
COSPAR Capacity Building
Sinaia, 5 June 2007
Joachim Vogt

Basic Analysis Techniques
& Multi-Spacecraft Data

This lecture:

. Introduction: single-spacecraft vs. multi-spacecraft

. Single S/C data: minimum variance analysis

. Multi S/C data: reciprocal vectors

Computer session: select your assignment(s)
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1 Introduction: Magnetospheric structure

Baumjohann/Treumann/Mayr-Ihbe

Boundary layers,

sheet structures:

. bow shock,

. magnetopause,

. current sheets.

Orientation, motion, shape,

. . . of the surface ?
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Magnetospheric structure (cont’d)

Baumjohann/Treumann/Mayr-Ihbe

Magnetospheric

currents:

. magnetopause current,

. neutral sheet current,

. field-aligned currents:

Orientation of current

sheets, current direction

and density, . . . ?
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Single spacecraft vs. multi-spacecraft

Single-spacecraft data:

. one-dim. track in 3+1

dim. space-time

→ ambiguity,

. additional information

required

. popular approach: min-

imum variance analysis.

Multi-spacecraft data:

. several trajectories in

3+1 dim. space-time,

. analysis of spatio-

temporal processes,

. additional information

still useful,

. various approaches.
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2 Single-Spacecraft Data: MinVar Approach

To resolve space-time ambiguity,

. additional information is needed,

. choose an appropriate physical model,

. use physical constraints to estimate model parameters.

Phenomena Models Parameters
Boundaries Planar structures Normal vector n̂

FACs Current sheets Orientation, j‖
Waves Plane waves Prop. vector k

Key technique: minimum variance analysis

5



COSPAR CBW Sinaia, 5 June 2007 — J. Vogt, Jacobs Univ. — 2 Single S/C data

Minimum variance principle

Physical model for boundary analysis: planar 1D structure with

normal vector n̂, use physical constraint

0 = ∇ ·B 1D
= n̂ · ∇(B · n̂) ⇒ B · n̂ = const

In practice: model only approximately valid.

Least squares approach: as an estimator for the sheet normal

direction take the direction n̂ where data set {B(`)}`=1,...,L shows

the smallest quadratic variation (variance):〈
|(B− 〈B〉) · n̂|2

〉
≡

1

L

∑
`

∣∣∣(B(`) − 〈B〉
)
· n̂
∣∣∣2 = Min!
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Minimum variance principle (cont’d)

Result: n̂ is the normalized eigenvector associated with the

smallest (positive) eigenvalue λ3 of the (co)variance matrix:

M =

 cov(Bx, Bx) cov(Bx, By) cov(Bx, Bz)
cov(By, Bx) cov(By, By) cov(By, Bz)
cov(Bz, Bx) cov(Bz, By) cov(Bz, Bz)



Assessment of model quality: eigenvalue ratios λ3/λ2 and λ3/λ1

→ should be small.

Hodogram plots: project magnetic field components onto eigen-

vectors of M, then plot (B1 vs. B2) and (B1 vs. B3).

Details: see chapter 8 of the ISSI Cluster data analysis book.
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Sheet current estimation using FREJA data

Current density in sheets: j‖ = ∆⊥B
µ0 v·n̂∆t .
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3 Multi-Spacecraft Data

More information than in single-spacecraft missions but spatial

resolution still much less than temporal resolution.

Different approaches to data analysis and interpretation:

(1) Apply single-spacecraft techniques separately, estimate model

parameters for each satellite, and compare.

. Assess evolution/variation of parameters.

. Consistency checks.
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Different approaches to data analysis (cont’d)

(2) Build refined models based on the degree of co-

herency/correlation between measurements at different space-

craft.

. Use timing information of boundary crossings to perform

boundary parameter estimation.

. Interpret differences in measurements as (linear) spatial vari-

ations to estimate spatial derivatives (curl, div, grad).

. Interpret differences in measurements as phase variations of

plane waves to estimate wave parameters (k-filtering =

wave telescope technique).
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Boundary analysis: crossing times approach

Boundary velocity V = V n̂, crossings at tα, rα.

For convenience, choose time and space origin such that∑
α

rα = 0 ,
∑
α

tα = 0 .

Now minimize the cost function∑
α

[n̂ · rα − V tα]2 = Min! ⇔
∑
α

[m · rα − tα]2 = Min!

w.r.t. n̂ and V or m = n̂/V (’slowness’).
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Crossing times approach (cont’d)

Result:

(∑
α

rαr†α

)
︸ ︷︷ ︸

=R

m =
∑
α

tαrα ⇒ m = R−1∑
α

tαrα .

Cluster-II mission: four satellites, then

R−1 = K =
∑
α

kαk†α

where the vectors kα are the reciprocal vectors.

Explicit formula: m =
∑
α

tαkα → V = 1/|m|, n̂ = V m.
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Reciprocal vectors of the Cluster-II tetrahedron

Cluster-II mission: four satellites, tetrahedral configuration.

Reciprocal base of the tetrahedron: {kα}, defined through

kα =
rβγ × rβλ

rβα · (rβγ × rβλ)

where rαβ = rβ − rα are relative position vectors, (α, β, γ, λ) must

be a permutation of (0,1,2,3).

Very useful for boundary analysis, estimation of spatial deriva-

tives (curl, div, grad), characterization of the geometric quality

of the tetrahedron.
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Current estimation using multi-spacecraft data

Electrical currents from magnetic field data: estimate ∇×B.

Linear estimators for spatial derivatives:

∇×B '
∑

α kα ×Bα

∇ ·B '
∑

α kα ·Bα ≡
∑

α k†αBα

∇B '
∑

α kαB†
α

Gradient of scalar field: ∇p '
∑

α kαpα
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Error analysis of spatial derivative estimation

Sources of error:

. FGM measurement errors δB,

. position inaccuracies δr,

. nonlinear field variations.

Effect of δB on gradient estimation errors, approx. formula:

〈
(δ |DB|)2

〉
=

f

3

∑
α
|kα|2 (δB)2

Here f = 3 for ∇ ·B, f = 2 for ∇×B, f = 1 for ê · ∇B.
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Computer session assignments
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Estimation of inhomogeneity length scales

Unit vector field: B̂ = B/B = B/|B|.

Associated gradient matrix: ∇B̂ '
∑

α kαB̂†
α.

Curvature: B̂ · ∇B̂, curvature radius

Rcurv = |B̂ · ∇B̂|−1 .

Other inhomogeneity length scales measure the convergence of

field lines (V̂ ⊥ B̂):

Rconv = |V̂ · ∇B̂|−1
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Wave identification using Cluster-II

[Image credit: ESA]

Cluster-II mission

Four point measurements allow

to study spatiotemporal phe-

nomena: Alfvén waves, surface

waves, turbulence . . .

Spatial coverage too bad to determine k-spectrum directly

−→ use methods from array signal (e.g. seismic data) processing.
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Wave identification using Cluster-II (cont’d)

Fourier transformed (scalar) data: bα(ω).

Method can be generalized to vector data Bα.

Data vector CSD matrix Phase delay vector

b(ω) =

 bα=1(ω)
bα=2(ω)
bα=3(ω)
bα=4(ω)

 C =
〈
bb†

〉
ĥ(k) = 1√

N


eik·r1

eik·r2

eik·r3

eik·r4


(measurements) (array geometry)
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Wave identification using Cluster-II (cont’d)

High-resolution beamformers, idea: make the sensor array

most sensitive in one “looking direction” through assignment of

sensor weights.

Other names: wave telescope, k-filtering technique, minimum

variance estimators, Capon estimators. . .

Resulting estimator for the power spectrum:

P (ω,k) =
(
ĥ†C−1ĥ

)−1
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Cluster-II wave identification: analysis procedure

. compute C(ω) and the in-

verse matrix C−1,

. compute Tr{C(ω)} (i.e.,

frequency spectrum) and

identify peaks,

. discretize k-space and

compute ĥ(k),

. construct P (ω,k) and

search for peaks.
[Glassmeier et al., 2001]
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4 Summary

Single-spacecraft missions: space-time ambiguity, additional in-

formation needed, minimum variance analysis.

Multi-spacecraft missions: much better chance to study spatio-

temporal phenomena.

Cluster-II: reciprocal vectors useful for the analysis of disconti-

nuities and spatial gradients.

Cluster-II as a wave telescope.
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Computer session

http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/intro/

(1) Getting started with IDL

(2) Probability density estimation using the kernel method

(3) Gradient estimation accuracy in model magnetic fields

(4) Gradient estimation in measured magnetic fields

(5) Magnetospheric boundary analysis
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Review of basic concepts in time series analysis

See textbooks and web resouces on data analysis, e.g.:

http://www.faculty.iu-bremen.de/jvogt/edu/fall06/c210222/space/

(1) Statistical description of data

(2) Correlation and regression

(3) Fourier transformation and spectral analysis

(4) Basic aspects of time series filtering
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