

The effect of solar illumination on ionospheric outflow

L. Maes¹, M. Fraenz¹, R. Maggiolo², S. Haaland^{3,1}

Max Planck Institute for Solar System Research, Göttingen, Germany
 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
 Birkeland Centre for Space Science, University of Bergen, Bergen, Norway

Solar energy input

Solar illumination

Illuminated or not

Solar zenith angle (SZA)

Intensity variation F10.7 for EUV (and radio)

More energy in longer wavelengths

Solar illumination

Illuminated or not

Solar zenith angle (SZA)

Intensity variation F10.7 for EUV (and radio)

More energy in longer wavelengths

Solar illumination

Intensity variation F10.7 for EUV (and radio)

More energy in longer wavelengths

Illuminated or not

Solar zenith angle (SZA)

High-latitude magnetosphere

High-latitude ionosphere

- Cusp
 - Connected to open field lines
 - Large energy input: Particle precipitation, waves

Boundary

layers _

PUroral oval

Cusp

90°

Magnetic

polar cap

- Small spatial extent
- Magnetic polar cap
 - Connected to lobes, open field lines
 - Less energy input
 - ~<70°> MLAT, ~60°-80°
- Auroral oval
 - Connected plasma sheet, closed
 - Large energy input
 - Larger spatial extent

Polar wind

6x10²⁴ s⁻¹ for same area

Plasmasphere

- Filled by ionospheric upflow similar to polar wind, until pressure balance
- Despite closed field lines outflow also possible:
 - Plasmaspheric erosion
 - Plasmaspheric **plumes**
 - Plasmaspheric wind

Imbalance between gravity, pressure gradient and centrifugal force

> Transmitted by magnetic field

Difficult to measure

Contamination by cusp outflow

Low-energy cusp outflow convected over polar cap, difficult to differentiate from polar wind

• Spacecraft charging

Spacecraft potential repels ions Typically higher than energy of polar wind ions Become invisible to detectors

Outflow above polar cap arcs

1-2 R₋

- Large scale $\langle --- \rangle$ Small scale
- Similar to auroral arcs, Across polar cap, **less energetic**
- Quasi-static field-aligned electric field, U-shaped potential, current system
- Electrons accelerated downwards lons accelerated upwards
- Current system closing in ionosphere
- Observed by Cluster at ~ 5-8 R_{E} altitude

[Magiollo et al., 2006; 2011; 2012] Accelerated ions better measurable

Ion beams above polar cap arcs

- H⁺ flux similar to polar wind (~10²⁵-10²⁶ s⁻¹ if integrated over whole polar cap)
- Electron precipitation no effect on flux

- H⁺ flux similar to polar wind (~10²⁵-10²⁶ s⁻¹ if integrated over whole polar cap)
- Electron precipitation no effect on flux

- H⁺ flux similar to polar wind (~10²⁵-10²⁶ s⁻¹ if integrated over whole polar cap)
- Electron precipitation no effect on flux

- H⁺ flux similar to polar wind (~10²⁵-10²⁶ s⁻¹ if integrated over whole polar cap)
- Electron precipitation no effect on flux

- H⁺ flux similar to polar wind (~10²⁵-10²⁶ s⁻¹ if integrated over whole polar cap)
- Electron precipitation no effect on flux

Wake field method

- Spacecraft charging
 - Polar wind difficult to measure
 - Creates wake kT_i < mv_i²/2 < eV_{sc}
- Wake easier filled by e⁻ than ions [Eriksson et al., 2006]
 - Electric field
 - Can be measures with Cluster EDI and EFW
 - Dependent on velocity [Engwall et al., 2006, 2009]
- Get velocity from wake and density from spacecraft potential

Polar wind: SZA

Polar wind: SZA [Maes et al., 2017]

Polar wind: SZA [Maes et al., 2017] Effect in density

Polar wind: SZA

Large difference between low and high F10.7 at small SZA

Solar wind and solar illumination

[Li et al., 2017]

Solar illumination affecting magnetosphere

Outflowing ions above polar cap arcs

[Maes et al., 2015]

Ion energy \approx Field-aligned potential drop

Solar illumination affecting magnetosphere

Outflowing ions above polar cap arcs

[Maes et al., 2015]

Ion energy \approx Field-aligned potential drop

Solar illumination affecting magnetosphere

Outflowing ions above polar cap arcs [Maes et al., 2015]

Ion energy \approx Field-aligned potential drop

- ~90% of ions in lobes end up in plasma sheet [Haaland et al., 2012]
- Cold/heavy ions may affect geomagnetic dynamics
- Daily and seasonal variation in flux and composition

- ~90% of ions in lobes end up in plasma sheet [Haaland et al., 2012]
- Cold/heavy ions may affect geomagnetic dynamics
- Daily and seasonal variation in flux and composition

- ~90% of ions in lobes end up in plasma sheet [Haaland et al., 2012]
- Cold/heavy ions may affect geomagnetic dynamics
- Daily and seasonal variation in flux and composition

- ~90% of ions in lobes end up in plasma sheet [Haaland et al., 2012]
- Cold/heavy ions may affect geomagnetic dynamics
- Daily and seasonal variation in flux and composition

N-S magnetic field asymmetry [Maes et al., 2016]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Larger polar cap in north:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Time-lag

Persistent N-S asymmetry in lobes around equinox

[Haaland et al., 2017]

Time-lag

Time-lag

-20

0

-60

40

60

20

[Haaland et al., 2018 – in preparation]

Conclusion

Solar illumination (not only EUV), by ionizing and heating:

- Increases ionospheric density
- Strengthens ambipolar electric field

- Increases flux, density, and velocity
 Changes composition
- Polar wind-like process base layer for other outflows
- Directly and indirectly affects magnetosphere