67P/CG

```
Rosetta
```

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Induction signatures at 67P/CG

D. Constantinescu 1,2 K-H. Glassmeier 2 I. Richter 2 U. Auster 2 P. Heinisch 2

¹Institute for Space Sciences, Bucharest

²Institute for Geophysics and Extraterrestrial Physics, Braunschweig

1 Comet Churyumov-Gerasimenko (67P/CG)

- 2 The Rosetta mission
- 3 Induction methods
- 4 Data
- 5 Conductivity estimation

67P/CG

Rosetta

- Spacecraft
- Magnetometers

Methods

- Skin depth
- Time domain
- Frequency domain

Data

- Positions
- Measurements
- Waves properties
- Cross spectra
- Conductivity

Comet Churyumov-Gerasimenko

Two-lobes Jupiter family comet discovered in 1969

•	aphelion:	5.7 AU
•	perihelion:	1.2 AU

- orb. period: 6.4 yr
- rot. period: 12.4 h
- density: 400 kg/m^3
- escape vel.: 1 m/s
- lobe1: $2.5 \times 2.5 \times 2 \text{ km}$
- lobe2: $4 \times 3 \times 1.5 \text{ km}$

67P/CG

Rosetta

Spacecraft

- Magnetometers
- Methods
- Skin depth
- Time domain
- Frequency domain
- Data
- Positions
- Measurements
- Waves properties
- Cross spectra
- Conductivity

Two subsystems: Rosetta orbiter and Philae lander

The Rosetta mission

- Launch: Mar. 2004
- Arrival: Aug. 2014
- Landing: Nov. 2014
- 25 experiments
 - fields
 - particles
 - cameras
 - dust
 - spectrometers

67P/CG

Rosetta Spacecraft	Three-axial fux-gate developed by TUBS, IWF, and MPE				
Magnetometers Methods		orbiter (RPC-MAG)	lander (ROMAP)		
San deput Time domain Frequency domain Data Positions Measurements Waves properties Cross spectra Conductivity			Arrow and an arrow and a second		
	digital resolution	30 pT	10 pT		
	NS sampling rate	1 Hz	1 Hz		
	BS sampling rate	20 Hz	64 Hz		

The Rosetta and Philae magnetometers

- NS Nyquist frequency: 0.5 Hz
- BS Nyquist frequency: 10 Hz

67P/CG

Rosetta

Spacecraft Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Skin depth and conductivity

Consider:

- half-space with permeability $\mu_{\rm 0}$ and conductivity σ

• primary field:
$$m{B}_{prim} = m{B}_0 e^{-i\omega t}$$

• Diffusion equation:
$$\nabla^2 \boldsymbol{B} = \sigma \mu_0 \frac{\partial \boldsymbol{B}}{\partial t}$$

$$\Rightarrow$$
 solution: $\boldsymbol{B}_{sec} = \boldsymbol{B}_0 e^{-\frac{z}{\delta}} e^{-i(\omega t - \frac{z}{\delta})}$

characteristic length (skin depth):
$$\delta=\sqrt{rac{2}{\sigma\mu_0\omega}}$$

67P/CG

Rosetta

Spacecraft Magnetometers

mugnetonict

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Skin depth and conductivity (cont.)

For skin depths larger than the object dimmension, the object becomes "transparent"

$\sigma~({ m S/m})$		δ (km) at 0.5 Hz	δ (km) at 10 Hz
10 ⁻³	(rock)	22	5
10^{-1}	(sea ice)	2.2	0.5
4	(sea water)	$350 imes10^{-3}$	$80 imes 10^{-3}$
10^{+5}	$(Fe_xS_y meteorites)$	$2 imes 10^{-3}$	$0.5 imes10^{-3}$

For km - range objects, induction signatures are observable above ice conductivity

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

B_{prim} (t)

• compare $\boldsymbol{B}_{\text{prim}}(t)$ with $\boldsymbol{B}_{\text{tot}}(t)$

- two approaches:
 - time domain for non periodic perturbations

Two point induction methods

• frequency domain for periodic perturbations

 \Rightarrow mean conductivity or conductivity radial distribution

*

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Time domain: transient response

Sphere with radius R and uniform conductivity σ Switch-on scenario: $\pmb{B}_{\rm prim}$ is the step function

B₀

• induced magnetic moment: $\pmb{M}(t) =$

$$-\frac{2\pi}{\mu_0} \mathbf{B}_0 R^3 \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left\{-\frac{n^2 \pi^2}{\mu_0 \sigma R^2} t\right\}$$

induced dipol:

$$oldsymbol{B} = rac{\mu_0}{4\pi} rac{1}{r^3} \left[3(oldsymbol{M} \cdot \hat{oldsymbol{r}}) \hat{oldsymbol{r}} - oldsymbol{M}
ight]$$

Surface field at t = 0 (or $\sigma \to \infty$): only tangential component

- at the poles: $\boldsymbol{B}_{tot} = 0$
- at the equator: $m{B}_{tot}=1.5m{B}_{0}$

67P/CG

Time domain: surface field decay

rock (10^{-3}) , ice (0.1), and water (4 S/m) surface field for R = 2 km

- sudden field variation is necessary
- an estimate can be made if conductivity is high
- method used for the Moon, Europa and Callisto

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Linear polarised wave: $\boldsymbol{B}_{\text{prim}} = \boldsymbol{B}_0 e^{-i\omega t}$ The *z* axis is given by the polarization direction

Ś

D0/

• The induced magnetic moment is phase delayed:

$$oldsymbol{M}=Ae^{i\phi}oldsymbol{B}_{\mathsf{prim}}rac{4\pi}{\mu_0}R^3$$

$$Ae^{i\phi} = rac{J_{5/2}(Rk)}{J_{1/2}(Rk)}$$
 ; $k = rac{1-i}{\delta}$

At the surface:

 σ

 \boldsymbol{B}_0

θ

R

$$m{B}_{
m sec} = A e^{-i(\omega t - \phi)} B_0(3\cos heta \hat{m{r}} - \hat{m{e}}_z)$$

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Transfer functions and phase differences

For each component and for the magnetic field intensity we define:

$$\mathcal{T}_{j}(\sigma, \omega, \hat{r}) = \left. rac{B_{\mathsf{prim}}^{j} + B_{\mathsf{sec}}^{j}}{B_{\mathsf{prim}}^{j}}
ight|_{\mathsf{surface}}$$
; $j = \mathsf{rad}$, pol, abs

- + $\mathcal{T}_{\mathsf{rad, pol}}$ depend only on the radius and R and skin depth $\delta(\sigma,\omega)$
- + $\mathcal{T}_{\mathsf{abs}}$ depends also on the angle θ
- Transfer function: $T_j(\delta) = |\mathcal{T}_j|$
- Phase difference: $\phi_j(\delta) = \text{phase}(\mathcal{T}_j)$

TF and $\Delta \phi$ for R = 2 km, $\sigma = 10$; 1; 0.1 S/m conductivity

67P/CG

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements Waves properties Cross spectra

Conductivity

Measurements: comet position

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements Waves properties Cross spectra

Conductivity

Measurements: lander position

- radial and poloidal directions: difficult to determine
- we will use the module

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

- Data from Nov. 13, 09:15 10:00 (16 hrs after landing)
- CSEQ: x sunward; $z \perp$ ecliptic; y completes the system
- acquisition rate: 1 Hz

- no outstanding dominant frequency
- fast decrease of wave power at orbiter above $0.1\,\text{Hz}$
- noise threshold $10^{-3} \, nT^2 Hz^{-1} \Rightarrow max$. usable frequency 0.2 Hz

Waves properties: Polarization

filter: plolarization >50%; power $>10^{-3}\,nT^2Hz^{-1}$; eigenvalue ratio >5

Waves propagation directions at the orbiter

67P/CG

 $\widehat{\mathbf{kr}} = 66^{\circ}; \qquad \theta = 76^{\circ}; \qquad \varphi = 105^{\circ}$

Waves propagation directions at the lander

67P/CG

Positions

Measurements

Waves properties Cross spectra

Conductivity

 $\widehat{kr} = 37^{\circ};$ $\theta = 85^{\circ};$ $\varphi = 154^{\circ};$ $\widehat{k_1k_o} = 50^{\circ}$

Cross spectrogram for the field module

0920

hhmm 1970 Jan 01 0940

1000

Cross spectrum for the field module

Comparison with the model

67P/CG

conductivity

- red line: model for poloidal
- black line: model for radial
- green line : model for module
- green dots: measured for module
- minimum estimated conductivity:

 $\sigma > 10\,{\rm S/m}$

67P/CG

Rosetta

Spacecraft

Magnetometers

Methods

Skin depth

Time domain

Frequency domain

Data

Positions

Measurements

Waves properties

Cross spectra

Conductivity

Data Caveats

- The offsets influence the transfer function
- The orbiter onboard digital filter reduces the PSD above 50 mHz
- Synchronization can be wrong as much as 1s

67P/CG

Rosetta

- Spacecraft Magnetometers
- wagnetomete
- Methods
- Skin depth
- Time domain
- Frequency domain
- Data
- Positions
- Measurements
- Waves properties
- Cross spectra

Conductivity

Summary

- A minimum conductivity of 10 S/m, (larger than the conductivity of Terrestrial ocean water) has been estimated for 67P/CG.
- 1 Hz magnetic field data from the Rosetta orbiter and the Philae lander have been used.
- Data was acquired shortly after landing at about 3 AU heliocentric distance.
- Distance between the Rosetta orbiter and the comet was about 20 km.
- Assumptions made:
 - Spherical uniform conductivity model
 - No diamagnetic cavity
 - No other phase altering processes