (b) shows the polarization electric field inside the
quasineutral plasma core (adapted from Livesey and Pritchett, 1989).

In Figure 3.19 we show the variation along the y-axis of the net charge density
(top panels) and of the E, component of the electric field (bottom panels), at =77./4, for
case | where Vy=0 (left column) and for case Il where Vy#0 (right column). As it was
described in the previous section, at the early stages of the simulation (for time intervals
shorter than the electron Larmor period) the plasma element can be divided into there
main regions: (i) a quasineutral core with equal number densities for both electrons and
ions, (ii) a positive charge layer surrounding the quasineutral core and (iii) a negative
charge layer at the outer edges of the plasma cloud. These features can be easily
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observed for both simulated cases in the top panels of Figure 3.19. Inside the
guasineutral core of the plasma cloud there are statistical fluctuations of the net charge
density due to the limited number of simulated particles considered.

A closer examination of the space charge density profiles shown in Figure 3.19
reveals the polarization of the plasma element when is streaming perpendicular to the
background magnetic field (see top-right panel), in contrast to the first case where the
plasma is at rest (see top-left panel). Indeed, the total net charge density in case Il is
slightly positive at the bottom edge of the cloud (for 45<y<55) and slightly negative at
the top edge of the cloud (for 100<y<110). On the other hand, in case |, the two
aforementioned boundaries show no net charges on average. As a result, a polarization
electric field, E,=V,By, is formed inside the quasineutral core of the plasma element in
case |l (see bottom-right panel). Instead, in case | when plasma is at rest, no electric field
is observed inside the main bulk of the cloud (see bottom-left panel). This polarization
electric field will enable the forward convection of the plasma element across the
magnetic field.
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Figure 3.19 — Variation along the y-axis of the net charge density (top panels) and of the E, component of
the electric field (bottom panels), at =7./4, for case | (left column) and case Il (right column); T}, is the
electron Larmor period. The black line in the bottom-right panel marks the value of the polarization
electric field given by equation (3.11), i.e. E,=V,B,.

In Figure 3.20 and Figure 3.21 we show the number density of electrons 7. (top
panels) and ions n; (middle panels) and also the net charge density computed as n;—n,
(bottom panels) in the xOy plane (left column), xOz plane (middle column) and yOz
plane (right column), at =T}, (Figure 3.20) and =277, (Figure 3.21), where T}, is the ion

75




PLASMA DYNAMICS IN TRANSVERSE MAGNETIC FIELDS: 3D-PIC SIMULATIONS

Larmor period. The numerical results obtained clearly illustrate the propagation of the
plasma element across the ambiental magnetic field. During the entire simulation time
that takes two ion gyration periods, the plasma cloud traveled along the positive
direction of the x-axis over a distance of about 56 ion Larmor radii, which indicates an
average convection velocity of approximately 4.46V7; (V7i=(2ksTi/m;)"?* is the ion thermal
velocity at =0), almost equal to the initial injection velocity (Vy=4.6V7;); compare, for
instance, the left panel of Figure 3.4 with the top-left panel of Figure 3.21.

At the same time, the plasma is expanding rapidly along both parallel and
antiparallel directions of the background magnetic field. The most energetic particles
already reached the edges of the simulation domain along the z-axis after two ion
cyclotron periods. However, the main bulk of the plasma is still located well inside the
simulation domain at =277, (see Figure 3.21). As a consequence of the thermal expansion
of particles along the z-axis, the number density in the xOy plane perpendicular to the
background magnetic field is decreasing significantly in time. Indeed, after only one ion
gyration period, the number density of both electrons and ions in the z=153 cross-
section is approximately 2.5 times smaller than the initial value (compare Figure 3.20
with Figure 3.4). At the end of the simulation, for =27}, the plasma cloud became 5
times more tenuous than it was initially (compare Figure 3.21 with Figure 3.4). The net
charge density inside the simulation domain is shown in the bottom panels of both
Figure 3.20 and Figure 3.21. It can be noticed that there are statistical fluctuations in all
three cross-sections xOy, xOz and yOz due to the small number of particles loaded into
the simulation.

The bulk velocity of the plasma element in different cross-sections inside the
simulation domain is shown in Figure 3.22 (for =17;) and Figure 3.23 (for =27};). We
illustrate the 7y component (top panels), the ¥, component (middle panels) and the V.
component (bottom panels) in the xOy plane (left column), xOz plane (middle column)

and yOz plane (right panel). The plasma bulk velocity Vis computed from the average
velocities of both electrons ‘Z and ions Vl :

mene‘/e + mini‘/i

V= (3.15)
m,n, +mn,
with ‘Z and Vl given by:
- J, S
=——, Vi=— (3.16)
qene qini

where .76 and .7,. are the electron and ion current densities, while g, and ¢; are the

electric charges of the two species. In order to avoid the unrealistically large bulk
velocities that could arise in those spatial bins populated with too few particles, we
apply the equation (3.15) only for the grid cells having a number density of at least 5%
from the initial value. By analyzing the results obtained, it can be noticed that after two
ion Larmor periods from the beginning of the simulation, the plasma element continues
to stream along the positive x-axis with almost the injection velocity Vj (see top panels
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of Figure 3.22 and Figure 3.23). Indeed, the V', component of the bulk velocity (3.15) in
the central region of the plasma cloud is ~0.95V at =2T7;, only with 10% smaller that
the theoretical value predicted by equation (3.14), i.e. V,=0.96V,. The value of V), at
t=2T1; has been computed by taking into account that the central plasma density
decreased ~5 times since the beginning of the simulation and therefore the dielectric
constant of the plasma is approximately 5 times smaller that the initial one. On the
other hand, we can observe that the plasma element is expanding rapidly along both
positive and negative directions of the Oz axis (see bottom-middle and bottom-right
panels of Figure 3.22 and Figure 3.23). The V., component of the plasma bulk velocity
close to the edges of the cloud along the z-axis, at =27};, is approximately +5V7; in
z=240 and —5V7; in z=60. Instead, inside the center of the cloud, the plasma bulk velocity
along the Oz axis is zero.

In Figure 3.24 and Figure 3.25 we illustrate the E, (top panels), £, (middle panels)
and E. (bottom panels) components of the electric field in the xOy plane (left column),
x0z plane (middle column) and yOz plane (right column) inside the simulation domain,
at =Ty, (Figure 3.24) and =2T;, (Figure 3.25). The polarization electric field established
inside the quasineutral core of the plasma is illustrated by the middle panels of Figure
3.24 and Figure 3.25. The intensity of the polarization E-field is not uniform inside the
main bulk of the plasma element and shows significant fluctuations. This variability is
better emphasized in Figure 3.26 where is illustrated the temporal evolution of E, along
the y-axis, between =T;; and up to =277, for x=110 and z=153. The source of these
fluctuations is more likely the limited number of particles loaded into the simulation
domain. Further investigations with a significantly larger number of particles should
clarify their origin. On the other hand, the E, component of the electric field is not
strictly confined inside the main bulk of the plasma, but it extends also to the nearby
regions. At the end of the simulation the electric filed interferes with the boundaries of
the simulation box, as can be noticed, for instance, in the middle-left panel of Figure
3.25. In order to avoid unphysical effects of the boundaries, we enlarged the size of the
simulation domain in our further runs.

In Figure 3.27 we show the B, (top panels), B, (middle panels) and B. (bottom
panels) components of the magnetic field, at the end of the simulation (=27%,), in the
xOy plane (left column), xOz plane (middle column) and yOz plane (right column), for the
cross-sections specified in the title of each plot. The B, and B, components of the
magnetic field are less than 1% smaller than the background magnetic field By pointing
along the positive z-axis (see top and middle panels of Figure 3.27). Also, inside the
actual position of the plasma element, the B, component of the magnetic field is
approximately 0.25% smaller than By. Indeed, a small diamagnetic cavity can be
observed in the bottom panels of Figure 3.27. As expected, the self-consistent
contribution of the particles to the total magnetic field is negligible since a low-beta
plasma cloud is considered in our simulations.
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Figure 3.20 — Number density of electrons n. (top panels) and ions n; (middle panels) and the charge
separation computed as n—n, (bottom panels) in the xOy plane (left column), xOz plane (middle column)
and yOz plane (right column), at =T}, (Ty; is the ion Larmor period), for the cross-sections indicated in the
title of each plot.
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Figure 3.21 — Number density of electrons n, (top panels) and ions n; (middle panels) and the charge
separation computed as n—n, (bottom panels) in the xOy plane (left column), xOz plane (middle column)
and yOz plane (right column), at =27}, (Ty; is the ion Larmor period), for the cross-sections indicated in
the title of each plot.
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Figure 3.22 — U, (top panels), U, (middle panels) and U, (bottom panels) components of the plasma bulk
velocity in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at =T7};
(T7;is the ion Larmor period), for the cross-sections indicated in the title of each plot.
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Figure 3.23 U, (top panels), U, (middle panels) and U. (bottom panels) components of the plasma bulk
velocity in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at =277},
(T7; is the ion Larmor period), for the cross-sections indicated in the title of each plot.
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Figure 3.24 - E, (top panels), £, (middle panels) and E. (bottom panels) components of the electric field in
the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at =T}, (T}, is the
ion Larmor period), for the cross-sections indicated in the title of each plot.
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Figure 3.25 — E| (top panels), £, (middle panels) and E. (bottom panels) components of the electric field in
the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at =27}, (T}, is the
ion Larmor period), for the cross-sections indicated in the title of each plot.
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Figure 3.26 — Variation over time of the polarization electric field, E,, along the y-axis between =17, and
=2T;,, where Ty, is the ion Larmor period; the representation is made for x=110 and z=153.
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Figure 3.27 - B, (top panels), B, (middle panels) and B. (bottom panels) components of the magnetic field
in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at =27}, (Ty; is
the ion Larmor period), for the cross-sections indicated in the title of each plot.
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3.3.3 Case lll: Low speed plasma element injected across a non-uniform
transverse magnetic field — impenetrable magnetic barrier

In the third case we simulate the interaction of a low-f plasma element with the
non-uniform background magnetic field given by equation (3.9). A schematic diagram of
the simulation setup is shown in Figure 3.3 where By=By(x). We consider here a slow
speed plasma cloud having the injection velocity, V), equal to 1.15Vy, where Vy; is the
ion thermal speed. The input parameters for case Il are given in Table 3.1 and Table 3.2.
All the physical quantities are expressed in normalized units (see Appendix B for more
details about the normalization scheme used here). We analyze the evolution of the
plasma and electromagnetic field over almost four ion cyclotron periods.

The background magnetic field, By, is stationary and varies with the x-coordinate
across a transition region that covers 5 ion gyration radii. The spatial profile of By=B(x)
is shown in Figure 3.28. As can be noticed, the magnetic field increases linearly between
two asymptotic values, B; on the left hand side of the transition region (upstream, x<79)
and B, at the right hand side (downstream, x>85). Initially, the plasma cloud is localized
on the left hand side of the transition region where the background magnetic field is
uniform. At the beginning of the simulation, the injection velocity has a non-zero
component along the positive x-axis such that the plasma element will stream towards the
transition region where the magnetic field is increasing by 50% from its asymptotic value B;.
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Figure 3.28 — Background magnetic field profile inside the simulation domain. The B-field is oriented along
the positive z-axis and increases linearly with x-coordinate over a transition region having the width of 5r;;
(rz;is ion Larmor radius in the left hand side of the transition region).

In Figure 3.29 we show the initial number density of the plasma element for two
different cross-sections inside the simulation domain. In the left panel we illustrate the
electron number density in the xOy plane perpendicular to the background magnetic
field, for z=253, while in the right panel the electron number density is shown in the xOz
plane parallel to the background magnetic field, for y=128. Initially, the electrons and
ions have equal number densities. The non-uniform magnetic field region is marked with
two black straight lines in both xOy and xOz planes. As can be noticed, the rectangular
plasma element is localized initially on the left hand side of the transition region where
the magnetic field is constant (B=B).
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Figure 3.29 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) central
sections of the simulation domain. The non-uniform background magnetic field is oriented along the
positive direction of the z-axis. The two black lines mark the position of the transition region where the
magnetic field increases linearly from B; up to B,=1.5B;. The ions and electrons are initialized with the
same number density. At =0 the three-dimensional plasma element has a rectangular shape and is
localized on the left hand side of the transition region.

In Figure 3.30 and Figure 3.31 we illustrate the number density of electrons (top
panels) and ions (bottom panels) in the xOy plane (Figure 3.30) and xOz plane (Figure
3.31), at =Ty, (left column), =2T;; (middle-left column), =3T;; (middle-right column)
and =3.75Ty; (right column). The non-uniform magnetic field region is marked with two
black straight lines in all panels shown. After two ion Larmor periods the front edge of
the plasma element moved into the transition region where the magnetic field increases
significantly (see middle-left panels of Figure 3.30). However, the cloud cannot cross
over and the convection motion along the x-axis is fully stopped (see middle-right and
right panels of Figure 3.30). Moreover, the front-side plasma is pushed back and
simultaneously deflected along the negative and positive directions of the y-axis. At the
same time, the electrons and ions are expanding rapidly along both parallel and
antiparallel directions of the background magnetic field. Nevertheless, at =3.757};, the
main bulk of the plasma is still located inside the simulation box (see right panel of
Figure 3.31). As a result, the number density of both species, for z=253 cross-section, is
approximately 10 times smaller at the end of the simulation than initially (compare right
panels of Figure 3.30 with left panel of Figure 3.29).

In Figure 3.32 we show the U, (top panels) and U, (bottom panels) components
of the plasma bulk velocity (3.15) in the xOy plane, for z=253 cross-section, at =T7}; (left
column), =2T;; (middle-left column), =3T;; (middle-right column) and =3.75T;; (right
column). At the early stages of the simulation, the plasma element is moving along the
positive x-axis with approximately the injection velocity, as can be seen in the Figure
3.32 (top-left panel). Later on, the convection of the front-side plasma along the Ox axis
is suppressed (V,=0), while the entire plasma cloud is significantly slowed down (see
Figure 3.32, middle-left panel). At later simulation instants, when >37;;, the V;
component of the bulk velocity in the front edge of the cloud is negative (see Figure
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3.32, last top-right panels). Simultaneously, a non-zero ¥, component is evidenced at
the lateral edges of the cloud along the y-axis, i.e. for small y values V,<0 and for large y
values V,>0 (see Figure 3.32, last bottom-right panels). Up to the end of the simulation,
the entire plasma element is stopped and the particles are deflected along the
perpendicular direction to both the ambiental magnetic field and the injection velocity.
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Figure 3.30 — Number density of electrons (top panels) and ions (bottom panels) at =T7}; (left column),
=2T;; (middle-left column), =3T;; (middle-right column) and =3.75T;; (right column); T;,; is the ion
Larmor period in the left hand side of the transition region. The two black lines mark the position of the
transition region where the magnetic field is non-uniform. The xOy plane perpendicular to the background
magnetic field is shown here, for z=253 cross-section.
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Figure 3.31 — Number density of electrons (top panels) and ions (bottom panels) at =T7}; (left column),
=2T;; (middle-left column), =3T;; (middle-right column) and =3.75T;; (right column); T;,; is the ion
Larmor period in the left hand side of the transition region. The two black lines mark the position of the
transition region where the magnetic field is non-uniform. The xOz plane perpendicular to the background
magnetic field is shown here, for y=128 cross-section.
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Figure 3.32 — V, (top panels) and V), (bottom panels) components of the plasma bulk velocity at =77, (left
column), =2T;; (middle-left column), =3T;; (middle-right column) and =3.75T;; (right column); T}; is the
ion Larmor period in the left hand side of the transition region. The two black lines mark the position of
the transition region where the B-field is non-uniform. The xOy plane perpendicular to the background
magnetic field is shown here, for z=253 cross-section.

The simulation results obtained here clearly emphasize the physical process of
adiabatic breaking that takes place when a non-diamagnetic plasma element is
streaming into an increasing transverse magnetic field (e.g. Demidenko, 1967; Lemaire,
1985). Let us assume that the first-order guiding center approximation is valid and the

magnetic moment, u, of electrons and ions is an adiabatic invariant (Alfven, 1953):

2
m_w

=—2L —const. (3.17)
2B

o

where w/ is the gyration velocity of a particle with mass m in the perpendicular plane to
the magnetic field of strength B; a is the species index. Also, let us consider that the
dielectric constant of the plasma is much larger than unity. Under these circumstances,
the plasma convection velocity, V(x), across a non-uniform magnetic field, B(x), satisfies
the following equation (Lemaire, 1985):

+m, — —
wvz(x)+(,u€ + 14, B(x) = const. (3.18)
where V(x) is in fact the zero order drift velocity:
-~ EXB

The bars over the magnetic moments . and y; in equation (3.18) indicate averaging over
the velocity distribution functions of electrons and ions. Since the magnetic moment is
an adiabatic invariant, the equation (3.18) can be rewritten as (Lemaire, 1985):

(m,+m)V>+m,w? +mw?, = const. (3.20)

This equality reveals the conservation of the total kinetic energy in the perpendicular
plane to the magnetic field (convection + gyration for both species). It clearly shows that
when the magnetic field increases, convection energy is converted into gyration energy
and therefore the plasma element is slowed down. There is a critical magnetic field, B,,
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for which all the convection energy is transformed into gyration energy and the plasma
is stopped. The value of B. in x. can be obtained by setting /(x.)=0 in equation (3.18).
This leads to (Lemaire, 1985):

2 2 2
(m,+m)Vy +m,w ,, +mwi,
2(#(3 +Al’l’t)

When the plasma element reaches the critical point x., the magnetic field B, acts like a

B.(x,)=

(3.21)

barrier that prevents the further convection of the cloud along the x-axis. This process of
adiabatic breaking has been verified in the past by different laboratory experiments
(Demidenko et al., 1967, 1969).

Our numerical simulations sustain the physical mechanism described above.
Indeed, the critical magnetic field obtained from (3.21) for the plasma parameters
considered in this case is equal to B.=1.06B;. Nevertheless, the magnetic field increases
across the discontinuity from B; to B,=1.5B). Thus, the asymptotic magnetic field B, is
larger than the critical value B, or in other words the magnetic barrier is too steepen and
the plasma element is not able to penetrate the transition region since its initial energy
is not large enough. Therefore, the cloud is stopped and pushed back along the negative
direction of the x-axis by the -@+/7i)VB force (Lemaire, 1985) acting inside the transition
region (see top-right panel of Figure 3.32). In addition to the adiabatic breaking process
observed, the dynamics of the plasma element along the Oy axis shows additional interesting
features. As the plasma enters into the non-uniform magnetic field region, it is virtually
deflected along both positive and negative y-direction (see bottom-right panel of Figure 3.32).

In order to understand the physical mechanism responsible for this effect, we
analyze in more detail the electrodynamics of the cloud when it interacts with the magnetic
barrier. We illustrate on the top panels of Figure 3.33 the E, component of the electric

field, in the xOy plane perpendicular to 1_3)0' at =37y, (left column) and =3.75T; (right
column). One can notice that a region with a negative E, component of the electric field
is formed at the front-left hand side edge of the plasma cloud (for y>110); at the same
time, a region with a positive E, component of the electric field is formed at the front-
right hand side edge (for y<110). The zero order drift produced by this component of the
electric field is along +Oy for y>110 (where V,>0) and along —Oy for y<110 (where
V,<0). This is true for electrons and ions.

In the bottom panels of Figure 3.33 we show the Ug, component of the zero-
order drift velocity (3.19) computed at the same time instants and for the same cross-
sections as the E\ field. Ug, is calculated only for the grid cells that have a number
density equal to at least 5% of the initial value. The same constraint is applied to the
computation of the bulk velocity (3.15). One can notice that on average the plasma
cloud has a positive Ug, component of the electric drift velocity at the front-left hand
side of the plasma element; the cloud has a negative Ug, at the front-right hand side
edge. The fluctuations observed in the xOy plane are most probably related to the
limited number of particles loaded into the simulation.
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When one compares the bottom panels of Figure 3.33 with the last two bottom-
right panels of Figure 3.32, one can see that the values of U, are smaller than those of
V, at the very lateral edges of the cloud, while inside the inner regions the Ug, and V,
velocities are similar. It is known (Echim and Lemaire, 2005; Lundin et al., 2005) that
sharp kinetic boundaries of the order of the electrons or ion Larmor radius are sites
where the frozen-in theorem is broken and there is a decoupling between the so-called
convection velocity, equal to the electric drift, and the actual plasma bulk velocity
derived from the real moments of the velocity distribution function. Since the edges at
the front-side of the cloud are dominated by particles with higher energies (this is
discussed in the next paragraphs), their bulk velocity is different than that of the
particles inside the core of the cloud. The latter can indeed be approximated by the
convection (or frozen-in or electric drift) velocity given by equation (3.19).
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Figure 3.33 — £, component of the electric field (top panels) and Ug, component of the zero-order drift
(bottom panels) in the xOy plane perpendicular to the ambiental magnetic field, for =37}; (left column)
and =3.75T; (right column); T;; is the ion Larmor period in the left hand side of the transition region. The
two black lines mark the position of the transition region where the magnetic field is non-uniform. The
zero-order drift is computed only for those grid cells having a number density of at least 5% from its initial
value, otherwise the value of Ug,, is set to zero.
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Let us discuss further the origin of the E, component of the electric field that
contributes to the deflection of the plasma element in the direction perpendicular to
both the background magnetic field and the initial injection velocity. In the left panel of
Figure 3.34 we show the net charge density in the xOy plane perpendicular to the
magnetic field at /=377;. The non-uniform magnetic field region is marked with two black
straight lines, while the initial position of the plasma element is indicated by a black
rectangle. Note, however, that in order to better illustrate the polarization charges at
the edges of the plasma element, we assigned a net charge equal to zero inside the
quasineutral core of the cloud. The actual value of the net charge in the core is different
from zero most likely due to a gaussian numerical noise controlled by the limited
number of particles introduced in the simulation.

It can be noticed that the front-edge of the plasma element is electrically
polarized. Indeed, after three ion cyclotron periods from the beginning of the simulation,
a positive space charge layer is formed in the lateral region of the propagation front (for
y>110), while a negative layer is evidenced in the opposite lateral region (for y<110).
One should also notice that the situation is reversed in the regions of the cloud that did
not yet interact with the magnetic interface. Indeed, the lateral edge (y>125) of the
plasma core localized outside the magnetic barrier (at x<70) is negatively polarized,
while the opposite lateral edge (y<125 and x<70) is positively charged. The polarization
in the left hand side of the cloud, between the front edge and the rest of the cloud, sustains
a positive E, in the region defined by 65<x<85 and y<110. Similarly a region of negative
E, is formed in the parcel of the cloud defined by 65<x<85 and y>110. A schematic
diagram of the left panel of Figure 3.34 is shown in the right panel of the same figure.
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Figure 3.34 — (Left panel) Net charge density in the xOy plane perpendicular to the ambiental magnetic
field at =3T;; Ty, is the ion Larmor period at the left hand side of the transition region. The non-uniform
magnetic field region is marked with the two black straight lines, while the initial position of the plasma
cloud is shown by a black rectangle. The net charge in the core of the cloud has been artificially assigned
to zero in order to remove the numerical noise and emphasize the effects in the lateral edges. (Right
panel) Schematic diagram of the plasma polarization when it interacts with the increasing magnetic field.
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The polarization of the front-side boundary of the plasma cloud is a consequence
of the charge dependent gradient-B drift (1.13) acting inside the transition region where
the magnetic field is non-uniform. Indeed, in this region the grad-B drift velocity deflects
ions along +0y and electrons —Oy. As the front-edge of the plasma element starts to
interact with the non-uniform magnetic field (at t=77;, see top-left panel of Figure 3.30)
the electrons and ions are scattered in opposite directions along the y-axis. From =T,
and up to =37}, the high-energy front-side ions having an initial gyration velocity of
approximately 1.8V are scattered along +Oy direction over a distance of only 27;;.
Instead, the much more hotter electrons are scattered along —Oy direction over a
distance of ~35r;;, nearly equal to the initial width of the plasma element w, (see Table
3.1). As a result, a sufficiently large charge separation is generated and the propagation
front of the plasma element is polarized as shown in Figure 3.34.

It is important to note that the grad-B drift (1.13) deflects more efficiently the
most energetic particles than the thermal ones. The latter are however the most
numerous since the initial velocity distribution function is a Maxwellian. Nevertheless,
they are much less scattered along y-axis. Therefore, when one looks at the density of
the electrons and ions in Figure 3.30, one sees that both species are scattered in the
positive and negative directions of the y-axis. This is a confirmation that the driver of the
deflection is not charge dependent. Our interpretation outlined above is that the high
energy particles of the cloud arrive first at the magnetic barrier and, since they are not
able to penetrate, they start drifting in the Oy direction “pushed” by the gradient-B drift.
This charge dependent drift establishes a polarization in the front edge of the cloud,
with ions populating the region at larger y-values and electrons populating the region at
smaller y-values. These space charge layers in the front side persist and develop in time
since the particles have not enough energy to penetrate the magnetic barrier. Thus, a
second polarization field is built between the front edge and the rest of the cloud. This
polarization enables a negative E, within the parcels of the cloud at larger y that did not
yet interact with the magnetic barrier. The situation is reversed for the parcels at smaller
y, as indicated in Figure 3.34. The electric drift due to this E, component deflects the
cloud in the positive and respective negative Oy directions at the left hand side (for
larger y-values) and respectively right hand side (for smaller y-values) of the cloud. Thus,
the action of the two drifts, the gradient-B drift and zero-order electric drift, cannot be
disentangled. They act together and contribute to the global deflection of the cloud
along the magnetic barrier. The higher energy particles provide the polarization in the
front and at the lateral edges of the cloud; this polarization eventually deflects all the
particles in the cloud by the zero-order drift. This is a kinetic, non-MHD, effect that
demonstrates the crucial role of Larmor scale processes for plasma dynamics in non-
uniform electromagnetic fields.
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3.3.4 Case IV: Intermediate speed plasma element injected across a non-
uniform transverse magnetic field — penetration of the magnetic barrier

In order to achieve simulation conditions that enable the penetration of the
magnetic barrier, we increased the injection velocity of the plasma element by a factor
of 2, i.e. Vo/Vr=2.3, where Vy; is the ion thermal speed. The input parameters for case
IV-1 are given in Table 3.1 and Table 3.2. All the physical quantities are expressed in
normalized units (see Appendix B details). The evolution of the plasma cloud across the
non-uniform magnetic field region is tracked over three ion Larmor periods.

The initial number density is shown in Figure 3.35. In the left panel we illustrate
the electrons density in the xOy plane perpendicular to the background magnetic field,
at z=203, while in the right panel we show the density in the xOz plane, at y=103. The
non-uniform magnetic field region is marked with two black straight lines in both planes.
In order to reduce the effects of the boundaries, we fix now the simulation boundaries along
the Ox axis even further away from the plasma element than previously. The particles are
initialized in the central area of the simulation box where the magnetic field is uniform.
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Figure 3.35 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) sections of
the simulation domain. The non-uniform background magnetic field is oriented along the positive
direction of the z-axis. The two black lines mark the position of the transition region where the magnetic
field increases linearly from B; up to B,=1.5B;. The ions and electrons are initialized with the same
number density. At =0 the three-dimensional plasma element has a rectangular shape and is localized on
the left hand side of the transition region.

Figure 3.36 shows the time evolution of the number density of electrons (top
panels) and ions (bottom panels) in the xOy plane perpendicular to the background
magnetic field, at =1.57}; (left column) and =3T}; (right column). It can be noticed that
even though the injection velocity is two times larger now than in the previous case, the
plasma element still cannot penetrate the magnetic barrier. Indeed, from =1.57};; and
up to =317, the propagation front is localized slightly into the right side of the transition
region, but is not moving anymore along the x-axis. Moreover, as in the previous case,
the plasma is deflected along both positive and negative Oy directions.

The dynamics of the plasma element is well described in Figure 3.37 where we
illustrate the U, (top panels) and U, (bottom panels) components of the bulk velocity
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(3.15) in the xOy plane, for z=203, at =1.57}; (left column) and =377, (right column). To
avoid the unrealistically large bulk velocities that could arise in those spatial bins
populated with too few particles, we apply the equation (3.15) only for the grid cells that
have a number density at least 5% from the initial value. After three ion cyclotron
periods from the beginning of the simulation, the central core of the plasma cloud is at
rest (V=0 for 90<y<125), while the lateral edges are pushed backwards along the x-axis,
i.e. V4<0 for y<90 and y>125 (see top-right panel of Figure 3.37). On the other hand, the
top-lateral edge of the cloud (y>125) has a positive V', component, while for the bottom-
lateral edge V,<0 (see bottom-right panel of Figure 3.37). The results obtained here
illustrate again the adiabatic breaking process discussed in the previous case. Even
though the injection velocity is twice as large than in the third simulated case, the
magnetic barrier is still too high and the plasma element cannot penetrate the transition
region. Indeed, the critical magnetic field (3.21) is B~=1.23B;, while the magnetic field in
the right side of the transition region is B,=1.5B,. Therefore, the cloud is stopped and
pushed back along the negative direction of the x-axis, while is deflected along +Oy.
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Figure 3.36 — Number density of electrons (top panels) and ions (bottom panels) at =1.57}; (left column)
and =3Ty; (right column); T}; is the ion Larmor period in the left hand side of the transition region. The
two black lines mark the position of the transition region where the magnetic field is non-uniform. The
xOy plane perpendicular to the background magnetic field is shown here, for z=203.

91




PLASMA DYNAMICS IN TRANSVERSE MAGNETIC FIELDS: 3D-PIC SIMULATIONS

_ -3 _ -3
Ux@z=203.0 < 10 Ux@z=203.0 <10
200 4 200 4
150 o 150 " P
> 100 s - 103 >100 - 103
[
50 -2 50 4 -2
-4 -4
50 100 150 200 250 50 100 150 200 250
X X
_ 3 _ 3
Uy@z=203.0 % 10 Uy@z=203.0 % 10
200 200
5 5
150 150 |
> 100 | 103 >100 -0 3
50 50 ’
-5 -5
50 100 150 200 250 50 100 150 200 250
X X

Figure 3.37 - V, (top panels) and ¥, (bottom panels) components of the plasma bulk velocity in the xOy
plane perpendicular to the ambiental magnetic field, for =1.5T}; (left column) and =3T; (right column);
Ty, is the ion Larmor period in the left hand side of the transition region. The two black lines mark the
position of the transition region. The bulk velocity is computed only for those grid cells having a number
density of at least 5% from its initial value, otherwise its value is set to zero.

The magnetic barrier is overcome by the plasma element when we reduce the
value of the asymptotic field at the right hand side of the transition region by a factor of
~1.4, i.e. to B,=1.1B;. These conditions are implemented in case IV-2; see Table 3.1 and
Table 3.2 for the input parameters. In this simulation the height of the magnetic barrier
is smaller than the critical field B.=1.23B;.

In Figure 3.38 we show the number density of electrons (top panels) and ions
(bottom panels), at the end of the simulation (=377;), in the xOy plane perpendicular to
the background magnetic field (left column) and in the xOz plane (right column). The
plasma element is able to move across the region of sharp magnetic variation, fully
penetrates the magnetic barrier and moves into the right hand side of the transition
region (one could call this “magnetospheric” side, if the magnetic barrier is seen as an
analogy of the magnetopause).

The plasma is expanding rapidly along Oz axis and the most energetic particles
already reached the boundaries of the simulation box. Nevertheless, most of the
electrons and ions are still well inside the simulation domain. The main core of the
plasma element is ~7 times more tenuous now (=377;) than at r=0.
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Figure 3.38 — Number density of electrons (top panels) and ions (bottom panels) in the xOy (left column)
and xOz (right column) planes, at the end of the simulation, i.e for =3T};; T}, is the ion Larmor period at
the left hand side of the transition region. The two black lines mark the position of the transition region
where the magnetic field is non-uniform.

The plasma bulk velocity at =37;; is shown in Figure 3.39. The left column
illustrate the Jy component in the xOy plane for z=203, while the right column shows V',
in the xOz plane for y=103. As in the previous cases, the plasma bulk velocity is
computed from (3.15) only for the grid cells that have a number density at least 5% from
the initial value. The plasma element is braked; it moves downstream the magnetic
discontinuity with a bulk velocity smaller than the initial one. To better illustrate the
adiabatic breaking of the cloud, we show in Figure 3.40 the spatial variation of the
forward velocity in the y-direction field, V,=V\(y), for x=182 and z=203. The black line
indicates the average value of the plasma bulk velocity shown with blue color, while the
red one is the initial injection velocity. The ratio between the final and initial velocity is
equal to V./Vy=0.7. This result illustrates again the effectiveness of the adiabatic
breaking process. In this case the plasma cloud has enough convection energy to
penetrate the magnetic barrier, but part of it is converted into gyration energy in the
stronger magnetic field at the right hand side of the transition region, as suggested by
laboratory and theoretical arguments (e.g. Demidenko et al., 1967, 1969; Lemaire,
1985). The theoretical value of the final plasma bulk velocity downstream the magnetic
sharp transition computed from equation (3.18) is V,=0.73V,, in good agreement with
theoretical models (Lemaire, 1985).

93




PLASMA DYNAMICS IN TRANSVERSE MAGNETIC FIELDS: 3D-PIC SIMULATIONS

_ 3 _ 3
Ux@2=203.0 10 Ux@y=103.0 10
200 400
150 300
> 100 “ - 10 3~ 200 P -0 3
50 100 :
-5 -
50 100 150 200 250 50 100 150 200 250
X X

Figure 3.39 — Plasma bulk velocity (the ¥, component) in the xOy plane (left panel) and xOz plane (right
panel) at =3T7y; Ty, is the ion Larmor period at the left hand side of the transition region. The two black
lines mark the position of the transition region where the magnetic field is non-uniform.
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Figure 3.40 — Forward plasma bulk velocity as a function of the y-coordinate, V,=V,(y), for x=182 and
z=203. The black line corresponds to the average value of the plasma bulk velocity, while the red one
represents the initial injection velocity.

In an additional simulation, the case IV-3, the thickness of the magnetic
discontinuity (the “magnetopause”) increased from 5r;; to 32r;;. The magnetic field
gradient is however kept unmodified. The input parameters for this case are given in
Table 3.1 and Table 3.2.

We analyzed the propagation of the plasma element over three ion Larmor
periods from the beginning of the simulation. The numerical results obtained are shown
in Figure 3.41. On the first and second columns we illustrate the number density for
electrons and ions in the xOy plane perpendicular to the ambiental magnetic field, while
on the third and fourth columns we show the ¥y and V), components of the plasma bulk
velocity for the same cross-sections as in the first two columns. We present the results
at =0.5T;; (first line), =17y, (second line), =1.5T;; (third line), =2T;; (fourth line),
t=2.5Ty; (fifth line) and =3T}; (sixth line). The plasma bulk velocity is computed only for
the grid cells having a number density of at least 5% from the initial value. The non-uniform
magnetic field region is marked with two black straight lines in all 24 panels shown.
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Figure 3.41 — Number density of electrons (first column) and ions (second column) and also the ¥V (third
column) and ¥, (fourth column) components of the plasma bulk velocity, in the xOy plane perpendicular
to the magnetic field, at =0.5T;; (first line), =17}, (second line), =1.5T}; (third line), =2T;; (fourth line),
=2.5T7; (fifth line) and =3T7; (sixth line); T}, is the ion Larmor period in the left hand side of the transition
region. The two black lines mark the position of the transition region where the magnetic field is non-
uniform. The bulk velocity is computed only for those grid cells having a number density of at least 5%

from its initial value, otherwise V', and V), are set to zero.
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The front-side of the plasma element enters into the transition region at r=0.5T;;
and after 37;; the entire cloud moved inside the non-uniform magnetic field area (see
first two columns of Figure 3.41). The convection velocity decreases significantly as the
plasma is advancing into the stronger magnetic field as shown in Figure 3.41 (third
column). At the end of the simulation, after three ion Larmor periods, the V, component
of the bulk velocity is much smaller than initially, i.e V,=0.15V,. In this case too, the
plasma is deflected also along both the positive and negative Oy directions (see first and
last columns of Figure 3.41). In order to emphasize even more clearly the adiabatic
breaking mechanism of our simulations, we illustrate in Figure 3.42 the variation of the
plasma streaming velocity across the non-uniform magnetic field. Let us rewrite the
equation (3.18) in the following more compacted form:

* 2w+ )B
1_[%@} _2(p i) Z{B(x)_l} (3.22)
Vo (m,+m)Vy | B,

where the constant in the right term of equation (3.18) is expressed as a function of the

plasma and field parameters at the left hand side of the transition region. Equation
(3.22) provides a linear dependence of the quantity (l—V/Vo)2 as a function of B/B1—1, at
a given x. We computed the V', component of the plasma bulk velocity at the front edge
of the plasma cloud from the simulation data obtained in case IV-3, for the time
snapshots illustrated in Figure 3.41.

From equation (3.9), we calculated the magnetic field in the front-side position
of the plasma cloud. Thus, a set of 7 pairs V,—B is obtained for the front edge of the
plasma element. In Figure 3.42 we show the resulting plot of (1-V./V,)* as a function of
B/B1—1 (blue dots). The red line illustrates a linear fit of the simulation data with
equation (3.22). The coefficient of determination R? for the linear fit is equal to 0.94 and
indicates that indeed the data fulfill equation (3.22). This is a quantitative confirmation
of the adiabatic breaking mechanism from 3D-PIC simulation of a plasma element
transported in a non-uniform background magnetic field.
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Figure 3.42 — Plasma convection velocity V, as a function of the magnetic field strength B in the following
representation, i.e. (I—VX/VO)2 as a function of B/B;—1 for seven pairs V,—B obtained at the propagation
front of the plasma element at different moments of the interaction with the magnetic discontinuity (blue
dots). The red line shows the linear fitting of the simulation data with equation (3.22). The coefficient of
determination R for the linear fit is equal to 0.94.
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3.3.5 Case V: Fast speed plasma element injected across a non-uniform
transverse magnetic field — penetration of the magnetic barrier

In the last case we use the initial plasma parameters similar to the second
simulation, i.e. case I, and introduce a gradient of the magnetic filed as shown in Figure
3.28. The initial injection velocity is two times larger here than in the previous simulation
(case IV). The plasma stream is supersonic Vy=1.35V,, where V; is given by (Chen, 1974):

k,T
V.= 2= (3.23)
m.

The height of the magnetic barrier is identical to the one considered in cases Il and 1V-1,
i.e. B»=1.5B;, when no penetration was possible. The magnetic field increases linearly by
50% from the asymptotic left value over a scale length of ~5 ion gyration radii. The input
parameters are given in Table 3.1 and Table 3.2.

The dynamics of the cloud was investigated at several moments of time as shown
by Figure 3.43 that illustrates the number density of electrons (top panels) and ions
(bottom panels) in the xOy plane perpendicular to the magnetic field, at =0 (left
column), =0.65T;; (middle-left column), =1.55T7;; (middle-right column) and =2T7};
(right column). After less than one ion Larmor period from the beginning of the
simulation, at =0.6577;, the front edge of the plasma element already arrived in the
vicinity of the magnetic transition region. The density increases at the propagation front
of the cloud, for both electrons and ions (see middle-left panels of Figure 3.43), as an
effect of the subsonic slowing-down of the cloud by the magnetic barrier. This density
enhancement is propagating backwards (along negative x-axis). At the end of the
simulation, the entire cloud crossed the discontinuity and moved into the right side of
the transition region. Its width along the x-axis is significantly diminished (see right
panels of Figure 3.43). Thus, the interaction of the supersonic plasma with the magnetic
barrier led to the compression of the entire cloud along the injection direction.
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Figure 3.43 — Number density of electrons (top panels) and ions (bottom panels) at =0 (left column),
t=0.65T;; (middle-left column), =1.55T;; (middle-right column) and =271}, (right column); T, is the ion
Larmor period in the left hand side of the transition region. The two black lines mark the position of the
transition region where the magnetic field is non-uniform. The xOy plane perpendicular to the background
magnetic field is shown here, for z=153 cross-section.
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Figure 3.44 — V., component of the plasma bulk velocity at =0.65T}; (left column), =1.55T;; (middle
column) and =2T;; (right column); T;; is the ion Larmor period in the left hand side of the transition
region. The two black lines mark the position of the transition region where the B-field is non-uniform.
The xOy plane perpendicular to the background magnetic field is shown here, for z=153.

In Figure 3.44 we illustrate the V', component of the plasma bulk velocity in the
xOy plane, for z=153, at =0.65T}; (left column), =1.55T7;; (middle column) and =2T};
(right column). The plasma bulk velocity is computed only for those grid cells having a
density of at least 5% from its initial value. As the plasma cloud crosses the transition
region, it is slowed down as shown in the left and middle panels of Figure 3.44. After
two ion cyclotron periods from the beginning of the simulation, the entire plasma
element is braked to subsonic speeds and is streaming with a lower velocity into the
right hand side region where the magnetic field is uniform. The convection velocity is
60% smaller now than it was initially (see right panel of Figure 3.44).

In order to better understand the interaction of the supersonic plasma element
with the non-uniform increasing magnetic filed, we analyzed how the plasma and field
parameters varies along the initial injection direction. In Figure 3.45 we show the
variation along the x-axis, for y=77 and z=153, of the electron number density n. (top
panel), plasma convection velocity V; (middle panel) and magnetic field B. (bottom
panel), at =1.55T;;. We illustrate here only the values corresponding to the central
region of the plasma element, i.e. from x=68 to x=104. The grey rectangle indicates the
transition region with a non-uniform magnetic field, while the red line on the middle
panel mark the ion sound speed (3.23). As can be noticed, when the supersonic plasma
flow is interacting with the magnetic barrier, the streaming velocity decreases to
subsonic values, while the number density is increasing (see top and middle panels of
Figure 3.45). Indeed, on average, the plasma convection velocity at the left side of the
transition region is equal to ~1.25V, while on the right V,=0.83V. Thus, the V, velocity
is reduced across the non-uniform B-field region by ~1.5 times. On the other hand, the
number density is increased with approximately the same ratio as the bulk velocity.
Also, for this simulated case, the magnetic field increases by 50% over ~5 ion Larmor
radii, i.e. Bo/B1=1.5 (see bottom panel of Figure 3.45). It should be mentioned that the
B, and B, components of the magnetic field are practically equal to zero during the
entire simulation time. By analyzing the numerical results obtained, we can conclude
that a perpendicular shock is formed when the supersonic plasma element is interacting
with the magnetic barrier. There is a compression of the plasma at the shock and the
flow is slowed-down to subsonic velocities.

98




PLASMA DYNAMICS IN TRANSVERSE MAGNETIC FIELDS: 3D-PIC SIMULATIONS

-3 ne@(y=77,z=153)
3510 ‘ : :
3l
25r
o
c
2r M/V\
1.51
1 . . . .
60 70 80 90 100 110
X
x 102 Ux@(y=77,z=153)
6
x 50
=}
4l
3l
60 70 80 90 100 110
X
Bz@(y=77,z=153)
0.07 T T
0.061
& 0.05F I
0.04r
0.03c

60 70 80 90 100 110
X

Figure 3.45 — Variation along the x-axis, for y=77 and z=153, of the electron number density 7, (top panel),
plasma convection velocity V. (middle panel) and magnetic field B, (bottom panel), at =1.55T,;. We
illustrate here only the values corresponding to the central region of the plasma element, i.e. from x=68
to x=104. The grey rectangle indicates the transition region with a non-uniform magnetic field, while the
red line on the middle panel mark the ion sound speed V..

3.4 Conclusions

In this chapter | studied the interaction of three-dimensional plasma elements
with transverse magnetic fields by using full-electromagnetic particle-in-cell simulations.
| considered a non-diamagnetic plasma cloud that is streaming in vacuum across a
constant background magnetic field. No electric fields are assumed initially inside the
simulation domain. Two different profiles of the external magnetic field are discussed in
our simulations: (i) a uniform field and (ii) a non-uniform field that varies along the initial
injection direction over a finite width transition region with a length scale of ~5 ion
gyration radii. The initial velocity distribution function of both electrons and protons is a
displaced Maxwellian with an average velocity oriented perpendicular to the ambiental
magnetic field. Several cases have been analyzed and discussed. For the beginning, in
the first two cases, plasma elements with zero/non-zero bulk velocities are immersed
into a uniform external magnetic field. Further, in cases llI-V, a non-uniform magnetic
field profile is considered with three different plasma injection velocities, i.e. Vo=1.15Vy;
(slow speed cloud), Vy=2.30V7; (intermediate speed cloud) and Vy=4.60V7; (fast speed
cloud). The space and time evolution of the plasma and electromagnetic field have been
analyzed and discussed over a time interval varying from 2 to ~4 ion cyclotron periods. It
should be mentioned that initially the plasma element is a rectangular shape box with
uniform density. The simulation geometry considered here allows the simultaneous
investigation of the change of momentum along the x-axis, the formation of the space
charge layers along the y-axis and the plasma expansion along the z-axis.
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It should be mentioned that the periodic boundary conditions used in our
simulations could induce undesired effects inside the simulation domain. To reduce the
possible influence of the periodic boundaries on the dynamics of the plasma and the
electromagnetic field, we tried to keep the edges of the simulation domain as far as
possible from the plasma cloud. Moreover, the simulations have been stopped when a
significant number of particles reached the boundaries of the domain.

In the first case | study the early dynamics of a stationary plasma element (V,=0).
The results obtained indicated that shortly after the beginning of the simulation, for
t>T1./2, the plasma element can be divided into three main different regions in the
perpendicular plane to the magnetic field: (i) a quasineutral core with equal number
densities for both electrons and ions, (ii) a negative charge layer surrounding the
quasineutral core and (iii) a positive charge layer at the outer edges of the cloud. As a
consequence, perpendicular electric fields are generated locally, while inside the
guasineutral core of the plasma no electric fields have been evidenced. Galvez et al.
(1988), using a two-dimensional electrostatic PIC code, have made similar conjectures
on the plasma expansion across a uniform magnetic field. Also, our results illustrate that
a diamagnetic current is flowing around the boundaries of the cloud and a small
diamagnetic cavity is formed in the xOy plane. Indeed, in the actual position of the cloud
the total magnetic field is decreased by less than 1% with respect to the background
field (we simulate low-f plasmas). On the other hand, the plasma element is expanding
rapidly along the parallel direction to the magnetic field by thermal motion. As a result,
a parallel electric field is formed at the edges of the cloud along the z-axis.

In the second case the plasma cloud is streaming across the uniform magnetic
field. It has been shown that after less than one electron cyclotron period from the
beginning of the simulation, a polarization electric field is formed inside the quasineutral
core of the cloud, in agreement with the theoretical kinetic model of Schmidt (1960) and
in contrast with the previous case where no electric fields have been observed inside the
main bulk of the plasma. This polarization electric field is sustained by the space charge
layers forming at the boundaries of the cloud along the perpendicular direction to both
the magnetic field and the plasma convection velocity. After two ion gyration periods
from the beginning of the simulation, the plasma element continues to stream along the
positive x-axis with almost the injection velocity. Up to the end of the simulation, due to
the thermal expansion of particles along the magnetic field, the plasma density became
five times smaller than initially.

In the third case the plasma element is injected across a non-uniform magnetic
field that is confined inside a transition region with a scale length of ~5 ion Larmor radii.
After two ion Larmor periods from the beginning of the simulation, the front edge of the
plasma element is localized inside the transition region where the magnetic field is by
50% larger than at the injection position. It has been shown that the cloud cannot cross
the transition region and the convection motion is fully stopped. Moreover, the front-
side plasma is pushed back and simultaneously deflected along the negative and positive
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directions of the y-axis. At the same time, the electrons and ions are expanding rapidly
along both parallel and antiparallel directions of the background magnetic field. The
simulation results obtained here clearly emphasize the physical process of adiabatic
breaking that takes place when a non-diamagnetic plasma element is streaming into an
increasing transverse magnetic field and are in good agreement with theoretical kinetic
models (Schmidt, 1960; Lemaire, 1985).

In order to force the penetrability of the transition region, the injection velocity
of the plasma element has been increased by a factor of 2 in case IV-1. Yet, the height of
the magnetic barrier is still too large and the plasma cloud cannot penetrate the non-
uniform magnetic field region. Therefore, to enable the penetration in case 1V-2, the
asymptotic field into the right hand side of the transition region has been reduced under
the theoretical critical value for which all the convection energy is transformed into
gyration energy and no further transport across the magnetic field is possible. The
simulation results obtained clearly evidenced the crossing of the magnetic barrier. After
three ion gyration periods from the beginning of the simulation the main bulk of the
cloud is located inside the right hand side of the transition region where the field is
uniform. To better illustrate the adiabatic breaking mechanism, we increased the width
of the transition region, in case 1V-3, from 5r;; to 32r;; without changing the magnetic
field gradient. During the three ion Larmor periods simulated here, | analyzed the
variation of the plasma streaming velocity with the strength of the non-uniform
magnetic field. The results obtained are in good agreement with the theoretical solution
(Lemaire, 1985).

In the fifth case the convection velocity of the plasma element is supersonic, i.e.
Vo=1.35V;, and the height of the magnetic barrier is identical to the one considered in
cases lll and IV-1 where no penetration was possible. This time the cloud is twice as fast
than in the previous case IV. The results obtained show that a perpendicular shock is
formed when the supersonic plasma element is interacting with the magnetic barrier.
Indeed, we observed a compression of the plasma at the shock and the flow was
slowed-down to subsonic velocities. By the end of the simulation (=277,;), the entire
cloud is located at the right side of the transition region and its width along the x-axis is
significantly diminished. Thus, the interaction of the supersonic plasma with the
magnetic barrier led to the compression of the entire cloud along the injection direction.

The numerical results presented here confirm the formation of the polarization
electric field in the perpendicular direction to the initial plasma bulk velocity and the
background magnetic field, as predicted theoretically by Schmidt (1960). | evidenced the
adiabatic breaking process advocated previously by theoretical kinetic models and
revealed in laboratory experiments. To my knowledge this is the first time that the
interaction of a plasma element/jet with a magnetic field discontinuity is investigated
with three-dimensional particle-in-cell simulations.
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SUMMARY AND CONCLUSIONS

Chapter 4
Summary and conclusions

In my PhD thesis | have simulated with test-kinetic and particle-in-cell methods
the interaction of non-diamagnetic plasma elements with transverse magnetic fields. |
have considered plasma and electromagnetic field configurations typical for the terrestrial
magnetosphere. The numerical results obtained in the present thesis are important for
understanding the physical processes responsible for the transfer of mass, momentum
and energy in space plasmas.

In the first chapter of my thesis | studied the kinetic effects at the boundaries of
a proton stream injected across a non-uniform transverse magnetic field typical for one-
dimensional tangential discontinuities. The Liouville mapping method has been applied
to compute the velocity distribution function with both forward and backward test-
kinetic simulation approaches. The electric and magnetic fields are prescribed a priori
from the beginning of the simulation. The particles are moving across regions with sharp
variations of a parallel/antiparallel magnetic field. Two different profiles of the electric
field have been taken into account, i.e. (i) a uniform profile and (ii) a non-uniform one
computed from Laplace’s equation. The electric field profiles considered here enable the
propagation of the proton stream across the transverse magnetic field. The initial
velocity distribution function of the protons is a displaced Maxwellian with the average
velocity perpendicular to the magnetic field direction.

The overall evolution of the proton cloud is asymmetric due to the gradient-B
drift acting inside the transition region where the magnetic field is non-uniform. It has
been shown that the features imprinted to the cloud morphology by its interaction with
the magnetic discontinuity are preserved even at large distances from the transition
region where the field is uniform. The asymmetry of the cloud is retrieved in its kinetic
structure and an energy-dispersed structure is formed. The particles’ energy increases
towards the fringe of the cloud in the perpendicular direction to the bulk velocity and
magnetic field. Ring-shaped velocity distribution functions are obtained at the outer
edges of the cloud. We have shown that this effect is due to the gradient-B drift that
efficiently disperses protons proportionally to their kinetic energy. In the front-side and
in the trailing edge of the cloud we evidenced the formation of non-gyrotropic velocity
distribution functions due to the remote sensing of particles whose guiding centers
pertain to the inner cloud.

The numerical results obtained in the first chapter suggest a physical mechanism
that can explain the formation of energy-dispersed structures at the edges of proton beams
interacting with non-uniform magnetic fields. | have identified kinetic effects that lead to
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the formation of ring-shaped and non-gyrotropic velocity distribution functions within
the energy dispersed structures. Although the results were obtained for two particular
configurations of the prescribed electromagnetic field, their relevance is more general.

For a consistency check, the forward results have been cross-checked with the
backward method. It has been shown that in general the two approaches provide similar
results. Nevertheless, we demonstrated that there are significant differences between
the distribution functions computed with the two approaches, especially in those
regions of configuration space that are characterized by a steep spatial variation of the
velocity distribution function.

In the second chapter of my thesis | studied the kinetic structure of tangential
discontinuities by using one-dimensional electromagnetic particle-in-cell simulations.
Three problems have been considered, namely (i) a tangential discontinuity without
velocity shear and different asymptotic densities and temperatures, (ii) a tangential
discontinuity with velocity shear where the plasma bulk velocity varies in the
perpendicular direction to the magnetic field and the asymptotic densities and
temperatures are equal, and (iii) a plasma slab moving across a transverse magnetic field
and a background stagnant plasma with equal densities and temperatures. For all three
problems considered, the space and time evolution of the plasma and electromagnetic
field parameters have been analyzed and discussed.

The numerical results obtained here revealed the formation of a finite width
transition region at the interface of two magnetized plasmas with different macroscopic
parameters. The transition region has properties typical for a tangential discontinuity
with a scale length of few ion Larmor radius and it is stable over the entire simulation
time of 3-5 ion cyclotron periods. We emphasized the critical role played by the number
of particles initialized inside the simulation domain. It has been shown that a small
number of particles alters significantly the results. By taking time-averages, we were
able to reduce the statistical electrostatic noise and to smooth the transition profiles for
the plasma and electromagnetic field parameters.

The time-averaged simulated profiles have been compared with the kinetic
solution of a steady-state theoretical model (Roth et al., 1996). The kinetic solution
provides the equilibrium structure of a one-dimensional tangential discontinuity starting
from first principles. Identical input parameters have been considered in both the 1D PIC
simulations and the 1D kinetic model. The PIC results are in good agreement with the
kinetic solutions and provide an independent validation of the hypothesis assumed by
these models. It is important to point out that the kinetic models assume particular
expressions for the solution of the Vlasov equations based on the so-called “cut-off”
functions (see Lemaire and Burlaga, 1976; Roth et al., 1996; Echim et al., 2005). It was
believed that these functions were rather arbitrary and that are a limitation of the
model. The PIC simulations obtained solutions quite similar to the kinetic ones and thus
provide an important validation.
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In the third chapter of my thesis | studied the interaction of a small Larmor radius
plasma element/cloud with transverse magnetic fields in configurations typical for the
terrestrial magnetosphere. For this purpose | used three-dimensional electromagnetic
particle-in-cell simulations. The plasma elements considered here are streaming into
vacuum and perpendicular to a background uniform/non-uniform magnetic field. In the
latter case, the magnetic field is unidirectional and increases linearly along the injection
direction. No electric fields are assumed initially. Various cases have been investigated.

First, the plasma element is injected into a uniform magnetic field. A non-uniform
magnetic field typical to a tangential discontinuity was considered too. | have chosen
three different injection velocities that describe two subsonic flows and one supersonic
flow. The simulation geometry considered here allowed the simultaneous investigation
of the change of momentum along the x-axis, the formation of the space charge layers
along the y-axis and the plasma expansion along the z-axis.

The results included in the third chapter of my thesis confirmed the formation of
the polarization electric field along the perpendicular direction to the initial plasma bulk
velocity and to the background magnetic field, as predicted theoretically by Schmidt
(1960). | have shown that the penetration of a magnetic discontinuity is not possible if
the height of the barrier is larger than a certain critical value. The latter is the total
magnetic field for which the entire initial convection energy is converted into gyration
energy in the stronger magnetic field. When the magnetic barrier is too steep, the
plasma is pushed back and simultaneously deflected along the negative and positive
directions of the y-axis, perpendicular to both the background magnetic field and initial
injection direction.

It has been shown that the transition region can be penetrated by reducing the
height of the magnetic barrier or by increasing the initial injection velocity. The
simulation results obtained clearly emphasize the adiabatic breaking mechanism and are
in good agreement with the theoretical kinetic models (Schmidt, 1960; Lemaire, 1985).

The original contributions of my PhD thesis are listed below:

e | identified a new physical mechanism that can explain the formation of an energy-
dispersed structure with ring-shaped and non-gyrotropic distribution functions at the
edges of a proton cloud interacting with a non-uniform transverse magnetic field
(Voitcu and Echim, 2012).

o | compared for the first time the forward and backward Liouville approaches
corresponding to the test-kinetic simulation method and we have shown that the two
approaches provide different results when the velocity distribution function varies
rapidly in the configuration space (Voitcu et al., 2012).

e | have simulated for the first time a tangential discontinuity using a full-particle code.
The results obtained provide an independent validation of the hypothesis assumed by
the theoretical models of tangential discontinuities. To our knowledge, this is for the
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first time when theoretical kinetic models are directly compared with numerical
simulations performed under the same initial and asymptotic conditions.

e | have simulated three-dimensional plasma clouds interacting with transverse
magnetic fields using a full electromagnetic particle-in-cell code over time intervals
three times larger than in the previous similar numerical simulations. This is for the
first time when the interaction of a plasma element/jet with a magnetic field
discontinuity is investigated with three-dimensional particle-in-cell simulations. We
evidenced physical processes advocated previously by theoretical models and
revealed in laboratory experiments.

Several future perspectives can be taken into account to improve and develop
this work further. An important step would be to simulate a significantly larger number
of particles to reduce the amplitude of the electrostatic statistical noise. On the other
hand, more appropriate boundary conditions should be considered in order to eliminate
the possible unwanted effects related to the fields periodicity in our simulations. Other
important step would be to take into account the presence of a background plasma. Also,
more realistically magnetic field configurations for the study of the terrestrial magnetopause
should be considered.
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TRISTAN CODE

Appendix A
TRISTAN code

In TRISTAN code (Buneman, 1993) the self-consistent electric and magnetic fields
are computed from Ampére and Faraday’s laws. In normalized units (see Appendix B for
details) the two Maxwell’s equations take the following form:

g—jz cVNxb—J

- (A.1)
a—bz—cVXé
ot

where ¢ is the electric field intensity and b is a notation for cl?, with B the magnetic field

induction and c the speed of light in vacuum; Jis the current density. The two equations
(A.1) take the following form when written for each component of the fields:
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where e,, ¢,, e. are the components of the electric field and by, b,, b. are the components
of the magnetic field. The three components of the total current density are denoted by
Jx, Jy, J-. Note that throughout the TRISTAN code all units are normalized.

Equations (A.2) are solved numerically using the finite-differences method with a
centered-difference scheme on a three-dimensional staggered-grid system known as the
Yee lattice (Yee, 1966). The space and time discretization of equations (A.2) is given in
(A.3) where i, j, k indexes the number of grid points inside the simulation domain along
the Ox, Oy and Oz axes. In TRISTAN the grid sizes along all the three coordinate axes are
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equal, i.e. Ax=Ay=Az=1. Also, the time-step Ar=1. More details about the normalization
scheme used are given in Appendix B.

e (i+1/2,j,k)-e (i+1/2,],k)

=c[ B (i+1/2,j+1/ 2,k) =" (i+1/2,j-1/2,k)

= (4102, k1 2) 4 B (14172, .k =112) [T i1/ 2, /1K)
e (i, j+1/2,k)—e(i,j+1/2.k)

= | B (1,411 2.k +1/2) =" (i, j+1/ 2,k =1/ 2) -

b (4172, 1/ 2,k)+ b (1172, j+ 1/ 2,k) |- T2 (i, +1/ 2.k)

e (i, j.k+1/2)=e!(i,j.k+1/2)
= c[ B (14102, k+112) =B (i=1/2, ),k +1/2)
b (i, j+ 1 2,k + 1/ 2)+ b (i, j =11 2,k +1/2) |- J 72 (i, .k +1/2)

(A.3)
b (i1 2,k +1/2) = b (i, j+1/ 2,k +1/2)
=—c|e!(i.j+Lk+1/2)—e!(i.j.k+1/2)
= (i,j+1/2.k+1)+ e (i.j+1/2.k)]

byn+1/2(l-+1/2’j,k+1/2)—b;_1/2(i+1/2,j,k+1/2)
:—c[ez(i+1/2,j,k+1)—e:(i+1/2,j,k)
—e!(i+1j.k+1/2)+e (i.j.k+1/2)]

b (i4172,j+1/2,k) = b7 (i+1/2,j+1/ 2,k)
=—c[e!(i+1,j+1/2.k)-e (i.j+1/2.k)-

—e!(i+1/2,j+Lk)+e (i+1/2,].k)]

The electric charge of a finite-size superparticle is distributed among its eight
neighboring grid points by using the volume weighting method, which is a first order
interpolation scheme in all the three spatial coordinates:

Q(la.]’k):w(l’.]’k)qp (A4)

where ¢q(i,j,k) is the electric charge assigned to the grid point (i,/,k), while w(i,j, k) is its
corresponding weight; g, is the total charge of the superparticle. The weights w for all
the eight neighboring grid points around a superparticle localized in (x,,y,,z,) with:
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i<x, <i+l, j<y <j+l, k<z <k+l (A.5)

are given in equation (A.6) where 6x=x,—i, Oy=y,—j, 06z=z,—k:

w(i, j,k)=(1-8x)(1-6y)(1-5z2)
w(i,j,k+l) = (1—5x)(1—5y)6z
w(i,j+ l,k) = (1—5x)5y(1—5z)
(i,j+Lk+1)=(1-6x)5y5z
w(z’+ l,j,k) = 5x(1—5y)(1—5z)
(
(

w
(A.6)
w i+1,j,k+1)=5x(l—5y)5z
w i+1,j+l,k):5x5y(l—5z)
w(i+1,j+Lk+1)=8x5ydz
In order to compute the electric and magnetic fields in the actual positions of the
particles, the volume weighting method (A.6) is applied again together with the same
grid points that were used to distribute the charges over the grid:
&(x,,y,,2,)= Wi, j.k) (i, j.k) + w(i, jk+1)-&(i, j,k +1)
+w(i,j+1Lk)-e(i,j+Lk)+w(i,j+Lk+1)-e(i,j+1,k+1)
+w(i+1,j,k)-e(i+ 1, j,k)+w(i+1,j,k+1)-e(i+1,j,k+1)
+w(i+ L j+Lk)-e(i+1Lj+Lk)+w(i+1,j+Lk+1)-e(i+1,j+1,k+1)

(A.7)

Equation (A.7) is applied for all components of the electric and magnetic fields. As can
be noticed, we need to know the fields in full-integer grid points and not in their actual
positions computed from equation (A.3). Therefore, relocations are required:

ex(i,j,k):%[ex(i—l/2,j,k)+ex(i+1/2,j,k)]
. Ir .. -

ey(z,],k):E[ey(z,]—1/2,k)+ey(z,]+1/2,k)]

ez(i,j,k):%[ez(i,j,k—1/2)+ez(i,j,k+l/2)]

bx(i,j,k):i[bx(z’,j—l/2,k—1/2)+bx(i,j—1/2,k+1/2)
A.8
+b,(i,j+1/2,k=1/2)+b (i, j+1/2,k+1/2)] (A-8)
D [ . . .
by(z,],k):Z[by(z—l/2,],k—1/2)+by(z—1/2,],k+1/2)
+by(i+1/2,j,k—1/2)+by(i+1/2,j,k+1/2)}
bz(i,j,k):%[bz(i—1/2,j—l/2,k)+bz(i—1/2,j+1/2,k)

+b (i+1/2,j=1/2,k)+ b (i+1/2,j+1/2,k)]
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The total current density is obtained by using the current deposition of particles
method (Villasenor and Buneman, 1992). All three components of the current density,
for both electrons and ions, are calculated by effectively taking into account the amount
of charge crossing the faces of the grid cells used to integrate the Maxwell’s equations
by finite-differences. The method used ensures the conservation of the electric charge
at each time-step during the simulation. Each simulated particle will contribute to the
total current density according to the following weights:

w (i+1/2,,k)=AE(1-7)(1-8 )+ AéARAS /12
w (i+1/2,j,k+1)= AE(1-T7)5 - AEARAL /12
w,(i+1/2,j+1k)= A&7 (1-C) - AEARAS /12
w (i+1/2,j+1k+1)= AERC + AEANAL /12
(6.j+1/2.k)=(1-&)An(1- )+ AéAnAL /12
(i.j+1/2,k+1)=(1-&)An - AéAnAS /12
i+ 1,41/ 2,k)=Ean(1-8) - AéAnAL /12
w (i+1,j+1/ 2,k +1)=EAnd + AEARAL /12

y

Wv
wv

’ (A.9)
w

w (i, k+1/2)=(1-&)(1-17) AL + AEANAL /12
w (i j+Lk+1/2)=(1-& )AL — AEARAL /12
w, (i+1,j,k+1/2)=E(1-7)AL — AEANAS /12
w,(i+1,j+Lk+1/2)=ENAL + AEANAS /12

where Al=x,0—x,1, An=y,—yp1, A(=z,0—z,1 are the displacements of a particle along the
Ox, Oy and Oz axes when is moving over a time-step from x,| to x,2, y,1 to y,2 and z,; to
Zpy. The three variables £ 7, Crepresent the average positions of the particle along Ox,
Oy and Oz with respect to the nearest grid point (i,/,k):

§=(x, +x,)/2-i
n=W,+y,)/2-j (A.10)

{=(z,+z2,,)/2-k
In obtaining equation (A.9) it was considered that x,; and x,2, y,1 and y,2, z,1 and z,,
satisfy (A.5) conditions. Otherwise, if those restrictions are not fulfilled, the current will
flow to more than 12 faces and the computation procedure gets more complicated.
Nevertheless, the weights (A.9) can still be used if the motion of the particle is split in
parts that all satisfy (A.5). Therefore, the effective contribution of each particle to the J,,
J,, J- components of the total current density is given by:

J = w4, Jy =wg4, J = wq, (A.11)

z
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where the weights w,, w,, w. are taken from equation (A.9). A complete description of
the current deposition of particles method is given by Villasenor and Buneman (1992).

In TRSITAN code (Buneman, 1993) a smoothing procedure is taken into account
in order to reduce the amplitude of the statistical noise generated by the small number
of simulated particles compared to real plasmas and also to limit the possible unwanted
effects of the aliasing that could arise due to the discretization of configuration space.
The smoothing procedure is applied to all the current density components computed
from equation (A.11) (Birdsall and Langdon, 1991):

M-JG,jk)+S-S, +K-K, +C-C_ (A.12)

J (i, ], k)=
NCYED) M+6S+12K +8C

where M=8, =4, K=2, C=1 and:
S =Ji-17,k)+J+1,7,k)+J(,j—1,k) (A.13)
+ T, j+ LK)+ T, j k=) +J(, j,k+1) '

K, =J(i-1j-1k)+J(i+1,j—1Lk)+J(i~1,j+1k)
+ TG+ 1, j+Lh) + TG j =Lk + 1)+ J (i j+1,k+1)

- - - (A.14)
+J(i-L,k+)+J(+1 j,k+D)+J(, j-1,k—1)
+JG, j+Lk=D)+J(i-1, k=D +J(i+1,j,k-1)
C. =J-Lj-Lk-1)+J(i-1j+Lk-1)
+J(i+1,j-Lk=D)+J(+1,j+1,k=1)
(A.15)

+J(i-1,j-Lk+D)+J(i-1j+Lk+1)
+JG+Lj-Lk+D)+JG+1 j+Lk+1)

Further, only the smoothed currents given by (A.12) are introduced in (A.3). It should be
mentioned that the same smoothing procedure is also applied to compute the charge
density and the number density when diagnostics are performed. A full description of
the TRISTAN code is given in Buneman (1991) and Cai et al. (2003).

When simulating the dynamics of a localized plasma cloud the most desirable
boundary conditions would be the ones with the boundaries located at infinity, which of
course is not possible. Therefore, over time, different sets of boundary conditions have
been considered in the plasma-field interaction studies. For example, Galvez and Borovsky
(1991) introduced a combination of periodic and conducting boundaries in their two-
dimensional electrostatic PIC code. On the other hand, Neubert et al. (1992) considered
periodic boundaries for particles and radiating ones for fields in their three-dimensional
full-electromagnetic particle-in-cell code. In our simulations the boundary conditions are
assumed to be periodic for both particles and fields. To reduce the possible influence of
the boundaries on the plasma dynamics we keep the edges of the simulation domain as
far as possible from the plasma cloud. Also, the simulations are stopped when the particles
reach the boundaries of the domain.
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In TRISTAN code (Buneman, 1993) the simulation domain is defined between
3<x<mx—2 along the x-axis, 3<y< my—2 along the y-axis and 3<z<mz—-2 along the z-
axis, where mx, my, mz are the number of grid cells along the Ox, Oy and Oz axes. Thus,
two guard cells are kept at each boundary of the simulation domain along all three
coordinate axes. Since we assumed periodic boundaries, the particles that leave the

simulation domain will be relocated inside the domain as follows:
ifx, <3thenx, =x, +L,
ifx,>mx—2thenx, =x —L,

ify,<3theny, =y, +L,

. ) (A.16)

ify,>my—2theny, =y, —L,

ifz,<3thenz, =z,+L,

Z

ifzp >mz—2 thenzp :=zp—L

where (x,,y,,2,) is the position of a particle at a given time, while L,=mx—5, L,=my—S5,
L=mz—5 represent the length of the simulation domain along Ox, Oy, Oz. On the other
hand, all the grid quantities will be updated at the boundaries of the simulation domain
such that the following equalities to be satisfied at any given time during the simulation:

G(@3,j,k)=G(mx—2,j,k)
G(i,3,k)=G(i,my—2,k) (A.17)
G(i,j,3)=G(,j,mz—2)
where the grid quantity G can be the electric field, the magnetic field or the current
density; i, j, k indexes the number of grid points inside the simulation domain along the

Ox, Oy and Oz axes. The boundary conditions (A.16) and (A.17) are applied at each time-
step during the simulation.
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Appendix B
Normalization in TRISTAN code

TRISTAN code (Buneman, 1993) uses a particular normalization scheme that will
be described further. Let O be a physical quantity expressed in S| units and Qy its
corresponding normalization factor. The quantity Q is expressed in normalized units as:

_0
0 = 0. (B.1)

where Q* is a dimensionless quantity and Qy has the same units as Q.

The normalization scheme used in the TRISTAN code (Buneman, 1993) takes into
account the following four basic normalization factors for space xy, time ty, charge-to-
mass ratio (¢/m)y and electric permittivity ey:

x, =AM, t,=At, (q/m),=elm, €, =¢ (B.2)

N N N 0
where Ax is the grid spacing, At is the time-step, e is the elementary charge, m, is the
electron mass and gy is the electric permittivity of vacuum. Using the normalization
factors given by equation (B.2), the following normalized quantities are obtained:

A =1, A =1, (e/m) =1 ¢g =1 (B.3)
Based on the normalization scheme expressed by equations (B.1) and (B.2) we
can provide the normalization factors for all the physical quantities of interest in our

simulations. In Table B.1 we list the normalization factors for velocity, number density,
charge density, current density, magnetic induction and electric field intensity.

Table B.1 — Normalization factors for different physical quantities of interest in our simulations.

Physical quantity Normalization factor
. x, Ax
Velocity y =—2=—
St A
1 1
Number density n,o=-—-= ;
Cox, (Axy
m
Charge density p,=q.n, = 0 "2
' e(At)
& m Ax
Current density JV =p v, = 0 e -
) e(At)
o, m
Magnetic induction BM = ! =—=
© (g/m), el
m Ax
Electric field intensity E =v B =——
' S e(Ar)

123




NORMALIZATION IN TRISTAN CODE

124




LIST OF TABLES

List of tables

Table 1.1 — Input parameters of the test-kinetic simulations: N,, k;T,, V, are the density, thermal energy
and average velocity of the drifting Maxwellian (1.12); B,,, B,, are the asymptotic values of the magnetic
field; L is the length scale of the TD; R is the Larmor radius of the thermal protons; T, is the proton
cyclotron period; N,xN, is the number of injection sources; n, is the number of test-particles injected from
each source; x,, y, are the coordinates of the first source; dx,, dy, are the separation distances between
sources along Ox and Oy. 16

Table 1.2 — Values of f obtained with both forward and backward approaches for three selected velocity
bins centered at a, b and c. 31

Table 2.1 — Plasma and field parameters for the three cases considered in the second chapter: N = number
density, T = temperature, V, = bulk velocity, B, = magnetic induction and E, = electric field intensity at t=0
for case A (see Figure 2.2), case B (see Figure 2.3) and case C (see Figure 2.4); indices “1” and “2” denote
the values corresponding to the two plasma regions illustrated in the aforementioned figures. 43

Table 2.2 — Simulation parameters for cases A, B and C: nx = number of grid points, nt = number of time-
steps, L = length of the simulation domain, r, = Larmor radius, T = total simulation time, T, = Larmor
period, A, = Debye length, Ax = grid spacing, At = time-step, ¢ = speed of light in vacuum; “e” and “i”
indices designates the electrons and ions corresponding quantities. In case A the gyration radius and the
cyclotron period are computed for the left population (see Figure 2.2). 44

Table 2.3 — Input parameters for the test-simulations with a variable number of particles: N = number
density, T = temperature, V, = bulk velocity, B, = magnetic induction, E, = electric field intensity, nx =
number of grid points, nt = number of time-steps, Ax = grid spacing, At = time-step and ion-to-electron
mass ratio m,/m,; A, is the Debye length and c is speed of light in vacuum; “e” and “i” indices designates
the electrons and ions corresponding quantities. 44

Table 3.1 — Input parameters for all the simulations discussed in Chapter 3: m,/m, is the ion-to-electron
mass ratio; T./T, is the electron-to-ion temperature ratio; B, is the plasma-beta parameter for electrons; €
is the dielectric constant of the plasma element; w,, w,, w, are the widths of the plasma element along Ox,
Oy, Oz axes; ry; is the ion Larmor radius; Ax is the grid spacing; A, is the electron Debye length; At is the
time-step; c is the speed of light in vacuum; N_ is the number of particles per grid-cell at t=0. 60

Table 3.2 — Input parameters for the five cases and the three sub-cases shown in Chapter 3: V, is the initial
plasma bulk velocity; V; is the ion thermal speed; B, and B, are the asymptotic magnetic fields defined in
equation (3.9); x, and x, define the non-uniform magnetic field region given by equation (3.9); r; is the ion
Larmor radius; x,, Y,, Z, gives the starting position of the plasma element along the Ox, Oy, Oz axes; mx,
my, mz are the number of grid points along the Ox, Oy, Oz axes; T is the total simulation time; T, is the ion
Larmor period. 60

125




LIST OF TABLES

126




LIST OF FIGURES

List of figures
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Figure 1.8 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at t=120 seconds. The spatial bins are defined in Figure 1.7.
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at the edges of the cloud; the latter result from the large Larmor radius particles with gyro-centers inside
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Figure 1.9 — Distribution of protons in the xOy plane after 225 seconds (~100T,) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
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also shown. 19

Figure 1.10 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at t=225 seconds. The spatial bins are defined in Figure 1.9.
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between the proton cloud and the region of the most rapid variation of B; some parts of the cloud
intersected the plane x=0 where B=0. The local value of the number density is color coded. The spatial
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Figure 1.12 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at At=275 seconds. The spatial bins are defined in Figure
1.11. During this initial stage of the interaction of the cloud with the discontinuity one identifies the
Maxwellian core of the cloud (bins B1-B2) and non-gyrotropic VDFs at the leading edge (e.g. bins D5—I5).
20

Figure 1.13 — Distribution of protons in the xOy plane after 300 seconds (~135T,) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
spatial mesh on which the VDF is reconstructed is also shown. The figure illustrates a later stage of the
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vanishes. A significant number of protons moved in the region of positive B,. 21

Figure 1.14 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons at At=300 seconds. The spatial bins are defined in Figure 1.13. We note
that in the region of positive B, the VDFs of protons are ring-shaped (bins G4—I4, H5—I5) or crescent-like
(bins G3—13, E5—G5). 21

Figure 1.15 — Distribution of protons in the xOy plane after 350 seconds (~160T,) from injection in the
electromagnetic field illustrated in Figure 1.6. The local value of the number density is color coded. The
spatial mesh on which the VDF is reconstructed is also shown. One notes the splitting of the cloud into
two populations: population P1 that does not cross the surface where B=0 and remains trapped in some
region on the left side of the discontinuity (x<0) and respectively population P2 that penetrates into the
right side of the magnetic discontinuity. At later stages the two populations disconnect. In the reminder of
the paper we follow only P2. 22

Figure 1.16 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at At=350 seconds. The spatial bins are defined in Figure
1.15. Only VDFs of the P2 population are shown. Ring-shaped and crescent-like VDFs are observed in the
large majority of spatial bins. 22

Figure 1.17 — Distribution of protons of the population P2 in the xOy plane after 600 seconds (~270T,)
from injection in the electromagnetic field illustrated in Figure 1.6. The local value of the number density
is color coded. The spatial mesh on which the VDF is reconstructed is also shown. The protons move in a
region of uniform magnetic and electric field, on the right side of the discontinuity. 23

Figure 1.18 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at At=600 seconds. The spatial bins are defined in Figure
1.17. All the VDFs obtained for this stage of propagation are either ring-shaped or crescent-like, a
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Figure 1.19 — Distribution of protons in the xOy plane after 360 seconds (~160T,) from injection on the left
side in the case of a unidirectional, non-uniform, parallel magnetic field and a uniform electric field. The
local value of the number density is color coded. The spatial mesh on which the VDF is reconstructed is
also shown. The deformation of the shape of the cloud is due to the gradient-B drift. 26

Figure 1.20 — Projection in the space of perpendicular velocities, for v,=0, of the Liouville mapped velocity
distribution functions of protons in the cloud at At=600 seconds for a parallel magnetic field and a uniform
electric field. Spatial bins are defined in Figure 1.19. Note the formation of the central cavity due to the
gradient-B drift in bins of the upper three rows; non-gyrotropic VDFs are obtained in bins from the column
A,B,C,G Handl. 26
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Figure 1.21 — Proton density distribution in the xOy plane, perpendicular to the magnetic field, at t=225s
(~100T,) obtained with the forward approach. The local number density is color coded using a 2D mesh of
60x60 cells. The blue rectangles indicate the spatial bins used to compute the VDF shown in Figure 1.22.27
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Figure 2.5 — Space and time evolution of the E, component of the electric field when 4096 particles per
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Figure 2.6 — Net charge density (left column) and electric field intensity (right column) obtained with 4096
particles per cell (top panels), 65536 particles per cell (middle panels) and 262144 particles per cell
(bottom panels). The blue lines show the results obtained at the end of the simulations, while the red
ones illustrate the time-averaged profiles. The total simulation time covers ~8 electron plasma periods. 46

Figure 2.7 — Net charge density (left column) and electric field intensity (right column) obtained with 512
particles per cell for a total simulation time that covers ~1000 electron plasma periods or, equivalently, ~4
ion Larmor periods. The blue lines show the results obtained at the end of the simulations, while the red
ones illustrate the time-averaged profiles. 47

Figure 2.8 — Histograms of the net charge density (left panel) and electric field intensity (right panel)
deviations from their time-averaged values, computed for the central region of the simulation domain
(x=202 km). The red line illustrates the fitting curve of the histogram using a normal distribution. 47

Figure 2.9 — Simulation results for a tangential discontinuity without velocity shear (case A). On the left
column we show the time history for the electric field (first line), the magnetic field (second line), the
electron number density (third line) and the net electrial charge (fourth line). The second column shows
the time-averaged profiles, while on the last column we have the results of a theoretical kinetic model for
a tangential discontinuity (Roth et al., 1996). 49
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Figure 2.10 — Histogram of the electric field deviation from average, E,(t)-<E,(t)>, computed for the
central region of the simulation domain (x=200 km). The red line illustrates the fitting curve of the
histogram using a normal distribution with mean p=0 and standard deviation 6=600 mV/m. 49

Figure 2.11 — Simulation results for a tangential discontinuity with velocity shear (case B). On the left
column we show the time history for the electric field (first line), the magnetic field (second line), the
electron number density (third line) and the net electrial charge (fourth line). The second column shows
the time-averaged profiles, while on the last column we have the results of a theoretical kinetic model for
a tangential discontinuity (Roth et al., 1996). 50

Figure 2.12 — The simulated profile of the ions bulk velocity for case B. The transition layer between the
left asymptotic region (V,=0) and the right asymptotic region (V,=—1000 km/s) has a width of
approximately 3.5 ion Larmor radii. 51

Figure 2.13 — Simulation results for a plasma slab streaming across a transverse magnetic field (case C). On
the left column we show the time history for the electric field (first line), the magnetic field (second line),
the electron number density (third line) and the net electrial charge (fourth line), while on the right
column we show the time-averaged profiles. 52

Figure 2.14 — The simulated profile of the ions bulk velocity for case C. Two asymmetric boundary layers
are formed at the edges of the plasma slab. The left boundary layer has a width of approximately 7.6 ion
Larmor radii, while the right boundary layer has a width of approximately 10.2 ion Larmor radii. 53

Figure 3.1 — Yee lattice (Yee, 1966) used to solve the Maxwell’s equations using finite-differences method
with a centered-difference scheme. The electric field is computed at the locations shown by blue dots,
while the magnetic field is computed at the locations shown by red dots (adapted from Yee, 1966). 56

Figure 3.2 — Schematic diagram of a three-dimensional particle-in-cell simulation cycle. Each of the 8 steps
illustrated above are performed iteratively until the end of the simulation. The time-step At must fulfill the
Courant condition of numerical stability (adapted from Cai et al., 2003). 58

Figure 3.3 — Schematic diagram of the simulation setup. The three-dimensional plasma element/cloud
(red rectangular box) is injected with a non-zero bulk velocity (blue arrow), in vacuum, across a transverse
magnetic field (black arrow). 59

Figure 3.4 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) sections of the
simulation domain. The uniform background magnetic field is parallel to the z-axis. The ions and electrons
are initialized with the same number density. At t=0 the three-dimensional plasma element has a

rectangular shape and a uniform density. 61

Figure 3.5 — Initial velocity distribution function of electrons (left panel) and ions (right panel) in the v,=0
section perpendicular to the background magnetic field. The VDFs are computed in the central region of
the plasma element for 46<x<51, 68.5<y<88.5 and 3<z<303. Note that the initial velocity distribution
function of both electrons and ions is an isotropic Maxwellian with zero average velocity. 61

Figure 3.6 — Number densities of electrons n, (top panels) and ions n, (middle panels) and the electric
charge separation computed as n—n, (bottom panels) at t=T,./2 (left column) and t=3T,, (right column),
where T, is the electron Larmor period; xOy central sections perpendicular to the background magnetic
field are shown. 63

Figure 3.7 — Number densities of electrons n, (top panels) and ions n, (middle panels) and the charge
separation computed as ni—n, (bottom panels) at t=T,./2 (left column) and t=3T,, (right column), where T,
is the electron Larmor period; xOz central sections parallel to the ambiental magnetic field are shown. 64

Figure 3.8 — E, (top panels) and E, (bottom panels) components of the electric field at t=T,./2 (left column)
and t=3T,, (right column), where T, is the electron Larmor period; xOy central sections perpendicular to
the background magnetic field are shown. 65
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Figure 3.9 — E, component of the electric field at t=T,./2 (left panel) and t=3T,, (right panel), where T, is
the electron Larmor period; xOz central sections parallel to the background magnetic field are shown._ 65

Figure 3.10 — The B, (top panels), B, (middle panels) and B, (bottom panels) components of the magnetic
field, at t=T,./2 (T, is the electron Larmor period), in the xOy plane (left column), xOz plane (middle
column) and yOz plane (right panel) inside the simulation domain, for the cross-sections specified in the
title of each of the nine plots. 66

Figure 3.11 — The B, (top panels), B, (middle panels) and B, (bottom panels) components of the magnetic
field, at t=3T,, (T, is the electron Larmor period), in the xOy plane (left column), xOz plane (middle
column) and yOz plane (right panel) inside the simulation domain, for the cross-sections specified in the
title of each of the nine plots. 66

Figure 3.12 - J, (top panels) and J, (bottom panels) components of the total current density at t=T,./2 (left
comlun) and t=3T,, (right column), where T, is the electron Larmor period; xOy central sections
perpendicular to the background magnetic field are shown. 68

Figure 3.13 — Variation with x of the J, component of the current density for electrons (left panels) and

ions (right panels) at t=T /4 (top panels), t=T,./2 (middle-top panels), t=2.5T,, (middle-bottom panels) and
t=3T,, (bottom panels), where T, is the electron Larmor period. The dependence J,=J,(x) is shown for y=78
and z=153. 69

Figure 3.14 — Variation with y of the J, component of the current density for electrons (left panels) and

ions (right panels) at t=T /4 (top panels), t=T,./2 (middle-top panels), t=2.5T,, (middle-bottom panels) and
t=3T,. (bottom panels), where T, is the electron Larmor period. The dependence J =, (y) is shown for x=49
and z=153. 70

Figure 3.15 — Number density of electrons at t=3T,,, where T, is the electron Larmor period, in the xOy
central section perpendicular to the background magnetic field. This is a zoom in the top-right panel of
Figure 3.6. The five black rectangles mark the spatial bins used to compute the velocity distribution
function for both electrons and ions. 71

Figure 3.16 — Velocity distribution function of electrons at t=3T,, in the v,=0 section perpendicular to the
background magnetic field; T, is the electron Larmor period. Each of the five (v,,v,) panels correspond to a
certain spatial bin that covers the entire simulation domain along the z-axis. The bins locations in the xOy
plane are shown with black rectangles in Figure 3.15. 72

Figure 3.17 — Velocity distribution function of ions at t=3T,, in the v,=0 section perpendicular to the
background magnetic field; T,. is the electron Larmor period. Each of the five (v,,v,) panels correspond to a
certain spatial bin that covers the entire simulation domain along the z-axis. The bins locations in the xOy
plane are shown with black rectangles in Figure 3.15. 73

Figure 3.18 — Schematic diagram of the two space charge layers forming at the edges of a plasma beam
injected across a transverse background magnetic field. Panel (a) illustrate the trajectories of the electrons
and ions immediately after injection, while panel (b) shows the polarization electric field inside the
quasineutral plasma core (adapted from Livesey and Pritchett, 1989). 74

Figure 3.19 — Variation along the y-axis of the net charge density (top panels) and of the E, component of
the electric field (bottom panels), at t=T,./4, for case I (left column) and case Il (right column); T . is the
electron Larmor period. The black line in the bottom-right panel marks the value of the polarization
electric field given by equation (3.11), i.e. E,=V,B,. 75

Figure 3.20 — Number density of electrons n, (top panels) and ions n, (middle panels) and the charge
separation computed as n.—n, (bottom panels) in the xOy plane (left column), xOz plane (middle column)
and yOz plane (right column), at t=T,; (T,; is the ion Larmor period), for the cross-sections indicated in the
title of each plot. 78
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Figure 3.21 — Number density of electrons n, (top panels) and ions n, (middle panels) and the charge
separation computed as n—n, (bottom panels) in the xOy plane (left column), xOz plane (middle column)
and yOz plane (right column), at t=2T; (T,; is the ion Larmor period), for the cross-sections indicated in the
title of each plot. 78

Figure 3.22 — U, (top panels), U, (middle panels) and U, (bottom panels) components of the plasma bulk
velocity in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at t=T;
(T, is the ion Larmor period), for the cross-sections indicated in the title of each plot. 79

Figure 3.23 U, (top panels), U, (middle panels) and U, (bottom panels) components of the plasma bulk
velocity in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at t=2T;
(T, is the ion Larmor period), for the cross-sections indicated in the title of each plot. 79

Figure 3.24 — E, (top panels), E, (middle panels) and E, (bottom panels) components of the electric field in
the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at t=T, (T, is the ion
Larmor period), for the cross-sections indicated in the title of each plot. 80

Figure 3.25 — E, (top panels), E, (middle panels) and E, (bottom panels) components of the electric field in
the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at t=2T, (T; is the
ion Larmor period), for the cross-sections indicated in the title of each plot. 80

Figure 3.26 — Variation over time of the polarization electric field, E,, along the y-axis between t=T , and
t=2T,;, where T; is the ion Larmor period; the representation is made for x=110 and z=153. 81

Figure 3.27 — B, (top panels), B, (middle panels) and B, (bottom panels) components of the magnetic field
in the xOy plane (left column), xOz plane (middle column) and yOz plane (right column), at t=2T,, (T, is the
ion Larmor period), for the cross-sections indicated in the title of each plot. 81

Figure 3.28 — Background magnetic field profile inside the simulation domain. The B-field is oriented along
the positive z-axis and increases linearly with x-coordinate over a transition region having the width of 5r;;
(r,;is ion Larmor radius in the left hand side of the transition region). 82

Figure 3.29 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) central
sections of the simulation domain. The non-uniform background magnetic field is oriented along the
positive direction of the z-axis. The two black lines mark the position of the transition region where the
magnetic field increases linearly from B, up to B,=1.5B,. The ions and electrons are initialized with the
same number density. At t=0 the three-dimensional plasma element has a rectangular shape and is
localized on the left hand side of the transition region. 83

Figure 3.30 — Number density of electrons (top panels) and ions (bottom panels) at t=T,; (left column),
t=2T,; (middle-left column), t=3T,, (middle-right column) and t=3.75T, (right column); T, is the ion Larmor
period in the left hand side of the transition region. The two black lines mark the position of the transition
region where the magnetic field is non-uniform. The xOy plane perpendicular to the background magnetic
field is shown here, for z=253 cross-section. 84

Figure 3.31 — Number density of electrons (top panels) and ions (bottom panels) at t=T,; (left column),
t=2T,; (middle-left column), t=3T; (middle-right column) and t=3.75T, (right column); T, is the ion Larmor
period in the left hand side of the transition region. The two black lines mark the position of the transition
region where the magnetic field is non-uniform. The xOz plane perpendicular to the background magnetic
field is shown here, for y=128 cross-section. 84

Figure 3.32 -V, (top panels) and V, (bottom panels) components of the plasma bulk velocity at t=T; (left
column), t=2T,; (middle-left column), t=3T; (middle-right column) and t=3.75T; (right column); T, is the ion
Larmor period in the left hand side of the transition region. The two black lines mark the position of the
transition region where the B-field is non-uniform. The xOy plane perpendicular to the background
magnetic field is shown here, for z=253 cross-section. 85
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Figure 3.33 — E, component of the electric field (top panels) and U, , component of the zero-order drift
(bottom panels) in the xOy plane perpendicular to the ambiental magnetic field, for t=3T, (left column)
and t=3.75T; (right column); T, is the ion Larmor period in the left hand side of the transition region. The
two black lines mark the position of the transition region where the magnetic field is non-uniform. The
zero-order drift is computed only for those grid cells having a number density of at least 5% from its initial
value, otherwise the value of U, , is set to zero. 87

Figure 3.34 — (Left panel) Net charge density in the xOy plane perpendicular to the ambiental magnetic
field at t=3T,;; T, is the ion Larmor period at the left hand side of the transition region. The non-uniform
magnetic field region is marked with the two black straight lines, while the initial position of the plasma
cloud is shown by a black rectangle. The net charge in the core of the cloud has been artificially assigned
to zero in order to remove the numerical noise and emphasize the effects in the lateral edges. (Right
panel) Schematic diagram of the plasma polarization when it interacts with the increasing magnetic field.
88

Figure 3.35 — Initial number density of electrons in the xOy (left panel) and xOz (right panel) sections of
the simulation domain. The non-uniform background magnetic field is oriented along the positive
direction of the z-axis. The two black lines mark the position of the transition region where the magnetic
field increases linearly from B, up to B,=1.5B,. The ions and electrons are initialized with the same number
density. At t=0 the three-dimensional plasma element has a rectangular shape and is localized on the left
hand side of the transition region. 90

Figure 3.36 — Number density of electrons (top panels) and ions (bottom panels) at t=1.5T; (left column)
and t=3T; (right column); T, is the ion Larmor period in the left hand side of the transition region. The two
black lines mark the position of the transition region where the magnetic field is non-uniform. The xOy
plane perpendicular to the background magnetic field is shown here, for z=203. 91

Figure 3.37 -V, (top panels) and V, (bottom panels) components of the plasma bulk velocity in the xOy
plane perpendicular to the ambiental magnetic field, for t=1.5T; (left column) and t=3T, (right column); T,
is the ion Larmor period in the left hand side of the transition region. The two black lines mark the
position of the transition region. The bulk velocity is computed only for those grid cells having a number
density of at least 5% from its initial value, otherwise its value is set to zero. 92

Figure 3.38 — Number density of electrons (top panels) and ions (bottom panels) in the xOy (left column)

and xOz (right column) planes, at the end of the simulation, i.e for t=3T,; T, is the ion Larmor period at the
left hand side of the transition region. The two black lines mark the position of the transition region where
the magnetic field is non-uniform. 93

Figure 3.39 — Plasma bulk velocity (the V, component) in the xOy plane (left panel) and xOz plane (right
panel) at t=3T;; T, is the ion Larmor period at the left hand side of the transition region. The two black
lines mark the position of the transition region where the magnetic field is non-uniform. 94

Figure 3.40 — Forward plasma bulk velocity as a function of the y-coordinate, V,=V,(y), for x=182 and
z=203. The black line corresponds to the average value of the plasma bulk velocity, while the red one
represents the initial injection velocity. 94

Figure 3.41 — Number density of electrons (first column) and ions (second column) and also the V, (third
column) and V, (fourth column) components of the plasma bulk velocity, in the xOy plane perpendicular
to the magnetic field, at t=0.5T; (first line), t=1T; (second line), t=1.5T, (third line), t=2T,; (fourth line),
t=2.5T, (fifth line) and t=3T, (sixth line); T ; is the ion Larmor period in the left hand side of the transition
region. The two black lines mark the position of the transition region where the magnetic field is non-
uniform. The bulk velocity is computed only for those grid cells having a number density of at least 5%
from its initial value, otherwise V, and V, are set to zero. 95
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Figure 3.42 — Plasma convection velocity V, as a function of the magnetic field strength B in the following
representation, i.e. (1-V,/V,)’ as a function of B/B,~1 for seven pairs V,-B obtained at the propagation
front of the plasma element at different moments of the interaction with the magnetic discontinuity (blue
dots). The red line shows the linear fitting of the simulation data with equation (3.22). The coefficient of
determination R” for the linear fit is equal to 0.94. 96

Figure 3.43 — Number density of electrons (top panels) and ions (bottom panels) at t=0 (left column),
t=0.65T,; (middle-left column), t=1.55T,; (middle-right column) and t=2T, (right column); T; is the ion
Larmor period in the left hand side of the transition region. The two black lines mark the position of the
transition region where the magnetic field is non-uniform. The xOy plane perpendicular to the background
magnetic field is shown here, for z=153 cross-section. 97

Figure 3.44 —V, component of the plasma bulk velocity at t=0.65T; (left column), t=1.55T; (middle
column) and t=2T, (right column); T;; is the ion Larmor period in the left hand side of the transition region.
The two black lines mark the position of the transition region where the B-field is non-uniform. The xOy
plane perpendicular to the background magnetic field is shown here, for z=153. 98

Figure 3.45 — Variation along the x-axis, for y=77 and z=153, of the electron number density n, (top panel),
plasma convection velocity V, (middle panel) and magnetic field B, (bottom panel), at t=1.55T ;. We
illustrate here only the values corresponding to the central region of the plasma element, i.e. from x=68 to
x=104. The grey rectangle indicates the transition region with a non-uniform magnetic field, while the red
line on the middle panel mark the ion sound speed V.. 99
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