
NEURAL NETWORK

IDENTIFICATION OF ENERGY

CONVERSION EVENTS

Vlad Constantinescu, Octav Marghitu

Institute for Space Sciences, Bucharest, Romania

contact : vlad@gpsm.spacescience.ro

Outline

• Introduction

– Motivation : Energy Conversion Events

– Feed-forward neural networks

– Events encoding

• First approach (input divided in fixed-size intervals)

– Network configuration

– Results used real and synthetic data

• Second approach (sliding window)

– Principle

– Network configuration

– Results using synthetic data

– Results using real E·J data

– Results on ion velocity data

Motivation – CLR and CGR events

 ECR – energy conversion regions : E·J≠0

 E·J<0 – generator regions (CGRs)

 E·J>0 – load regions (CLRs)

Hamrin, et al., 2009

Artificial Neural network

• A massively parallel distributed processor
made up of simple processing units.

• It resembles the brain: knowledge is acquired
through a learning process and it is stored in
the interneuron connection strength

• Benefits : generalization, nonlinearity, input-
output mapping, fault tolerance

Artificial neuron model

𝜔𝑘1𝑥1

Σ

Activation
function

Output
𝑦𝑘

φ(∙)

Summing
junction

𝜔𝑘2𝑥2

𝜔𝑘𝑚𝑥𝑚

Input
signals

𝑣𝑘

𝑣𝑘 =

𝑗=1

𝑚

𝜔𝑘𝑗 ⋅ 𝑥𝑗

Activation functions

Logarithmic

sigmoid

Hyperbolic tangent

sigmoid

Linear transfer

function

Feed-forward back-propagation neural networks
Data flow

Weights adjustment

Learning mechanism – back-
propagation algorithm

• Training data : known input-output pairs

• Input data is run through the network and
the weights are adjusted in order to
minimize the error:

Weight
correction

Learning-rate
parameter

Local
gradient

Input
signal

• If the neuron is an output neuron, local gradient takes into consideration the
error signal and the derivative of the activation function

• If the neuron is a hidden node, the local gradient takes into consideration the
derivative of the activation function and the weighted sums of the local
gradients of the neurons in the next layer

Encoding events

 Encoding used :

 +1 for CLRs (E·J>0)

 -1 for CGRs (E·J<0)

 0 – in rest

22.07.2001

Fixed interval– network configuration
Interval size = 5; hidden layer size = 3

1

2

3

4

5

Input Hidden layer Output

0

1

1

0

0

Results based on real data – 100 input
intervals

17.08.2001

17.08.2001

The trained network identifies

pretty well the ECR events,

including one event not included

in the manual database (around

x=400). However, the network

response does not consist only of

-1, 0, and 1, as required during

the training stage (in the top plot

the response is scaled by 10 for

better visibility).

Results based on synthetic data – 100
input intervals

In the top panel we observe the

reaction of the NN for all of the

events. The identification of the

events is not clear, and most of the

time, the output of the network has

the opposite sign to the desired

result. We also notice a reaction to

regions that do not contain any

events

The bottom plot presents the

output of a NN with less neurons

on the hidden layers, but trained

with more input points. We

observe an improved reaction of

the network and the better

identification of source and

generator events .

Sliding window - principle

0 1 1 0 0

0 1 2 3 4 5 0

Window = 3

Sliding window – network configuration
Window size = 5; hidden layer size = 3

1

2

3

4

5

Input Hidden layer Output

0

Results using synthetic data

Results using a selection of real CLRs data

Test run using a selection of Cluster data

• The target ECR events were identified by a semi-automatic procedure, developed at the Umea
University (Hamrin et al., Ann. Geophys., 27, 4131, 2009)

• The selection of data used for both the training and the test run was obtained by cutting out of the
original data most of the 'non-event' time intervals between two events. In the remaining data sets,
the 'event' and 'non-event' time intervals ('on' and 'off' in the red line) have about the same weight.

Evaluating the network performance using cumulative sum

Cumulative sum of E.J over load regions – Cluster data from 2001

• The detailed examination of the results shows that the NN identifies neighboring spikes as separate events, while
the semi-automatic procedure includes merging such spikes together. By integration (cumulative sum, CS) this
difference becomes irrelevant and one can better compare the results.

• The CS can also provide a global perspective on the results and is appropriate for statistical investigations.
• The steps in the CS are remarkably similar over certain time intervals (e.g. between 3 and 5 on the abscissa -

August/September).
• Some of the steps, in particular the very big ones, are only seen in the NN results. A preliminary exploration

suggests that such big steps are related to real but noisy events, discarded by the semi-automatic procedure (which
is rather conservative - better skip an event than count a non-event - and sensitive to noise). An event oriented
study will focus on such big steps.

Evaluating network performance II

scatter plots of the cumulative sum of E•J, this time computed individually for each

event.
The training set consisted of 50 events, linearly distributed in duration. The leftmost plot shows

the cumulative sum of E•J over the selected events:

- with blue the events found only by the neural network;

- with brown the common events, cumulative sum computed over the semi-automated

selection;

- with yellow the common events, cumulative sum computed over the network selection;

- with cyan the events found only by the semi-automated procedure

Ion velocity data

• Tested on ion velocity data for locating Bursty Bulk Flows (BBFs;

Angelopoulos, et al., 1992) . Data from the 3D plasma instrument and from the

fluxgate magnetometer on board the AMPTE/IRM satellite is considered.

• The figure above shows the rounded output (multiplied by 200 for better

visibility) of a configuration with 5 input neurons and no hidden layer.

Open questions, future work, method
applications

• When using Cluster data we encountered two main problems: the training set was
limited in size and the regions marked with 0 in the training set could not be explored
later – in a consistent manner – for the presence of CLRs / CGRs .

• By using synthetic generated data the training set size limitation is removed and we can
clearly mark the interesting regions in the data. We can clearly notice the improved
results when using a larger training set.

• When using the sliding window method, we must find the balance between the two
main parameters, the size of the window and the number of neurons on the hidden
layer as well as the training parameters of the network

• Can we use on real data a network previously trained on synthetic data? If so, how can
we best adjust the synthetic data parameters (Eg. : noise, event amplitude and duration)
for best event detection on real data ?

• Can the detection be stable enough ? Starting from the same training data and using the
same network configurations can we get similar if not identical results ?

• Further running on real Cluster data and fine-tuning network parameters for optimum
results

• When perfected, the method can be used to identify various signatures in data

ISS GPSM computing cluster

- >10 TB storage; RAID 1,5 or 6
- Dell Blade server, completely populated – 16

computing nodes
- Node configuration :

- Dual Quadcore 2.2 Ghz CPU;
- 96 or 128 GB RAM

- Interconnect : Gigabit Ethernet and
Infiniband QDR

- UPS : 8kVA
- Interface : KVM switch

Thank you for your attention

