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1. Introduction

The threshold effects in a multichannel reaction system originate in the conser-
vation of flux. The opening of a new (threshold) reaction channel results into a
redistribution of flux in complementary open channels, i.e. changes of their reaction
cross-sections. The modification of the reaction cross-sections of open channels, due
to opening of a threshold channel, is called threshold effect.

In a hydrodynamical description, the threshold effect’s magnitude should be
proportional to the amount of the flux absorbed in the threshold channel. If the
threshold channel has no barriers, i.e. for a s- wave neutron, a violent transfer
of the flux is produced, resulting in a specific threshold effect, called Threshold
Cusp. Because the flux in the s-wave neutron threshold channel is proportional
to the channel wave number, (i.e. ∼

√
E), one obtains that the Threshold Cusp
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has an infinite energy derivative at zero (threshold) energy; from this behaviour
results the Cusp denomination. The Threshold Cusp is considered as an universal
phenomenon, appearing whenever a new s-wave neutron channel opens. For higher
partial waves, the centrifugal barrier inhibits the flux transfer between the neutron
threshold channel and the observed open ones and, accordingly, will result in a
smaller threshold effect.

The Wigner-Breit-Baz Cusp Theory1,2,3 predicts nuclear threshold effects for the
s-wave neutron opening channel. S-wave threshold effects were observed in some Re-
actions on Light Nuclei; an extensive review on threshold effects in proton scattering
on 1-p Shell nuclei was presented in Ref. 4. As a matter of fact, the corresponding
experimental data were not interpreted as evidence for a genuine Threshold Cusp,
but rather analyzed in terms of a multiparametric method developed by same au-
thors. On the other hand, p-wave threshold effects have been observed in some Low
Energy Nuclear Reactions5,6, becoming subject of many experimental and theoret-
ical investigations, (see Ref. 7 and references therein). Recently, the spectroscopical
aspects of p-wave threshold effects (relation to Neutron Strength Function) have
been discussed8.

The Threshold Physics field appears to be more rich in phenomena than in
schematic descriptions. Understanding of the physical aspects of the p-wave thresh-
old effect should be of interest not only in Low Energy Nuclear Physics4, but also in
the other Quantum Scattering fields as Atomic Collisions ( e.g. the dipole induced
threshold effects in electron-molecule collisions, see Ref. 9) and High Energy Physics
(e.g. the p-wave near-threshold state in pp̄− > ΛΛ̄ reaction, see Ref. 10).

The aim of the present contribution is to develop a formal treatment, covering,
in an unitary view, previous descriptions and conclusions. Relations of the p-wave
threshold effect to Nuclear Reaction Mechanisms (Quasi-Resonant Scattering) as
well as to Nuclear Structure Physics (Spectroscopy of Neutron Threshold State)
are obtained.

2. Physical Aspects of the P-Wave Threshold Effect

The first experimental evidence of a p-wave threshold effect in Low Energy Nuclear
Physics comes from deuteron stripping reactions on A ∼ 90 mass target nuclei. A
sharp anomaly was found in the excitation functions of (d, p0) reactions near the
threshold of neutron analogue channel (d, n̄), see Ref. 5. The threshold anomaly
was also observed in deuteron polarization studies6, resulting in well-defined exper-
imental characteristics.

The anomaly occurs mainly as a dip in cross-section data and as resonant or
S-shape form in analyzing power excitation functions; its width between half-way
points is approximative 0.7 MeV. The anomaly’s centre is not always at (d, n̄)
threshold but rather in a region of 0.1 - 0.2 MeV. The anomaly’s magnitude is
largest for A ∼ 90 mass nuclei, becoming smaller both for larger or smaller mass
nuclei, as for example A ∼ 80. An illustrative example for the deuteron stripping
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Fig. 1. The deuteron stripping threshold anomaly in the cross-section and analyzing power data.

The effect is described (solid line) as the interference between the Direct Reaction Mechanism and
the p-wave Neutron Threshold Single Particle Resonance.

threshold anomaly, (experimental data on 88Sr(d, ~p)89Sr reaction, from Ref. 7), is
presented in the Fig. 1.

The anomaly occurs only at neutron analogue thresholds; it is an experimental
proof of isospin coupling of the analogue channels. An Isospin Coupled Channels
Born Approximation Model was devised in order to describe this phenomenon11.
It was found numerically, with Optical Model calculations12, that the 3-p wave
neutron wave function has a strong energy dependence near threshold, for A ∼
90 mass nuclei; there exists a p-wave neutron single particle state at zero energy.
This neutron state moves far away from threshold (zero energy) for other mass
nuclei. The Coupled Channel Born Approximation Model (CCBA) does reproduce
the threshold anomaly only in cross-section data.

The Cusp Theory, both in its original or its energy-averaged extension, can-
not account for this p-wave threshold effect, both for experimental and theoretical
reasons, see Refs. 13, 14, 15.

Lane has proposed16 a very physical model for understanding of the p-wave
threshold anomaly. This model is based on two experimental facts: (1) there exists,
for A ∼ 90 mass nuclei, a p-wave neutron single particle state at zero-energy, and,
(2) isospin coupling of the exit neutron and proton analogue channels. The near-
threshold p- wave neutron-single particle resonance, (l = 1, j = 3/2, 1/2;Ej ∼
0;L1 = S1 + iP1 - p- wave neutron channel logarithmic derivative; b - boundary
condition at channel radius a; γ2

n - neutron reduced width; Γ - resonance’s total
width), is reflected, by isospin coupling as a resonant term in the proton channel S-
Matrix elements:

Sdp = Bdp + Σj=3/2,1/2αj(~2/ma2)/[Ej − E − (S1 + iP1 − b)γ2
n − iΓ/2]

The background S- Matrix elements, Bdp are generated by DWBA, (~2/ma2)
is Wigner unit of the reduced width; the coupling constants αj , related to isospin
coupling strengths, are free parameters of this model. Although, formal equivalent
to a single level formula, it is specific for the threshold phenomena due to the
strong energy dependence of the neutron channel logarithmic derivative Ln near
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zero-energy. This energy dependence results into a distorsion of the resonance shape,
esp. for s- and p- waves. The distorsion of the resonance’s shape can be viewed as an
asymmetric compression of the energy scale in the threshold range. The compression
factor17, βl = 1/[1 + γ2

ndSl/dE], which is subunitary, results into a shift to the
threshold of the resonance’s position Ej → Ēj = βl[Ej −E − (S1(0)− b)γ2

n] as well
as into a width compression ,Γ → Γ̄ = βl[Γ + 2Plγ2

n]. For β → 0, the resonance is
shifted just to zero (threshold) energy. A large reduced width is essential in obtaining
small values of β. For a compression factor which can reproduce the anomaly’s width
∼ 0.7 MeV, a reduced width γ2

n exceeding several Wigner units is necessary. (Such
a large value of the reduced width can be obtained both from the Shell Model
and Optical Model calculations or from an empirical formula, relating the width’s
increase to the nucleus surface’s diffuseness) . By using the Lane’s model, the p-wave
threshold anomaly, both in cross-section and analyzing power, was reproduced7.

Another aspect of the Lane Model is an empirical Q- classification of the 3-p
wave threshold anomalies. It was proved18, that the Q- classification is a kinematical
one, according to transfered linear momentum and transfered angular momentum
in the (d, p0) reaction. The threshold anomaly results from interference of the (d, p0)
background and the threshold- resonance terms: different forms of the background
result into different shapes of the anomaly.

Another classification of the anomalies, related to their microstructure, was pro-
posed too18: single dip and fluctuating-type anomalies. All fluctuating -type anoma-
lies do correspond to the residual nuclei in 0+ ground states, while the spin of resid-
ual nucleus’ state is non-zero for the single dip anomalies. Therefore the nature
of the residual state could be another criterion for the anomalies’ classification. It
was proved18, that the anomaly is related to the Neutron Strength Function. The
single particle state can be distributed in many ways since the system (neutron +
a non-zero spin state) can be coupled to various angular momenta. In this way the
configuration can be fragmented by residual interactions into many components; if
they are uniform distributed, one obtains a Breit-Wigner form. If the corresponding
components are not uniformly spread into each other, then there occur fluctuations
of the Breit-Wigner line shape. This can result in fluctuating - type’ anomalies if
the residual state (and its analogue) has a relatively simple structure, e.g. even-even
nuclei in their ground state. G.E. Brown19 has predicted fluctuations of the Neutron
Strength Function, depending on the nature of the involved nuclear states; these
”Intermediate Structures” are displayed as microstructures of the Neutron Strength
Function. A similar interpretation was developed by Lane20. The analysis18,20,21 of
the p-wave threshold anomaly does sustain the ”Intermediate Structure” interpre-
tation for the fluctuations observed in the excitation functions of this threshold
effect.

The Lane’s Model predicts even a more pronounced threshold effects for the
s-waves, which were not observed experimentally, (A ∼ 50, 3-s; A ∼ 140, 4-s). This
absence was explained22, in terms of the Neutron Strength Function, too. The S-
wave Neutron Strength Function, defined according to the S-Matrix, is depressed
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Fig. 2. Spectroscopic strengths (α) of the p-wave threshold effects obtained from: an empirical (.)

and different computational procedures (� and ◦). The threshold effects follow the mass dependence
(A) of the Sn Neutron Strength Function data (•).

by an order of magnitude as compared to R-Matrix Strength Function and has no
resonance dependence23. Due to peculiar behaviour of the s-wave neutron virtual
states, perhaps they cannot induce appreciable s-wave threshold effects.

A quantitative analysis of the relation between the p-wave threshold effect and
the p-wave Neutron Strength Function has been done8. The analysis took into ac-
count all experimental data on threshold effects in A = 80 - 110 mass-region, both
cross-section and analyzing power. According to this analysis, the magnitude of the
p-wave threshold effect is proportional to the Neutron Strength Function, in their
mass dependence, see Fig. 2. This analysis does evince the spectroscopic properties
of the threshold effects; the strength of the threshold effect (in open channel) is
proportional to the spectroscopic strength of the Neutron Threshold State (from
opening channel). It is a proof that the threshold effects depend not only on the
penetration factors, as in the Cusp Theory, but also on the spectroscopic factor of
the ancestral neutron state in opening channel.

3. Reduced S-Matrix Approach to Threshold Effects

The Nuclear Physics of seventies was confronted with several problems related to the
threshold phenomena: (1) the threshold effects are rare, appearing under restrictive
conditions, (2) the threshold effects are apparently peculiar, differing each from
other in many aspects, (3) special reaction models were devised to describe different
threshold effects or even same threshold anomaly. For example, the p-wave threshold
effect under study was approached in terms of Cusp Theory, Coupled Channel Born
Approximation and Lane Model.

A theory of threshold effects has to fulfill corresponding requirements: (1) to
understand necessary conditions for experimental observation of a threshold effect,
(2) to provide an unitary description of different types of threshold effects, (3) to
include previous theoretical threshold models as limit cases.



November 26, 2004 18:15 WSPC/INSTRUCTION FILE
pwte˙qs˙resubv2pdf

6 C. Hategan, G. Graw and H. Comisel

Formally, the problem of the Threshold Effects can be viewed as a Scattering
Problem in the truncated space of open (observed, retained) channels; one has to
take into account the coupling of open channels to the threshold (invisible, elimi-
nated) channel. The usual approach to multichannel scattering problems in trun-
cated space of channels is either Reduced R-(K-) Matrix24, or Effective Hamiltonian
(Projector Method)25. Since the Scattering Matrix is primary object of the Scat-
tering Theory, the concept of ”reduced” or ”effective” operator should be extended
to the S- Matrix.

The S-Matrix contains the complete Reaction Dynamics and it is the primary
object of the Scattering Theory; it is directly related to experimental observables as
cross-section or polarizations. Developing the Reduced S- Matrix approach to the
threshold phenomena26, one expects to cover, in an unitary view, some previous
descriptions and conclusions. The Reduced S-Matrix approach aims to account for
the known physical aspects of the p-wave threshold effect.

Consider the multichannel system of N open (retained) channels , decoupled
from the threshold (unobserved, eliminated) channel n. The ”bare” independent
open channels are described by the unitary Scattering Matrix S0

N = ||S0
ab||. By

coupling the threshold channel n = N+1, to N open ones, via Sna matrix elements,
one obtains the Reduced Scattering Matrix SN = ||Sab|| for the retained channels26;
it includes both bare S0

N Scattering Matrix and the effect ∆S, of eliminated channel

Sab = S0
ab + ∆Sab = S0

ab + San(1 + Snn)−1Snb

The Reduced Scattering Matrix does include as limit case the Cusp Theory3,
Snn → 1. The formal merits of this method are: it is valid both near and far away
from threshold, it is valid both for potential and resonant scattering and it is valid
even for threshold channel with barrier, as e.g. a p-wave one. The physical merit of
the method is it does establish a relation between the threshold effects, ∆S, and
the reaction mechanism in the threshold channel, via Snn -matrix element. Different
reaction mechanisms will result in different types of threshold anomalies.

The Threshold Cusp is related to the nonresonant Potential Scattering. In zero-
energy limit, Snn → 1, the Reduced S-Matrix results in the Cusp formula, ∆Sab =
1/2SanSnb. The flux transfer involved in a Cusp Effect is essentially determined by
the penetration factors of the threshold channel S-Matrix elements.

A Compound Nucleus resonance (π), located in neutron threshold vicinity,
|Eπ − En| < Γπ, and decaying preferentially in the neutron threshold channel,
Γπ ∼ Γπn, induces a non-negligible threshold effect for s-wave only. Most of the
threshold effects observed with light nuclei, (1-p Shell), do belong to this class4.
The flux transfer to and from the neutron threshold channel is controlled not only
by the penetration factors, but also by the spectroscopic neutron reduced width; the
reduced width is primary factor governing the flux leakage from the compound nu-
cleus to the channels27. However the threshold compound nucleus resonance cannot
account for a p- wave threshold effect.

A p-wave threshold effect does require (1) Resonant energy dependence of the



November 26, 2004 18:15 WSPC/INSTRUCTION FILE
pwte˙qs˙resubv2pdf

The P- Wave Threshold Effect And Quasiresonant Scattering 7

threshold channel related S- Matrix elements, Snn, San and Snb, and (2) Direct
Interaction in open channels, S0

ab - (monotone energy dependence). Otherwise, the
effective term of the Reduced S- Matrix, ∆S, goes to zero in all threshold range.
In the following we will approach the p-wave threshold effect problem in different
formal ways, all converging to the same physical conclusion: a non-negligible p-wave
threshold effect involves (1) a Neutron Threshold Single Particle Resonance and (2)
its Direct Interaction Coupling to open channels26.

The two formal conditions could be realized in terms of the Final-State
Interaction28. The final fragments, neutron and corresponding residual nucleus,
have an interaction producing a resonance at zero energy; the Jost function has,
then, a zero in the complex k-wave plane, just below the real axis, near origin. The
S-Matrix elements, having in denominator the Jost function, are strongly enhanced;
this is Final (or Initial) -State Interaction. This refers in our case to the S-matrix
elements Snn, San related to the n-channel only. On the other hand, it is required
that the potential responsible for transition between channels should be assumed
weak, (Direct Interaction transitions). The forces producing reaction are weak, ex-
cepting interaction in the (threshold) channel where the Final State Interaction does
produce a resonance. The Final State Interaction is effective mainly at low energies,
where one-channel resonances are produced by centrifugal barrier effects28.

In the R-Matrix theory, usually, one considers only compound system multi-
channel resonances described by poles of all R- Matrix elements. The multichannel
resonances originating in single particle states are described, in this theory, by a
perturbative approach developed by Bloch, see Ref. 17. By means of perturbative
residual interactions, the single (-channel) -particle resonance of non-perturbated
(independent particles) system is subject to transitions to actual states of compound
system and to couplings to other reaction channels. The R- Matrix of reaction sys-
tem becomes a series of resonant terms, collected, with statistical assumptions, in a
Single Particle Resonance formula. Its total width comprises an additional spread-
ing component related to the flux lose into actual states and the other reaction
channels. We approach this aspect in more quantitative way by using the Bloch’s
procedure for describing the Single Particle Resonances in R- Matrix Theory17. Im-
plementing this procedure into the Reduced S-Matrix one obtains, in second-order
perturbation theory,

∆Sab = P1/2
a γπnγπnP1/2

b [Eπ −∆ + i(Γ +G)]−1

P1/2
a = ΣbP 1/2

a (S0
N + 1)abR0

bbVbn

G = (Eπ − E)2/(Pnγ2
πn)

−∆ + iΓ = −γ2
πnΣab(P 1/2

a R0
aaVan, (S

0
N + 1)abP

1/2
b R0

bbVbn)

with R0
aa describing uncoupled (independent) open channel a, Van - the Direct In-

teraction coupling between open channel a and threshold one n, R0
nn−R-Matrix

element of the Neutron Single Particle Resonance π, R0
nn = γπnγπn/(Eπ −E), and

γ2
πn- its neutron reduced width. The width Γ is positive due to the unitarity of the
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S0
N - Scattering Matrix. The additional width term G does increase the ”Escape

width”, thus inforcing the doorway aspects of the Neutron Threshold State. (If ap-
plied to s-wave case, one obtains a very broad effect, mixing up with background,
while Lane formula does predict a very strong s-wave threshold effect). One has
to remark, however, the artificial aspect of this term, resulting from exact coinci-
dence of the Neutron Single Particle State with threshold. Anyway, this description
displays explicitly the role played by Direct Interaction Coupling of the Threshold
channel to open observed ones.

Another possible description of the Single Particle Resonance from Neutron
Threshold Channel could be in terms of the Neutron Channel Logarithmic Deriva-
tive. In order to deal explicitly with the Neutron Channel Logarithmic Derivative
one has to work with the Collision Matrix U , parametrized in R-Matrix terms and
Logarithmic Derivative L = S + iP , (S- Shift factor, P - Penetration factor), see
Ref. 17,

U = 1 + 2iP 1/2(R−1 − L)−1P 1/2

The Reduced Collision Matrix term is now dependent on n-threshold channel phase,
ωn, e2iωn = −L∗n/Ln, namely

∆Uab = Uan[e2iωn + Unn]−1Unb

For s-wave, Ln = iPn, or for specific boundary condition, e2iωn = 1, it is identical
to the Reduced S-Matrix term ∆S. In the limit Un → 1, it reduces, up to a phase,
to a Generalized Cusp formula29,

∆Uab = (1/2)UanUnb(Ln/iPn)

(This formula was used in description of a threshold anomaly in a transfer reaction
on a light target nucleus, provided Ln has a resonance behaviour.) The Kapur-
Peierls Matrix, (R−1 − L)−1 has to be rewritten in order to separate resonant Ln
term, from the rest included in ”background” (β). One obtains

∆Uab = (1/2)UβanU
β
nb(Ln/iPn)(1− LnRβnn)

−1
= 2iP 1/2

a RβanR
β
nbP

1/2
b (1/Ln −Rβnn)−1

A resonant term in the logarithmic derivative, describing a single-channel resonance,
Ln = Lβn/[En − E − iΓn], (Lβn- monotone), will result in a resonant term in the
Reduced Collision Matrix, of the form, Lβn/[En−E−LβnRβnn−iΓn]. The background
Kapur-Peierls term, Rβnn, will result into a resonance’s shift as well as in the width
increase. The condition (1/Ln − Rβnn) =0 has also another physical interpretation
which will be discussed below, in a different framework.

A straightforward interpretation of the p-wave threshold effect is in terms of the
Quasiresonance. The Quasiresonant Scattering30, consists from a Single Channel
Resonance preceded and/or followed by Direct Transitions to other reaction chan-
nels. Such phenomena are evinced as resonances in some reaction channels; other
competing reaction channels show Direct Interaction monotone energy dependence.
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A K- Matrix description is below outlined,

S = −1 + 2i[K + i · 1]−1

K = Kβ +Kρ

Kρ = Σλ(γλ ∗ γλ)[Eλ − E]−1

with labels β and ρ referring to ”background” and ”resonant”, respectively. If this
formalism is specialized to a Single Channel Resonance, (π), (γπn 6= 0; all other
γπa = 0), then the Scattering Matrix becomes

Sab = Sβab − 2iT βanγ
2
πnT

β
nb[Eπ − E + Re T βnnγ

2
πn − i(1− Σl|T βln|

2)γ2
πn]−1

with the Transition Matrix defined by Sβ = 1 + 2iT β and index l running over
all channels either open (a) or threshold (n). The magnitude of the Quasiresonant
Scattering process is proportional both to the single channel resonance reduced
width γ2

πn and to the channel coupling strengths, T βanT
β
nb. An interesting property

of the Quasiresonant Scattering is the ”Direct Compression” of the width, due to
channel couplings, γ2

πn → (1 − Σl|T βln|2)γ2
πn. This result could be related to the

”Channel Coupling Pole”31, observed in numerical experiments for multichannel
reactions; it does appear for strong channel coupling interaction. It is considered
that the Channel Coupling Pole originates in distant poles, (located at infinity in
complex energy or wave planes, when channel couplings tend to zero), which are
driven to physical region when channel coupling becomes strong.

The compression of the resonance width persists even in case of a single channel,
being related to background scattering Sβnn = e2iδn , (δn single channel background
scattering phase shift). For the single channel scattering, the resonance’s width is
compressed to γ2

πnncos
2δn. For no-background scattering (δn=0) there is no com-

pression. The ’strong’ background scattering, (e.g. echo-descending phase shift δn
multiple of π/2) results into resonance’s extinction. This extinction effect has not
yet been evinced.

In next step we discuss the relationships of the Quasiresonant Approach to p-
wave threshold effect to Lane and CCBA Models. The two formulae (the Quasires-
onance and Lane ones) are similar, however not identical. Firstly the anomaly’s
strength α has a definite physical meaning in the Quasiresonant Approach; the
effect’s magnitude is proportional to the transition strengths between the thresh-
old and open observed channels. Secondly, the anomaly’s strength is proportional
to the neutron single particle reduced width; the effect is maximum in the single
particle limit. The α parameters are not more free ones but rather subject of phys-
ical constraints8 : the interchannel transition strengths play the role of generalized
penetration factors and the flux leakage from resonance to n-channel is related to
the neutron reduced width. The Resonance’s Direct Compression is different from
Lane’s compression near threshold due to non-linearity of energy scale.

The CCBA formulae could be obtained from the Quasiresonance formula by
assuming the exact Isospin Symmetry. In this limit, T βnp transition matrix element
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between analogue neutron and proton channels is a constant (
√

2T ; T - Multiplet’s
Isospin). Secondly, the resonance denominator could be absorbed in n-channel wave
function from T βdn matrix element. Thus one obtains the CCBA formulae for (d, p)
and (d, n̄) analogue reactions. Ad-hoc, the analogue neutron threshold is fixed by
physical considerations. However the first condition, conflicting the Isospin Sym-
metry breaking, does assume, in process of derivation, identical thresholds for both
analogue channels, thus violating the Wigner threshold law for neutron channel.

All these approaches do emphasize the role of zero-energy Neutron Single Par-
ticle Resonance in producing p- wave threshold effects in open channels. There is
another approach to Single Particle Resonances in Multichannel Reaction Systems,
encountered both in the Nuclear Scattering and Atomic Collisions32. In order to
have a deeper insight on Single Particle Resonances in Multichannel Reactions, we
develop now the subject in terms of a formalism based on the Reduced Collision
Matrix, both for quasistationary and bound single particle states in threshold chan-
nel.

4. On Single Particle Resonances in Multichannel Reactions

The resonances in multichannel scattering originate either in multiparticle excita-
tions of an inner core or from excitation of far-away located states; they are called
”inner resonances” and ”channel resonances”, respectively. In Lane’s approach33,
both resonances are described in similar ways; the channel resonances are repre-
sented by a meromorphic term added to inner resonances of the genuine R-Matrix.
The ”inner” and ”channel” resonances do correspond to ”compound nucleus”- and
to ”single particle”-resonances, respectively.

In the R-Matrix Theory the inner multichannel resonances are described by stan-
dard R- Matrix techniques and the resonances originating in single particle states
are approached by the Bloch’s perturbative method. In the present approach the
inner multichannel resonances are described by the R-Matrix while the channel res-
onances are related to the Ln logarithmic derivative, also to the n-channel Reduced
R-Matrix, i.e. to the Reduced Collision Matrix. In the Reduced Collision-Matrix
framework one has to separate the effects originating in the two groups of chan-
nels (retained and eliminated) in order to have a physical insight on phenomena
developing in the n-closed channel.

In order to deal explicitly with the Neutron Channel Logarithmic Derivative
one has to work with the Collision Matrix U , parametrized in R-Matrix terms and
Logarithmic Derivative, L = S + iP , (S- Shift factor, P - Penetration factor), see
Ref. 17,

UN = 1− 2iP 1/2
N L−1

N P
1/2
N + 2iP 1/2

N L−1
N (L−1 −R)−1

N L−1
N P

1/2
N

The Reduced Collision Matrix UN refers to the retained (N) channels, but by
taking into account the effect of the eliminated (n)-channel. It consists from the
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Collision Matrix U0
N which describes the ”bare” retained channels (N), uncoupled

to eliminated (n) channel,

U0
N = 1− 2iP 1/2

N L−1
N P

1/2
N + 2iP 1/2

N L−1
N (L−1

N −RN )−1L−1
N P

1/2
N

and from a term ∆UN describing this coupling. The Reduced Collision Matrix
evaluated above n-threshold is, see Ref. 34,

U>N = U0
N + ∆U>N

∆U>N = U>Nn(−L∗n/Ln + U>nn)−1U>nN

For boundary conditions used by Lane33 , the L∗n/Ln modulus one quantity is ex-
pressed in terms of the Coulombian hard-sphere phase-shifts, −L∗n/Ln = exp(2iΦn),
and one obtains the Reduced S- Matrix result26,

S>N = S0
N + S>Nn(1 + S>nn)−1S>nN

By the Reduced Collision Matrix procedures one can relate two reaction systems
with same internal dynamics, differing only in interactions in eliminated channel,
(L> and L<).

U<N = U0
N + ∆U<N

∆U<N = U>Nn
1

−(L>n )∗/(L>n ) + U>nn
U>nN

1/L>n −Rnn
1/L<n −Rnn

For example, the Reduced Collision Matrix for negative energies (closed channel)
is expressed in terms of positive energy quantities (U>, L>) and also of quantities
specifying eliminated closed channel (logarithmic derivative L<n and the Reduced
R-Matrix element Rnn )

Rnn = Rnn −RnN (RNN − L−1
N )−1RNn

U>nn = 1− 2iPnL−1
n + 2iPnL−2

n (L−1
n −Rnn)−1

The effective term ∆UN of Reduced Collision Matrix, valid both below and
above n-threshold, is

∆UN =
1
2i

(U0
N − L∗NL−1

N )P−1/2
N LN

RNn(L−1
n −Rnn)−1RnN

LNP
−1/2
N (U0

N − L∗NL−1
N )

where for the ∆UN superscripts > or < one has to insert the corresponding loga-
rithmic derivatives L>n or L<n , respectively.

The K- Matrix form of the effective term in the Collision Matrix can be ob-
tained via formal equivalence of K- Matrix and R- Matrix with natural bound-
ary conditions24, B = S>, i.e. K = P 1/2RSP

1/2, LN = iPN , L>n = iPn,
L<n = S<n −Bn = S<n −S>n = −∆Sn and (L−1

n −Rnn) transforms into (τ+Knn), with
τ> = i and τ< = τn. In above derivation it is assumed that Ln< is real and ∆Ln =
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Ln>−Ln< is logarithmic derivative variation across threshold of the n-channel. The
modulus one quantity (∆Ln)?/(∆Ln) allows to define a ” scattering phase shift”
δn, and a corresponding ”K-Matrix element” τn = tan δn = Im∆Ln/Re∆Ln,

The K- Matrix form, corresponding to the Reduced S- Matrix, becomes now

∆SN =
1
2i

(S0
N + 1)KNn(τnn +Knn)−1KnN (S0

N + 1)

∆S<N = ∆S>N
i+Knn
τn +Knn

As a parenthesis we remark the last equation contains basic formulae of the Cusp
Theory, both above and below n-threshold. For nuclear s-wave scattering, the loga-
rithmic derivatives are L>n = iρ and L<n = −ρ , (ρ = kn·a; kn - channel wave number,
a - channel radius). It follows ∆U<N = ∆U>N ((L>n )−1−Rnn)/((L<n )−1−Rnn) which
in zero energy limit, (ρ → 0), reduces to the Cusp Theory result, ∆U<N = i∆U>N .
The same result is obtained with τn = 1 for s-wave neutron threshold.

The n-channel effects on retained channels (N) are expressed by the product
RNn(L−1

n −Rnn)−1RnN , resembling to the additional term of RN Reduced R- Ma-
trix. However there is a difference, namely the ”bare” R-Matrix element Rnn of
eliminated n-channel is here replaced by its effective counterpart Rnn; the Reduced
Rnn - Matrix element does include also rescattering effects from complementary
open channels. In next paragraphs we will discuss single particle resonances of mul-
tichannel scattering in terms of the Reduced Collision Matrix, which describes the
two groups of channels by well-separated terms.

Below threshold, a pole in the U<N Collision Matrix elements could be obtained
from condition R−1

nn = L<n = S
(−)
n , (S(−)

n - shift function). In non-coupling limit,
Rnn reduces to single channel R-Matrix element Rnn. Or this is just the bound
state condition of the R-Matrix Theory17; a bound state appears at that energy at
which the internal (R−1

nn) and external S(−)
n logarithmic derivatives do match. This

result is a R-Matrix proof that the single particle state from a closed channel does
induce resonance in competing open channels of the multichannel system.

For positive energy eliminated channels the corresponding states should be qua-
sistationary ones. A pole in UN is now obtained by a condition which is analog to
the bound state one, R−1

nn = L>n ; the logarithmic derivative L>n is the corresponding,
at positive energy, of the shift function S

(−)
n defined for negative energy. Accord-

ing to R-Matrix theory, the quasistationary (Siegert) state is defined by condition
|1 − R(Hλ)L| = 0, (see Ref. 17, p. 297). A quasistationary state originating in an
eliminated channel induces a quasiresonant structure in other open competing chan-
nels. Apparently, (see, for example, Ref. 35), this situation (multichannel resonance
originating in a quasistationary single particle state from an unobserved channel)
was not reported until now. As discussed before, in the literature31 one reports on
the ”channel coupling pole” observed in numerical experiments for multichannel
scattering; a single channel pole may be driven to physical region of the complex
energy plane when the channel coupling becomes effective.
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One can go a step further along lines developed in the Nuclear Physics, but
with price of some assumptions. There one studies the dissolution of the (bound
or quasistationary) single particle state amongst the actual states of nucleus, by
energy averaging over last ones36. By using energy averaging procedures one has to
avoid the threshold branch point; one can consider only energy averaging intervals
which could be very near threshold but avoiding its overlap, (see Ref. 37, p.146).
Another physical assumption, mostly used, is the R-Matrix elements are factorable
RNnRnN ∼ RNNRnn, see Ref. 36. One proves37, that the energy averaging is equiv-
alent to replace the real energy E by a complex quantity E , Rnn(E) = Rnn(E), and
further this is related to the Reduced R-Matrix element, Rnn(E) = Rnn(E), see Ref.
17. Within these assumptions one obtains the result according to the n-channel re-
lated term in averaged Collision Matrix is

∆UN ∼ Rnn(E)Ln/[1− LnRnn(E)]

which, at low energies for s-waves is proportional to the single- particle Strength
Function < γ2

n > /D. The Strength Function is ratio of averaged width < γ2
n > to

the mean spacing D between adjacent levels; it does measure the mixing of the
single particle nucleon state with nuclear actual states and will display maxima
whenever the single particle states are present.

The physical interpretation of last formula is related to the spectroscopical as-
pects of multichannel resonance originating in the single particle state from an
invisible channel. The magnitude of the effect in the open observed channel is pro-
portional to the spectroscopic amplitude of the single particle state from closed
channel. Assuming the single particle state is located at channel- threshold then, by
strong coupling, a threshold effect has to be observed in open channels. The anal-
ysis of experimental data on threshold effects from Low Energy Nuclear Reactions,
related to the p wave neutron single particle state at zero energy, do corroborate
the relation between the resonance’s strength and the spectroscopic amplitude of
the ancestral single particle states8. In physical terms, the threshold effect magni-
tude depends on amount of the flux transfer between threshold channel and open
observed one. A threshold single particle quasistationary state does act as an am-
plifier for the flux transfer to and from threshold channel, because state’s overlap
with this channel (reduced width) is very large.

5. Conclusions

A Reduced Scattering Matrix Approach to the p-wave threshold effect, embodying
its physical characteristics, was developed. Its relationship to other p-wave threshold
models, was established.

The p-wave threshold effect is related to the Quasiresonant Scattering: a Neu-
tron Single-Channel Resonance coupled, by Direct Transitions, to the observed open
channels. The p-wave threshold effect magnitude is proportional both to the channel
coupling strengths and to the spectroscopical amplitude of the ancestral zero-energy
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neutron single particle state. In physical terms the flux leakage into threshold chan-
nel is determined not only by genuine Reaction Mechanisms (Penetration Factors,
Coupling Strengths) but also by the Spectroscopy of the Neutron Threshold State
(Neutron Reduced Width).

We proved that all significant spectroscopical characteristics of a multichannel
threshold effect, originating from a Neutron Single Particle State, are embodied
in the Neutron Strength Function. The Neutron Strength Function dependence
on the mass number A is reflected in a mass-dependence of the p-wave threshold
effect. The energy dependence of the Neutron Strength Function, displayed via its
microstructures, is reflected in an ”Intermediate Structure” of the p-wave threshold
effects (Micro-Giant structures of the p-wave threshold effects).
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