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All we’ve been taught about data analysis is based on some 
implicit assumptions

Assumptions
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Assumptions

Any departure from these assumptions questions the validity 
of our analysis

Many mistakes have been made by ignoring some of these 
assumptions

But “non-properties” are not necessarily a nuisance as they 
provides deeper insight into the physics !
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Power laws

Power laws are ubiquitous in space physics

Power law = self-similarity

4

STAFF data, 

(Sahraoui et al., JGR 2003)

energy distribution, noted MFED, in the (kx, ky, kz)
domain. In the present study we have arbitrary selected
four frequencies: f1 = 0.37 Hz, f2 = 0.49 Hz, f3 = 0.61
Hz, and f4 = 1.15 Hz. As an illustration of the informa-
tion provided by the k-filtering technique, a presentation
of the calculated 3-D shape of the MFED associated with
frequency f1 is shown in Figure 6. This 3-D view is
obtained by displaying the isocontours of the magnetic
wave field energy in (kx, ky) plane for 20 different values
of kz ranging from !0.0481 rd/km up to 0.0481 rd/km.
Each (kx, ky) plane is restricted to the validity domain
defined by kx, ky 2 [!kmax ; kmax].
[28] The resolution in k space along kx, ky, kz has been

tested to be sufficient to determine the whole MFED
without loss of information on its 3-D shape. As can be
seen on Figure 6, three regions can be identified,
corresponding to three separated maxima with significant
energies. They are represented by filled isocontours. Two
other secondary peaks (not shown) with a very low energy
can also be seen at kz = !0.0498 rd/km. The k values for
these peaks are reported in Table 1. Once the k-filtering
technique is applied to the magnetic field fluctuations, it
becomes possible to study how the distribution of the most
significant part of the field energy in the (w, k) domain

compare with the theoretical dispersion relation of the
propagating waves in the magnetosheath. This point is
addressed in the following section.

4. Magnetic Energy Distribution and Propagating
Linear Modes in the Magnetosheath

[29] As far as we study frequencies of the same order
than the ion gyrofrequency in the medium, we suggest to
compare the MFED obtained by the k-filtering method in
(w, k) domain to linear dispersion relations of the low-
frequency modes: mirror, Alfvén, fast, and slow magneto-
sonic modes. The mirror mode can be added simply by
considering it as a nonpropagating mode, i.e., wmirror = 0
in the plasma frame. The theoretical dispersion relations
have been obtained directly as the kinetic solutions pro-
vided by the WHAMP program [Rönnmark, 1982]. For the
sake of simplicity when drawing the plots we sometimes
used also different fluid approximations, but the choice of
the polytropic indexes is always controlled by the WHAMP
solutions.
[30] For an appropriate comparison between the theo-

retical dispersion relations and the experimental ones, it is
useful to define a Magnetic Field-Aligned (MFA) refer-
ential, where z-axis is along the mean magnetic field Bo =
Boz, the x-axis is perpendicular to z-axis in the plane
containing the Sun-satellite line and the z-axis and is
directed towards the Sun, and the y-axis completes the
right-handed coordinate system. This is done using the
averaged values of the magnetic field components pro-
vided by FGM: Bx(GSE ) " 5.4 nT, By(GSE ) " !20.2
nT, Bz(GSE ) " 1.2 nT (averaged over data time interval
and over the four satellites).
[31] Hereafter, are given the values of the magneto-

sheath plasma parameters as measured by WHISPER and
CIS experiments (Figure 5): plasma density is n "
36 cm!3 and ion temperature is Tik " 140 eV, Ti?
"170 eV, from which we calculate the following param-
eters that are used in the analysis below: Alfvén velocity
is VA " 78 km/s, ion gyrofrequency is fci " 0.33 Hz, ion
Larmor radius is r " 79 km, and ion anisotropy param-
eter is Ai " 0.22.

Figure 2. Same period as Figure 1. Modulus of the
fluctuating magnetic field dB (measured by STAFF on
Cluster 1), filtered at the frequency fcut-off and normalized to
the background magnetic field B0.

Figure 3. Same period as Figure 1. Power spectra of the
ULF magnetic fluctuations (measured by STAFF), filtered
at the frequency fcut-off (log scale, on the 4 spacecraft). They
are close to a power-law f !a with a " 2.2.

Figure 4. Comparison between parallel spectrum Bk
2 = Bz

2

(dotted line) and the half of the perpendicular one 1/
2[Bx

2 + By
2] (thin line) with the whole spectrum (thick line)

for one satellite. Parallel and perpendicular spectra look
similar. Vertical lines point the four frequencies studied in
the paper.

SMP 1 - 6 SAHRAOUI ET AL.: K-FILTERING METHOD AND MAGNETIC TURBULENCE

slope = physical invariant
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Example

We traditionally use the Fourier Transform to study such 
power laws

this does not always give the correct answer !

ion trajectory vs amplitude 

of magnetic field

Example : test particle simulations in a 2D magnetic field with 
coherent structures (Hada & Kuramitsu, 1999)
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Spectral analysis

We are dealing with a self-similar process

The power spectral density should give a power law
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Spectral analysis

?

?

power spectral density of using windowed Fourier transform 
with various types of windows and detrendings
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Spectral analysis

! Multiresolution (wavelet) analysis provides a better estimate 
of the spectral index

Fourier 
analysis

Multiresolution analysis
(offset vertically)
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Fourier vs multiresoltion analysis

    

STIINTE, Sinaia, 2007

10

Wavelet transform : definition

Fourier transform u(ω) =

∫ +∞

−∞

u(t)ejωt
dt

Discrete wavelet transform uj,k =

∫ tb

ta

u(t′)φj,k(t′) dt′

Continuous wavelet transform u(t, a) =

∫ tb

ta

u(t′)φt,a(t′) dt′

mother 
wavelet

scale

φt,a(t′) =
1
√

a
φ

(

t′ − t

a

)

mother 
wavelet

φj,k(t′) =
1

2j/2
φ

(

2−jt′ − k
)
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Multiresolution analysis

signal

The discrete wavelet transform can be implemented by means of 
a fast pyramidal recursive filter bank

detail

approximation

detail
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Mother wavelets : examples

  

The number of 
vanishing moments 

(= order of the wavelet) 
is a key parameter

Discrete wavelets 
(here Daubechies 

wavelets)

Continuous 
wavelets

mexican hat

Morlet 

(complex)

db1

db2

db4

db8
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Discrete or continuous transform ?

Discrete transform

• non-redundant and uses orthogonal 
bases

• useful for multiresolution analysis 
(denoising) and compression

• scales are imposed

• very fast algorithms (faster than FFT)

Continuous transform

• highly redundant

• good for data analysis

• scales can be freely chosen

• computationally expensive
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Scalograms
14

Scalogram = power 
spectral density vs time 
and scale (or frequency), 
using continuous wavelet 
transform.
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Scalograms

But the usefulness of scalograms has been heavily 
overemphasized...  you can do almost the same with the good 
old Fourier transform
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Continous transform  : an example
16

STAFF magnetic 
field data

Scalogram of By
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Continous transform  : an example
17

STAFF magnetic 
field data

Polarisation 
(0 ! p ! 1)

are these patches 
meaningful ?
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Denoising

The discrete wavelet transform is  one of the most powerful 
techniques around for denoising

“Wavelet denoising is like removing weed 

while saving daisies”    (M. Wickerhauser)

Principle

decompose your data into wavelet coefficients

keep only those coefficients that are interest (the largest ones)

set all other coefficients to zero

recompose your data set

18
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Denoising : example

Example : AC magnetic field measurements with strong 
interference from active particle experiment (CUSP2000 
sounding rocket)
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Denoising : example
20

AC magnetic field data 
with strong intereference
— raw signal
— denoised

Power spectral density
— raw signal
— denoised
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A different application

There are many other applications...

One of them is the estimation of timing differences between 
multispacecraft data   (Soucek et al., Ann. Geoph., 2004)
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To continue

Computer session (this afternoon) with Matlab

exploratory analysis with wavelets

estimating the spectral exponent of the AE index

wavelet denoising

estimating timing differences between Cluster spacecraft

Further reading

C. Torrence & G. Compo, “A practical guide to wavelet analysis”, 
hardcopy available here

S. Mallat, “A wavelet tour of signal processing” (Academic Press, 
1998): THE reference

J.-L. Starck and F. Murtagh, “Astronomical image and data 
analysis” (Springer, 2006): dedicated to astronomy
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