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Magnetic mirror structures

Fundamental plasma instability /

Needs temperature anisotropy
(1" > 1)) in order to develop

Non propagating (purely imagi-
nary frequency), strongly com-
pressive mode

Magnetic field is anti-correlated
with plasma density

Common in Earth magne-
tosheath but also in other space
plasmas
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Methods for deriving the geometry

Correlations

applicable for any "well defined” magnetic structures
assume linear correlation
essentially statistical

works when the correlations between measurements from different spacecraft are
large

Model

less general then correlations method

assume certain geometry of magnetic mirror structures

allow the study of each structure separately

can work even if the measurements from different spacecraft are dissimilar
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Model: Assumptions

Pressure equilibrium (B) /

> Pplasma == Pmagneticfield

Small perturbations
> o5 <hif 3

Time-independent magnetic field
> B # B(t)

Symmetry around z-axis
> B # B(p)

Periodicity along z-axis
> B(p,z+2L) = B(p, 2)

Bi-Maxwellian Distribution
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Model: Magnetic field

Magnetic field perturbation:

o

B RNl i e

58.(0,2) =23 Jo (*2) [amcos (“5%) + busin (1]
n=1

Multi-layer structure

Central structure is the classical im-
age of magnetic mirror

Multiple magnetic field minima belong
to one structure

In real world only inner layers will
survive
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Model: Results

Fit Results
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fit on data from C1 and C2
C3 and C4 are witness spacecraft

Resulting dimensions:

> L = 6186 km
Dhaild O iR

Magnetic field lines
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From GRL Vol 30, Constantinescu et al. Magnetic mirrors in Cluster data



Particles simulation

Test particles:

particles do not influence the magnetic field

Quasi-static magnetic field:

time scale for the magnetic field variations > giroperiod

Equation of motion:

O°r % (81‘ 3 B>
e
Integrator:

5th order Runge-Kutta with adaptive stepsize control

We want to:

determine the distribution function as a function of position inside the magnetic
mirror

check the bi-Maxwellian distribution assumption
compare with Cluster CIS data
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Test particle orbits

1et+06 T T
e Trapped particles
e Escaping particles
e Drift around z axis 5e+05 | s
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Trapped or not?

Used criterion: v, change sign
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Simulation steps

£ distribution function:
¢ bi-Maxwellian

magnetic field:
uniform

f equation of motion U

; distribution function:
I | local bi-Maxwellian (?)

magnetic field:
magnetic mirror

f equation of motion N/

t distribution function:
/| local bi-Maxwellian (2?7)

magnetic field:
magnetic mirror
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How many?...

electrons, T=100K

o testdistribution
—— theoretical distribution
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Simulation parameters

Input

Number of particles:

Grid p, 2:

Orthogonal temperature:
Parallel temperature:
Simulation time:

magnetic field change time:

Output
Trapped particles: 6032
Escaping particles: 3968
Energy conservation: 0.99
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10000

20x20 => average of 25 particles/cell
10 mil K

5 mil K

30 giroperiods

15 giroperiods
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Preliminary results: Density of particles

e Trapped and escaping particles

e Density roughly anti-correlated with
magnetic field intensity

e Specific regions where anti-correlation
is brocken
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PR: Trapped particles density

e Much better anti-correlation
e Still at the necks the density is high

e Is this because of the "quasi-trapped”
particles?
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PR: Escaping particles density

e Density roughly correlated with mag-
netic field intensity

e There is a region where magnetic
field intensity is constant along mag-
netic fild lines. Most particles there
are escaping.

e Why correlation?
> low parralel velocity
> closer field lines
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Conclusions

A case study has been performed

multi-spacecraft measurements have been used
full geometry have been determined

Preliminary results from particles simulation have been obtained

most of the necessary numerical code has been written
density distribution is consistent with the magnetic field configuration

To do list

increase number of particles in the simulation in order to improve statistics
find the distribution function as function of position

find the temperature, anisotropy, flow velocity as function of position
compare the results with Cluster CIS data
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Al. The Earth magnetosphere

ot magnetosheath
ci-:a‘i'“ﬂ : |

b+
magnetopause

neutral sheet

Courtesy of Windows to the Universe, http://www.windows.ucar.edu
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A2. Magnetic mirrors in spacecraft data
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A3. Magnetic field data

Date: Nov. 10 2000, Cluster 1 measured magnetic field
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Location: Dusk side magnetosheath

Cluster Tetrahedron Configuration
Plasma flow: 815 km/s , C1 -> C3 oo = N Tl

Magnetic field almost:

> aligned with Zqsg axis
> orthogonal to plasma flow
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A4. Generating the distribution

we have

o uniform distributed random numbers s € (0, 1)

we need

e function U(random sequence (S)): sequence with probability f(?))

U] i B B

how to find it

o relation between probabilities: ds = f(v(s))dv

2KpT

o v(s)=u+ ( )1/2 Enl” (e2s)
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A5. Effect of time averaging

Without time averaging
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With time averaging
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Total density
Trapped particles density
Escaping particles density
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