

Auroral processes in satellite data

© AURORA EXPERIENCE

Tomas Karlsson

Space and Plasma Physics, School of Electrical Engineering Royal Institute of Technology, Stockholm

Sweden

Overview

- Setting the scene
- Auroral processes in the upward current region
- Auroral processes in the downward current region
- Dayside and cusp aurora, theta aurora
- Temporal evolution in the auroral zone

Very useful reference:

Space Science Series of ISSI Auroral Plasma Physics

Götz Paschmann, Stein Haaland, Rudolf Treumann (Space Science Reviews, vol 103, 1-4, 2002)

Auroral ovals

Dynamics Explorer

Polar

The auroral oval is the projection of the plasmasheet onto the atmosphere

Auroral emissions

Homogenous auroral arcs

Particle motion in the geomagnetic field longitudinal oscillation azimuthal drift gyration В В 1 1 B Secono Secono u ERCE REPORT u. Orbit of trapped particle νve Mirror point

Protondrift

Magnetic field line

Maria

Magnetic mirror

grad B drift

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

 $\frac{\sin^2 \alpha}{B} = const$ particle turns when $\alpha = 90^{\circ}$

 $B_{turn} = B / \sin^2 \alpha$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{max}$$

$$\alpha > \alpha_{lc} = \arcsin \sqrt{B / B_{max}}$$

Particles in *loss cone* :

$$\alpha < \alpha_{lc}$$

Magnetospheric convection

Atmospheric collisions - emissions

A typical auroral pass -CLUSTER

Auroral scales

Photo from DMSP satellite

Birkeland currents in the auroral oval

Low geomagnetic activity

High geomagnetic activity

A typical auroral pass - FAST

ΔB_{EW}
dE-flux, e⁻
PA, e⁻
ÎdE-flux, e⁻
n-flux, e⁻
E-flux, e⁻
dE-flux, i ⁺
PA, i ⁺
E-perp (DC)
E (AC)

Current sheet approximation and Ampére's law

 $= \left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z}, \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}, \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y}\right) = \mu_0 (j_x, j_y, j_z)$ But $\frac{\partial}{\partial x} = 0$ and $\frac{\partial}{\partial z} = 0$ $\left(\frac{\partial B_z}{\partial y}, 0, -\frac{\partial B_x}{\partial y}\right) = \mu_0 (0, 0, j_z)$

Ampére's law (no time dependence):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

Current sheet Determination of current density by magnetic field measurement

Upward and downward current regions

180° =

0°

Upward current region Inverted V arc

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Acceleration potential structure I

Acceleration potential structure II

Localized regions of higher energy electrons without associated ion beams

Why particle acceleration?

- The magnetosphere often acts as a current generator
- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Auroral currents – Knight relation

Fraction of particles in the loss cone:

$$f = \frac{\pi \theta_{lc}}{2\pi} \sim \frac{B_{ms}}{B_{ion}} \sim 2 \times 10^{-1}$$

Thermal current:

 $j_{\parallel,ms} = n_0 e v_{th} f$ $j_{\parallel,ion} = n_0 e v_{th} f \frac{B_{ms}}{B_{ion}} =$ $= n_0 e v_{th} \frac{B_{ms}}{B_{ion}} \frac{B_{ion}}{B_{ms}} = n_0 e v_{th} \approx$ $\left[n_e = 0.1 \text{ cm}^{-3}, T_e = 1 \text{ keV} \right] \approx$ $\sim 1 \,\mu\text{A/m}^2$

Apply a parallel potential drop:

$$I_{\parallel,ion} = n_0 e v_{th} \frac{B_{ion}}{B_{ms}} \left[1 - \frac{e^{-xe\Phi_{\parallel}/T_e}}{1+x} \right]$$

Linear regime :

$$j_{//,ion} \approx n_0 e v_{th} \frac{e \Phi_{//}}{k_B T_e} = K \Phi_{/}$$

$$K = \frac{e^2 n_0}{\sqrt{2\pi m_e k_B T_e}} \sim 10^{-9} \text{ S/m}$$

FRIDMAN AND LEMAIRE: CALCULATION OF AURORAL ELECTRON FLUXES

 $\mathbf{v}_{th} = \sqrt{T_e/2\pi m_e} \qquad x = \frac{1}{B_I/B_0 - 1}$

Particle distributions associated with inverted V's

Model of cold beam producing secondaries (Evans, 1974)

Model of hot electron beam and second<aries (Evans, 1974). Data from Franck and Ackerson, 1971

Auroral cavity and trapped populations

ed cartoon of the upward current region of the aurora. The potential contou ltitude and high-altitude acceleration region with the auroral cavity in b

Accelerated Maxwellian

Acceleration regions

Koskinen

Auroral acceleration region typically situated at altitude of 1-3 R_E

Mapping of auroral electric fields

Experimental results, comparison between Dynamics Explorer 1 and 2 at different altitudes. (*Weimer et al., 1985*)

Static, medium-scale MI-coupling

MI-coupling critical scale size II

Static, medium-scale MI-coupling

MI-coupling critical scale size III

 $j_{\parallel} = \Sigma_P \nabla_{\perp} \cdot \mathbf{E}_{\perp} + \mathbf{E}_{\perp} \cdot \nabla_{\perp} \Sigma_P + (\mathbf{E}_{\perp} \times \nabla_{\perp} \Sigma_H) \cdot \hat{\mathbf{b}}$

 $j_{\prime\prime\prime} = \Sigma_P \nabla_\perp \cdot \mathbf{E}_\perp$

 $j_{\parallel} = K \Delta \Phi_{//} = K (\Phi_{ms} - \Phi_{ion})$

 $K(\Phi_{ms} - \Phi_{ion}) = \Sigma_P \nabla_\perp \cdot \mathbf{E}_{\perp ion}$

 $K(\overline{\Phi_{ms}} - \overline{\Phi_{ion}}) = \overline{\Sigma_P \nabla_{\perp}^2 \Phi_{ion}}$

 $K(\Phi_{ms} - \Phi_{ion}) \approx \Sigma_P \frac{\Phi_{ion}}{I^2}$ $\Phi_{ion} = \left(1 + \frac{\Sigma_P}{KL^2}\right)^{-1} \Phi_{ms}$ When L >> $\sqrt{\frac{\Sigma_P}{K}}$: $\Phi_{\text{ion}} \approx \Phi_{\text{ms}}$ When L << $\sqrt{\frac{\Sigma_P}{\kappa}}$: $\Phi_{\text{ion}} \ll \Phi_{\text{ms}}$

The last case means $|\Phi_{ms}| \approx |\Delta \Phi_{//}|$

Static, medium-scale MI-coupling

MI-coupling critical scale size

Experimental results, comparison between Dynamics Explorer 1 and 2 at different altitudes. (*Weimer et al., 1985*)

1/ WAVELENGTH AT FIELD LINE BASE, Km⁻¹

Fig. 4. Electric field spectrums from day 296 (October 23) of 1981. The spectrums are obtained from a Fourier transform of the electric field data between 62° and 67° invariant latitude. The solid line shows the spectrum of the electric field measured by DE 1. The solid line shows the spectrum of the electric field measured by DE 2. The ordinate values are obtained from the square root of the "spectral power density." The actual units are mV m⁻¹ km^{1/2}.

Weimer et al, 1985

Downward current region

Upward current region

Downward electron beams: Narrow in energy broad in pitch-angle

Downward current region

Upward electron beams: Narrow in pitch angle - broad in energy

Upward electron beam

Seemingly also a downward beam?? But...

Potential structure in the downward current region

Freja electric field measurements, (Marklund et al., 1994)

Upward electron beams

- Good agreement with integrated E-field
- Widening in energy is due to extensive wave-particle interaction.

Ion conics and beams 'Distribution functions'

lon conics – adiabatic motion

In a sense the opposite process to magnetic mirroring

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

Magnetic moment conserved

Weaker B means α decreases

An ion distribution originally heated in the direction perpendicular to B will fold up to a conic

$$\alpha = \sin^{-1} \sqrt{\frac{B}{B_0}}$$

lon conics

KTH VETENSKAP VETENSKAP

Waves in upward current region

Saturn kilometric radiation

Jupiter hectometric radiation

Auroral kilometric radiation

Auroral kilometric radiation

Dominating radiative feature of auroral zone

Generated by cyclotronmaser instability in auroral acceleration region

Lower cutoff at ω_{ce} of the source region.

Waves in downward current region

VLF saucers

- Often most prominent wave feature of downward current region.
- k larger angle for higher frequencies
- Probably generated by upward ion beams

The symmetry between the upward and downward current regions

Dynamic MI-coupling

Alfvén wave driven aurora

X-line aurora

Field-line resonances

Ionospheric auroral resonator

Lotko et al., 1998

Cusp and dayside aurora

Direct entry of magnetosheath plasma Fedder et al. (1997)

Velocity filter effect

DMSP 9 data (Lyons et al., 1999)

Theta aurora

What are they???

Cluster multi-point measurements

Seeing the temporal evolution

- Launched 2000
- Apogee: 20 R_E
- Perigee: 4 R_E
- Separations: 200-10000 km

Interpreting Cluster multipoint measurements

luster field d

CLUSTER multipoint measurements (1)

Marklund et al, 2001

Cluster passage through black aurora

Temporal evolution of the acceleration potential above black aurora

The active role of the ionosphere

Karlsson, 1998

Density cavities

Simulations show deep density cavities formed by downward FAC and associated increased E-fields.

Important to take into consideration when mapping from high-altitude measurements.

Cluster data, 2004-02-18, and model results

Karlsson, 2007

Model – inospheric modification by downward FAC

$$J_{n} = \int j_{\parallel} dn + \sum_{P,0} E_{n,0} + \sum_{H,0} E_{t}$$

$$\sum_{P} = \sum_{P,0} + \begin{cases} k_{down} j_{\parallel} & \text{downward } j_{\parallel} \\ 0 & \text{upward } j_{\parallel} \end{cases}$$

$$\sum_{P} \ge \sum_{P,min}, \quad \sum_{H} = 2\sum_{P}$$

$$E_{n} = \frac{\sum_{P,0} E_{n,0}}{\sum_{P}} + \frac{\left(\sum_{H} - \sum_{H,0}\right) E_{t}}{\sum_{P}} + \frac{1}{\sum_{P}} \int j_{\parallel} dn$$

2004-02-18 k as a function of time

From simulations: $1 \cdot 10^{-5} \le \kappa \le 2 \cdot 10^{-3}$ $\text{Sm}^2/\mu\text{As}$

Thank you for your attention!

