PRINCIPLES OF PARTICLE SPECTROMETRY

Berndt Klecker

Max-Planck-Institut für extraterrestrische Physik Garching, Germany

Solar-Terrestrial Interactions: Instruments and Techniques (STIINTE) Sinaia, Romania, June 4 - 14, 2007

STIINTE, Sinaia, June 2007

OUTLINE

- 1. Introduction
 - **The Charged Particle Environment**
 - In the Heliosphere
 - In the Magnetosphere of the Earth
- 2. In Situ and Remote Sensing Measurements an Overview
 - Energy Ranges of Ions and Electrons
 - In-situ Measurements
 - **Remote Sensing Measurements**
- 3. In-Situ Measurements: Techniques
- 4. The Cluster Ion Spectrometry Experiment (CIS)

INTRODUCTION

1. Introduction

The Charged Particle Environment

- In the Heliosphere
- In the Magnetosphere of the Earth

THE HELIOSPHERE

PARTICLES IN THE HELIOSPHERE Acceleration Processes

PARTICLES IN THE HELIOSPHERE

Spectra of Energetic Oxygen Nuclei

STIINTE,

SOLAR CYCLE VARIATION

Neutron Monitor Observations Neutron monitor counting rates:

a measure for the intensity of Galactic Cosmic Rays (GCR) in the inner heliosphere.

Sunspot Number

GCR Intensities are anti-correlated with solar activity.

INTRODUCTION

- 1. Introduction
 - **The Charged Particle Environment**
 - *In the Heliosphere*
 - In the Magnetosphere of the Earth

THE MAGNETOSPHERE OF THE EARTH The Early Discoveries

W. Pickering J Van Allen Wernher v. Braun

The Early Missions (IGY)			
Sputnik 1	Oct 1957		
Sputnik 2	Nov 1957		
Explorer 1	Jan 1958		
Explorer 3	March 1958		
Sputnik 3	May 1958		
Explorer 4	July 1958		
Discovery of Trapped Radiation (Explorer 1)			

STIINTE, Sinaia, June 2007

THE INNER MAGNETOSHERE Radiation Belts

Inner Belt: predominantly H⁺ **Energy:** ~ 0.1 - 100s MeV Latitude: ± 30° **Altitude:** 10³ - 10⁴ km **Outer Belt: Predominantly Electrons Energy:** ~ 0.04 - 10 MeV Latitude: ± 60° Altitude: 2 10⁴ - 3 10⁴ km

Radiation Belt Spectra

Blanc et al.

Figure 4.5. Equatorial distribution of the omnidirectional flux of energetic protons (panel a) and electrons (panel b) above a set of energy thresholds. These fluxes are obtained from the UNIRAD software using the NASA empirical models AE8MAX and AP8MAX corresponding to conditions of maximum solar activity (adapted from Vette, 1991a, 1991b; courtesy D. Heyndricks).

Space Sci. Rev 88, 1999, p 137

THE INNER MAGNETOSHERE Access of Solar / Interplanetary / Galactic Particles: The Cutoff

Polar Regions: Easy access; Low Cutoff

Equatorial Regions: High Cutoff

THE GEOMAGNETIC CUTOFF

At high magnetic latitudes, particles from interplanetary space have easy access to the near-Earth environment.

At low latitudes, access depends on the particle's rigidity **R**

 $\mathbf{R} = \mathbf{m} \mathbf{v} / \mathbf{q},$

i.e. on particle velocity v, and M/Q

Cutoff Variations

Short-term: during magnetic storms

Long-term: with B

THE MAGNETOSPHERE OF THE EARTH

In Situ and Remote Sensing Measurements

- 2. In Situ and Remote Sensing Measurements an Overview
 - Energy Ranges of Ions and Electrons
 - In-Situ Measurements
 - **Remote Sensing Measurements**

ENERGY RANGE: IONS

ENERGY RANGE: ELECTRONS

IN-SITU MEASUREMENTS

Direct Measurement

E/Q Electric Field (deflection ~ q/E)
V M/Q Magnetic Field (Br_g = mv/q)
V (or E/M) Time-of Flight (E = 1/2 m v²)
E Energy Measurement, e.g. with Solid State Detectors (SSD)

Derived Parameters:

• M/Q M/Q = (E/Q) / (E/M)M/Q $= B r_g / V$ • Q Q = E / (E/Q)• Mass M = E / (E/M) $dE/dx = k1 * Z^{*2} / (E/M) * f (k2,E)$

REMOTE SENSING MEASUREMENTS Ground Observations

GROUND OBSERVATIONS European Incoherent SCATter Radar (EISCAT)

Measured Quantity: Echo of radar signal, scattered by ionospheric electrons

Inferred Quantity

Ionospheric Plasma Parameters: Electron Density, Temperature Ion Temperature, Velocity, Composition

EISCAT VHF Antenna

REMOTE SENSING Imaging with Visible Light, UV, X-rays

e.g. DE, POLAR, IMAGE

Images of the aurora, recorded by the Polar Visible Imaging System and Ultraviolet Imager (two upper images on right) capture the global response of the geospace environment. Geophysical Research Letters - Vol. 25, No. 14, 1998

POLAR

Experiments: VIS, UVI, PIXIE Energy input into the polar regions of the Earth

Measured Quantity (e.g. Pixie): 3 – 60 keV X-rays from bremsstrahlung X-ray emission

Inferred Quantity: Morphology, energy spectra, time variation of precipitating electrons

STIINTE, Sinaia, June 2007

REMOTE SENSING Imaging with Energetic Neutrals

Missions: e.g. POLAR, IMAGE, CASSINI

Measured Quantity: Energetic Neutral Atoms (ENA) from charge exchange with the neutral H Exosphere.

Inferred Quantity: Spatial distribution, energy spectra and time variation of energetic ions

In-Situ Measurements: Techniques

- 3. In-Situ Measurements: Techniques
 - E/Q Determination
 - Velocity Determination
 - $E/Q + TOF(V, E/M) \rightarrow M/Q$
 - Energy Determination

E/Q Determination: The Electrostatic Analyzer

Energy / Charge Analysis with Electrostatic Deflection (Spherical-Section Analyzer)

Energy Resolution: $\Delta E / E$ ~ $\Delta R / R_0$

Analyzer Constant k

E	$= \mathbf{k} \mathbf{q} \mathbf{V}_{0}$
k	$= \mathbf{R}_0 / \Delta \mathbf{R}$

 $\begin{array}{ll} \mbox{Geometrical Factor:} \\ A\Omega \sim d\alpha \; dv/v \; \Delta R \; R_0 & \sim (\Delta R \; / \; R_c)^2 \; (\Delta R \; R_0 \;) \\ & \sim \Delta R^2 \; (\Delta E/E) \end{array}$

Definitions:EEnergy of ParticleqIonic Charge $V_{1,2}$ Potential of Plates 1, 2 ΔR = $R_2 - R_1$ R_0 = $(R_2 + R_1) / 2$

The Next Step: 3D Resolution in 1 Spin

A SYMMETRICAL QUADRISHERICAL ANALYZER IN "TOP HAT" CONFIGURATION

Top View:

Note the focusing effect of the analyzer.

This configuration can be used for ions and electrons in the energy range of ~ eV to

~100 keV/e.

Carlson et al., 1983, Paschmann et al., 1985, Möbius et al., 1998

AMPTE / IRM Cluster / CIS-2 Cluster / PEACE

STIINTE, Sinaia, June 2007

VELOCITY DETERMINATION

Determination of velocity by time-of-flight (TOF) measurement. Timing signal from Secondary Electron Emission (SEE) from START and STOP sensor elements.

 $\begin{aligned} \mathbf{\tau} &= \mathbf{t}_2 - \mathbf{t}_1 \\ \mathbf{V} &= \mathbf{s} \,/\, \mathbf{\tau} \end{aligned}$

Accuracy determined by:

- Path length variations (scattering)
- Energy variations in START element
- Variations of timing signal

STIINTE, Sinaia, June 2007

M/Q Determination by E/Q and TOF Measurement

Energy Determination

Energy + Time-of-Flight

Cluster / RAPID IIMS / Ion Sensor

STIINTE, Sinaia, June 2007

Wilken et al., 1997

MASS/CHARGE AND MASS ANALYSIS

Solar Wind Ionic Charge Spectra (SOHO)

THE DE/DX-E TECHNIQUE Particle Telescopes

HIGH ENERGY ELECTRONS PET: The Proton-Electron Telescope Onboard SAMPEX

P1, P2: DE Measurement

• Curved detectors to minimize loss of resolution due to path length variations.

P3 - P8: E Measurement

• Stack of SSDs to measure the energy deposition

p e

Energy Range $\sim 19 - 85 = 0.4 - 30$ MeV

Cook et al., 1993

THE CLUSTER PARTICLE EXPERIMENTS

CLUSTER ENERGY RANGE

1 ASPOC, K. Torkar, A 2 CIS, H. Rème, F 3 EDI, G. Paschmann, D 4 FGM, A. Balogh, UK 5 PEACE, A. Fazakerley, UK 6 RAPID, P. Daly, D

5

3

5

7 DWP, H. Alleyne, UK 8 EFW, M. Andre, S 9 STAFF, N. Cornilleau, F 10 WBD, D. Gurnett, USA 11 WHISPER, P. Decreau, F

$E/Q, \Phi, \theta, TOF \rightarrow M/Q$

STIINTE, Sinaia, June 2007

37

CODIF SENSOR 3D COVERAGE

View on C-Foils +

Support Grids

3D Coverage:

Azimuth: 32 Sectors (by S/C Rotation)

Elevation: 8 Sectors (per Hemisphere)

STIINTE, Sinaia, June 2007

AN EXAMPLE FOR M/Q ANALYSIS CODIF onboard FAST, Equator-S and Cluster

FAST: Launch: 21.08.1996 Orbit: polar, 400 x 4000 km

Equator-S:

Launch: 2.12.1997 Orbit: äquatorial, 500 km x 11.3 R_E

Cluster

Launch: 16.7 + 9.8.2000 Orbit: polar, 4 x 19.5 R_E

CODIF / CLUSTER

COmposition and DIstribution Function Analyzer

SPIN AXIS

ON BOARD DATA PROCESSING

	-			•		-
	Inf	ormo	tion	for	Fach	lon
run		UI 111 a		IUI	Lau	IUI

Parameter	Range	Bits
Time-of-Flight	0-255	8
Azimuth (Φ)	0-31	5
Mode Bit	0-1	1
Energy Step	0-127	7
Elevation (θ)	0-7	3
Total		24

Event Rate:	
up to several 100 kHz	
Telemetry needed for full transmission:	
several MB/s	
Typical available: 5 - 10 kb/s	
Onboard Processing is essential for data reduction !	l

ON BOARD DATA PROCESSING

Fast Particle Identification (M/Q) Using Time-of-Flight Measurement

Calibration Measurements for H⁺, He²⁺, He⁺, O⁺

On-board M/Q Classification:

The vertical lines show the thresholds used onboard for fast M/Q classification (~100 kHz).

Figure 6. FM7 time-of-flight spectra for the four major species at 4 energies. The spectra are averaged over all positions. The lines show the thresholds used to distinguish species.

ON BOARD DATA PROCESSING

- Fast Particle Identification (M/Q) Using Time-of-Flight Measurement
- Compute Plasma Parameters (N, V, T, P) for H⁺, He²⁺, He⁺, O⁺
- Compute 3D Distributions (E/Q, θ , Φ) for H⁺, He²⁺, He⁺, O⁺
- Transmit (small) Sample of Events with full (24 bit) Information
- Transmit Plasma Parameters once per Spin (4s)
- Accumulate 3D Distributions of H⁺, He²⁺, He⁺, O⁺ over several Spins (can be adjusted by command)
- Transmit various Telemetry Products to Ground

MORE TO COME IN INTERPRETATION AND MODELING OF PARTICLE SPECTRA

REFERENCES

- Carlson, et al., Adv. Space Res., 2,7, 67, 1982
- Paschmann, G., et al., IEEE Trans. Geosc. Remote Sens. GE-23, 262, 1985.
- Möbius, E., et al., In: "Measurement Techniques in Space Plasmas: Particles", AGU Monograph, 102, 243-248, 1998
- Rème, H., et al., Space Science Rev. 79, 399-473, 1997
- Rème, H., et al., Annal. Geophys., 19, 1303-1354, 2001
- Wilken, et al., Space Science Rev. 79, 399-473, 1997

NEXT LECTURE

INTERPRETATION AND MODELING OF PARTICLE SPECTRA