COSPAR Capacity Building
Sinaia, 5 June 2007
Joachim Vogt

Basic Analysis Techniques \& Multi-Spacecraft Data

This lecture:
\triangleright Introduction: single-spacecraft vs. multi-spacecraft
\triangleright Single S/C data: minimum variance analysis
\triangleright Multi S/C data: reciprocal vectors

Computer session: select your assignment(s)

1 Introduction: Magnetospheric structure

Boundary layers, sheet structures:

- bow shock,
\triangleright magnetopause,
\triangleright current sheets.
Orientation, motion, shape, ... of the surface ?

Baumjohann/Treumann/Mayr-Ihbe

Magnetospheric structure (cont'd)

Magnetospheric currents:

- magnetopause current,
\triangleright neutral sheet current,
\triangleright field-aligned currents:
Orientation of current sheets, current direction and density, ...?

Baumjohann/Treumann/Mayr-Ihbe

Single spacecraft vs. multi-spacecraft

Single-spacecraft data:
\triangleright one-dim. track in 3+1 dim. space-time
\rightarrow ambiguity,
\triangleright additional information required
\triangleright popular approach: minimum variance analysis.

Multi-spacecraft data:
\triangleright several trajectories in 3+1 dim. space-time,
\triangleright analysis of spatiotemporal processes,
\triangleright additional information still useful,
\downarrow various approaches.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ.

2 Single-Spacecraft Data: MinVar Approach

To resolve space-time ambiguity,
\triangleright additional information is needed,

- choose an appropriate physical model,
\triangleright use physical constraints to estimate model parameters.

Phenomena	Models	Parameters	
Boundaries	Planar structures	Normal vector $\hat{\mathbf{n}}$	
FACs	Current sheets	Orientation, $\mathbf{j}_{\\|}$	
Waves	Plane waves	Prop. vector \mathbf{k}	

Key technique: minimum variance analysis

Minimum variance principle

Physical model for boundary analysis: planar 1D structure with normal vector \hat{n}, use physical constraint

$$
0=\nabla \cdot \mathbf{B} \stackrel{1 \mathrm{D}}{=} \hat{\mathbf{n}} \cdot \nabla(\mathbf{B} \cdot \hat{\mathbf{n}}) \quad \Rightarrow \quad \mathbf{B} \cdot \hat{\mathbf{n}}=\mathrm{const}
$$

In practice: model only approximately valid.

Least squares approach: as an estimator for the sheet normal direction take the direction $\hat{\mathbf{n}}$ where data set $\left\{\mathbf{B}^{(\ell)}\right\}_{\ell=1, \ldots, L}$ shows the smallest quadratic variation (variance):

$$
\left.\left.\langle |(\mathbf{B}-\langle\mathbf{B}\rangle) \cdot \hat{\mathbf{n}}\right|^{2}\right\rangle \equiv \frac{1}{L} \sum_{\ell}\left|\left(\mathbf{B}^{(\ell)}-\langle\mathbf{B}\rangle\right) \cdot \hat{\mathbf{n}}\right|^{2}=\operatorname{Min}!
$$

Minimum variance principle (cont'd)

Result: $\hat{\mathbf{n}}$ is the normalized eigenvector associated with the smallest (positive) eigenvalue λ_{3} of the (co)variance matrix:

$$
\mathrm{M}=\left(\begin{array}{ccc}
\operatorname{cov}\left(B_{x}, B_{x}\right) & \operatorname{cov}\left(B_{x}, B_{y}\right) & \operatorname{cov}\left(B_{x}, B_{z}\right) \\
\operatorname{cov}\left(B_{y}, B_{x}\right) & \operatorname{cov}\left(B_{y}, B_{y}\right) & \operatorname{cov}\left(B_{y}, B_{z}\right) \\
\operatorname{cov}\left(B_{z}, B_{x}\right) & \operatorname{cov}\left(B_{z}, B_{y}\right) & \operatorname{cov}\left(B_{z}, B_{z}\right)
\end{array}\right)
$$

Assessment of model quality: eigenvalue ratios $\lambda_{3} / \lambda_{2}$ and $\lambda_{3} / \lambda_{1}$ \rightarrow should be small.

Hodogram plots: project magnetic field components onto eigenvectors of M , then plot ($B_{1} \mathrm{vs} . B_{2}$) and ($B_{1} \mathrm{vs}$. B_{3}).

Details: see chapter 8 of the ISSI Cluster data analysis book.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 2 Single S/C data

Sheet current estimation using FREJA data

Orbit: 2178, Date: 20-MAR-1993, Time: 03:08:00 - 03:22:00

Current density in sheets: $j_{\|}=\frac{\Delta_{\perp} B}{\mu_{0} \mathbf{v} \cdot \hat{\mathbf{n}} \Delta t}$.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ.

3 Multi-Spacecraft Data

More information than in single-spacecraft missions but spatial resolution still much less than temporal resolution.

Different approaches to data analysis and interpretation:
(1) Apply single-spacecraft techniques separately, estimate model parameters for each satellite, and compare.
\triangleright Assess evolution/variation of parameters.
\triangleright Consistency checks.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 3 Multi S/C data

Different approaches to data analysis (cont'd)
(2) Build refined models based on the degree of coherency/correlation between measurements at different spacecraft.
\triangleright Use timing information of boundary crossings to perform boundary parameter estimation.
\triangleright Interpret differences in measurements as (linear) spatial variations to estimate spatial derivatives (curl, div, grad).
\triangleright Interpret differences in measurements as phase variations of plane waves to estimate wave parameters (k-filtering $=$ wave telescope technique).

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 3 Multi S/C data

Boundary analysis: crossing times approach

Boundary velocity $\mathbf{V}=V \hat{\mathbf{n}}$, crossings at $t_{\alpha}, \mathbf{r}_{\alpha}$.

For convenience, choose time and space origin such that

$$
\sum_{\alpha} \mathbf{r}_{\alpha}=0 \quad, \quad \sum_{\alpha} t_{\alpha}=0 .
$$

Now minimize the cost function

$$
\sum_{\alpha}\left[\hat{\mathbf{n}} \cdot \mathbf{r}_{\alpha}-V t_{\alpha}\right]^{2}=\operatorname{Min}!\Leftrightarrow \sum_{\alpha}\left[\mathbf{m} \cdot \mathbf{r}_{\alpha}-t_{\alpha}\right]^{2}=\operatorname{Min}!
$$

w.r.t. $\hat{\mathbf{n}}$ and V or $\mathbf{m}=\hat{\mathbf{n}} / V$ ('slowness').

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 3 Multi S/C data

Crossing times approach (cont'd)

Result: $\underbrace{\left(\sum_{\alpha} \mathbf{r}_{\alpha} \mathbf{r}_{\alpha}^{\dagger}\right)}_{=\mathrm{R}} \mathbf{m}=\sum_{\alpha} t_{\alpha} \mathbf{r}_{\alpha} \Rightarrow \mathbf{m}=\mathrm{R}^{-1} \sum_{\alpha} t_{\alpha} \mathbf{r}_{\alpha}$.

Cluster-II mission: four satellites, then

$$
\mathrm{R}^{-1}=\mathrm{K}=\sum_{\alpha} \mathbf{k}_{\alpha} \mathbf{k}_{\alpha}^{\dagger}
$$

where the vectors \mathbf{k}_{α} are the reciprocal vectors.

Explicit formula: $\mathbf{m}=\sum_{\alpha} t_{\alpha} \mathbf{k}_{\alpha} \rightarrow V=1 /|\mathbf{m}|, \hat{\mathbf{n}}=V \mathbf{m}$.

Reciprocal vectors of the Cluster-II tetrahedron

Cluster-II mission: four satellites, tetrahedral configuration.

Reciprocal base of the tetrahedron: $\left\{\mathbf{k}_{\alpha}\right\}$, defined through

$$
\mathbf{k}_{\alpha}=\frac{\mathbf{r}_{\beta \gamma} \times \mathbf{r}_{\beta \lambda}}{\mathbf{r}_{\beta \alpha} \cdot\left(\mathbf{r}_{\beta \gamma} \times \mathbf{r}_{\beta \lambda}\right)}
$$

where $\mathbf{r}_{\alpha \beta}=\mathbf{r}_{\beta}-\mathbf{r}_{\alpha}$ are relative position vectors, $(\alpha, \beta, \gamma, \lambda)$ must be a permutation of $(0,1,2,3)$.

Very useful for boundary analysis, estimation of spatial derivatives (curl, div, grad), characterization of the geometric quality of the tetrahedron.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 3 Multi S/C data

Current estimation using multi-spacecraft data

Electrical currents from magnetic field data: estimate $\nabla \times \mathbf{B}$.

Linear estimators for spatial derivatives:

$$
\begin{aligned}
\nabla \times \mathbf{B} & \simeq \sum_{\alpha} \mathbf{k}_{\alpha} \times \mathbf{B}_{\alpha} \\
\nabla \cdot \mathbf{B} & \simeq \sum_{\alpha} \mathbf{k}_{\alpha} \cdot \mathbf{B}_{\alpha} \equiv \sum_{\alpha} \mathbf{k}_{\alpha}^{\dagger} \mathbf{B}_{\alpha} \\
\nabla \mathbf{B} & \simeq \sum_{\alpha} \mathbf{k}_{\alpha} \mathbf{B}_{\alpha}^{\dagger}
\end{aligned}
$$

Gradient of scalar field: $\nabla p \simeq \sum_{\alpha} \mathbf{k}_{\alpha} p_{\alpha}$

Error analysis of spatial derivative estimation

Sources of error:
\triangleright FGM measurement errors δB,
\triangleright position inaccuracies δr,
\triangleright nonlinear field variations.

Effect of δB on gradient estimation errors, approx. formula:

$$
\left\langle(\delta|D \mathbf{B}|)^{2}\right\rangle=\frac{f}{3} \sum_{\alpha}\left|\mathbf{k}_{\alpha}\right|^{2}(\delta B)^{2}
$$

Here $f=3$ for $\nabla \cdot \mathbf{B}, f=2$ for $\nabla \times \mathbf{B}, f=1$ for $\hat{\mathbf{e}} \cdot \nabla \mathbf{B}$.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ. - 3 Multi S/C data

Computer session assignments

curlBy

curlBx

curlBz

Estimation of inhomogeneity length scales

Unit vector field: $\hat{\mathbf{B}}=\mathbf{B} / B=\mathbf{B} /|\mathbf{B}|$.
Associated gradient matrix: $\nabla \hat{\mathbf{B}} \simeq \sum_{\alpha} \mathbf{k}_{\alpha} \hat{\mathbf{B}}_{\alpha}^{\dagger}$.
Curvature: $\hat{\mathbf{B}} \cdot \nabla \hat{\mathbf{B}}$, curvature radius

$$
R_{\text {curv }}=|\hat{\mathbf{B}} \cdot \nabla \hat{\mathbf{B}}|^{-1}
$$

Other inhomogeneity length scales measure the convergence of field lines $(\hat{V} \perp \hat{B})$:

$$
R_{\text {conv }}=|\hat{\mathbf{V}} \cdot \nabla \hat{\mathbf{B}}|^{-1}
$$

Wave identification using Cluster-II

Cluster-II mission

Four point measurements allow to study spatiotemporal phenomena: Alfvén waves, surface waves, turbulence ...
[Image credit: ESA]
Spatial coverage too bad to determine k-spectrum directly
\longrightarrow use methods from array signal (e.g. seismic data) processing.

Wave identification using Cluster-II (cont'd)

Fourier transformed (scalar) data: $b_{\alpha}(\omega)$.
Method can be generalized to vector data \mathbf{B}_{α}.

$$
\begin{gathered}
\text { Data vector } \\
\mathbf{b}(\omega)=\left(\begin{array}{c}
\text { CSD matrix } \\
b_{\alpha=1}(\omega) \\
b_{\alpha=2}(\omega) \\
b_{\alpha=3}(\omega) \\
b_{\alpha=4}(\omega)
\end{array}\right) \\
\\
\\
\text { (measurements) }
\end{gathered} \begin{gathered}
\text { (array geometry) }
\end{gathered}
$$

Wave identification using Cluster-II (cont'd)

High-resolution beamformers, idea: make the sensor array most sensitive in one "looking direction" through assignment of sensor weights.

Other names: wave telescope, k-filtering technique, minimum variance estimators, Capon estimators...

Resulting estimator for the power spectrum:

$$
P(\omega, \mathbf{k})=\left(\hat{\mathbf{h}}^{\dagger} \mathrm{C}^{-1} \hat{\mathbf{h}}\right)^{-1}
$$

Cluster-II wave identification: analysis procedure

\triangleright compute $\mathrm{C}(\omega)$ and the inverse matrix C^{-1},
\triangleright compute $\operatorname{Tr}\{C(\omega)\}$ (i.e., frequency spectrum) and identify peaks,
\triangleright discretize k-space and compute $\hat{\mathbf{h}}(\mathbf{k})$,
\triangleright construct $P(\omega, \mathbf{k})$ and
 search for peaks.
[Glassmeier et al., 2001]

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ.

4 Summary

Single-spacecraft missions: space-time ambiguity, additional information needed, minimum variance analysis.

Multi-spacecraft missions: much better chance to study spatiotemporal phenomena.

Cluster-II: reciprocal vectors useful for the analysis of discontinuities and spatial gradients.

Cluster-II as a wave telescope.

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ.

Computer session

http://www.faculty.iu-bremen.de/jvogt/cospar/cbw6/intro/
(1) Getting started with IDL
(2) Probability density estimation using the kernel method
(3) Gradient estimation accuracy in model magnetic fields
(4) Gradient estimation in measured magnetic fields
(5) Magnetospheric boundary analysis

COSPAR CBW Sinaia, 5 June 2007 - J. Vogt, Jacobs Univ.

Review of basic concepts in time series analysis

See textbooks and web resouces on data analysis, e.g.:
http://www.faculty.iu-bremen.de/jvogt/edu/fall06/c210222/space/
(1) Statistical description of data
(2) Correlation and regression
(3) Fourier transformation and spectral analysis
(4) Basic aspects of time series filtering

