

Hinode and the Coronal heating problem An active region on the Sun

(Carpați workshop, Bâlea Lac, 15. September 2015)

Philippe-A. Bourdin

Institute for Space Research of the Austrian Academy of Sciences, Graz/Austria phone: +43-316-4120-592, email: <u>Philippe.Bourdin@oeaw.ac.at</u>

Overview:

- * What actually is the coronal heating problem ...?
- * What is needed to solve it...?
- * What can we omit...?
- * How do we compare to observations...?
- * Where is still work to do ...?

What actually is the coronal heating problem...?

Sun: \odot spectral class G $M\odot = 2.10^{30}$ kg $T\odot = 6.10^3$ K surface energy flux $\approx 100'000$ kW/m² $R\odot = 700$ Mm $\approx \frac{1}{4}^\circ \approx R_{\odot}$ Corona: $M_{cor} \approx 1.10^{28} \text{ kg}$ $T_{cor} \approx 2.10^{6} \text{ K}$ required energy input $\approx 0.1-1 \text{ kW/m}^2$ coronal energy dissipation $\approx 0.2 \%$

M. Druckmüller, M. Dietzel, P. Aniol, V. Rušin; Aug. 2008 (Mongolia)

Why is the corona so cool?

What actually is the coronal heating problem...?

Sketch of the coronal energy conversion processes:

(Bingert, PhD thesis, 2009)

does not end at (e)

(Aschwanden, text book, 2002)

(Aschwanden, text book, 2002)

Where are we now...?

Where are we now...?

- AC heating due to waves from photosphere

=> unlikely

Alfvén waves from the solar interior:

transversal waves reflected back at density gradient

Longitudinal waves

2000

3000

1000

z [km]

0

-500

-1000

z [km] 15° 15° -500 -1000 x [km] 1000 2000 3000 x [km] 4000 4000 600 800 -150 -50 Ō 50 100 -100 150 v_x [m/s] z [km] 30° 30°

Transversal waves

(Nutto et al., ESPM-12 poster, 2008)

4000

100

x [km]

150

Alfvén waves from the chromosphere:

most power reflected back to the chromosphere at the transition region

(Tu & Song, ApJ 777:53, 2013)

Where are we now...?

- AC heating due to waves from photosphere => unlikely

- AC heating due to coronal fast reconnection events => unlikely

Where are we now...?

- AC heating due to waves from photosphere => unlikely

- AC heating due to coronal fast reconnection events => unlikely

- Shock waves from photosphere

=> unlikely

Compressional shock waves crossing the corona:

(Bourdin, CEAB, 2014, submitted)

Where are we now...?

AC heating due to waves from photosphere => unlikely
 AC heating due to coronal fast reconnection events => unlikely
 Shock waves from photosphere => unlikely
 Ion cyclotron heating => unlikely

Example for driven MHD turbulence:

leads to thin current density structures (Galsgaard & Nordlund, 1999)

=> similar to the "coronal tectonics" (Priest et al., 2002)

Where are we now...?

- AC heating due to waves from photosphere	=> unlikely
- AC heating due to coronal fast reconnection events	=> unlikely
- Shock waves from photosphere	=> unlikely
- Ion cyclotron heating	=> unlikely
- MHD instabilities after MHD waves (kink, tearing, etc.)	=> unlikely

(van Ballegooijen et al., 2002)

Example for DC (Ohmic) heating:

heats a single-stranded "straight loop"

(Rappazzo et al., 2007)

• Observationally driven forward model ("field-line braiding"):

- Photospheric granulation advects small-scale magnetic fields
- Stress is induced into the magnetic field
- Braiding (or bending) of the field in the corona
- Currents are induced and dissipated to heat the corona

(Parker, 1972, ApJ. 174, 499)

Where are we now...?

- AC heating due to waves from photosphere	=> unlikely
- AC heating due to coronal fast reconnection events	=> unlikely
- Shock waves from photosphere	=> unlikely
- Ion cyclotron heating	=> unlikely
- MHD instabilities after MHD waves (kink, tearing, etc.)	=> unlikely
- Coronal tectonics (DC heating)	=> why not?
- Field-line braiding (DC heating)	=> why not?

General self-consistent model description on the observable scales

- Driving mechanism for coronal energy input of \sim 0.1-1 kW/m²
- Heat conduction that leads to chromospheric evaporation
- Compressible resistive MHD
- Resolve strong gradients in density and temperature

(Stix, 1989/2002) (FAL-C, 1993) (November-Kouchmy, 1996)

smooth switch on # 0

(Bourdin, 2014, CEAB, 38, 1-10)

Compressible resistive magneto-hydrodynamics (MHD):

$$\frac{D\ln\rho}{Dt} = -\nabla \cdot \boldsymbol{u}$$

- Equation of motion:

$$\frac{D \boldsymbol{u}}{Dt} = -c_s^2 \nabla \{\frac{s}{c_p} + \ln \rho\} - \nabla \Phi_{Grav} + \frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B} + \nu \{\nabla^2 \boldsymbol{u} + \frac{1}{3} \nabla \nabla \boldsymbol{u} + 2 \boldsymbol{S} + \nabla \ln \rho\} + \zeta (\nabla \nabla \cdot \boldsymbol{u})$$
$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{u} \times \boldsymbol{B} - \mu_0 \eta \boldsymbol{j}$$

- Induction equation:

- Energy balance:

 $\rho T \frac{D s}{Dt} = \mu_0 \eta \, \boldsymbol{j}^2 + \nabla \cdot \boldsymbol{q}_{Spitzer} - L_{rad} + 2 \, \rho \, \nu \, \boldsymbol{S} \odot \boldsymbol{S} + \zeta \, \rho \left(\nabla \cdot \boldsymbol{u} \right)^2$

Compressible resistive magneto-hydrodynamics (MHD):

$$\frac{D\ln\rho}{Dt} = -\nabla \cdot \boldsymbol{u}$$

- Equation of motion: $\frac{D u}{Dt} = -c_s^2 \nabla \{\frac{s}{c_p} + \ln \rho\} - \nabla \Phi_{Grav} + \frac{1}{\rho} \mathbf{j} \times \mathbf{B}$

- Induction equation: $\frac{\partial A}{\partial t} = \mathbf{u} \times \mathbf{B} - \mu_0 \eta \mathbf{j}$

- Energy balance:
$$\rho T \frac{Ds}{Dt} = \mu_0 \eta \, \boldsymbol{j}^2 + \nabla \cdot \boldsymbol{q}_{Spitzer} - L_{rad} + 2 \, \rho \, \nu \, \boldsymbol{S} \odot \boldsymbol{S} + \zeta \, \rho \left(\nabla \cdot \boldsymbol{u} \right)^2$$

=> Radiative losses:

=> Heat conduction:

- Continuum equation:

 $L_{rad}(\rho, T)$ (Cook et al., 1982)

+ $\nu \{\nabla^2 \boldsymbol{u} + \frac{1}{3}\nabla \nabla \boldsymbol{u} + 2\boldsymbol{S} + \nabla \ln \rho\} + \zeta (\nabla \nabla \cdot \boldsymbol{u})$

 $\boldsymbol{q}_{Spitzer} \sim \kappa T^{5/2} \cdot \nabla T$ (Spitzer, 1962)

What else is needed...?

3D-MHD simulation:

- Large box: 235*235*156 Mm³
- High resolution grid: 1024*1024*256
 - Horizontal: 230 km, matches observation
- - Vertical resolution: 100 800 km,
 - sufficient to describe coronal heat conduction
 - and evaporation into the corona

(TRACE observation in Fe-IX/-X)

The Pencil Code:

http://Pencil-Code.Nordita.org/

(A. Brandenburg, W. Dobler, 2002, Comp. Phys. Comm. 147, 471-475)

- High-performance computing:

Observational instruments

Simultaneous observations of different layers of the solar atmosphere

Observational instruments

Hinode Solar Optical Telescope Data Analysis Guide

Version 3.3

Hinode structure

Hinode optical path

Observable atmospheric layers

Wavelength nm	Spectral Region	Diffraction Limit arcsec
388.3	CN molecular band, photospheric network	0.19
430.5	CH molecular "G-band", photospheric network	0.22
512.7	Chromospheric magnetograms	0.26
525.0	Photopheric magnetograms	0.26
557.6	Photospheric dopplergrams	0.28
589.6	Na I D chromospheric magnetograms	0.30
630.2	Fe I photospheric magnetograms	0.32
656.3	H-alpha chromospheric diagnostics	0.33

Table 1. Diffraction limits for spectral bands available in the FPP.

Hinode FOV

Scientific data center

Hinode SDC Europe - Archive Search

7.304 million files, 2006/10/18-2010/01/10, v 1.9.2

21 groups w/842 matching files (0.01% of all files) - 0.45 seconds.

Search Reset Full reset TinyURL!	Instruments: EIS	XRT SOT(all) SOT	NFI (SOT/NB) SOT/BFI (SOT/WB) SOT/SP
Search Reset Full reset TinyURL! EPOCH_START :2007-04-24 00:00 Image: Constraint of the second of th	Instruments: EIS STATUS: Quicklook Level 0 TR_MODE: FIX NA TR1 TR2 TR3 TR4 SOT/SP level Show level Continuum in Long. appare Transv. appa Velocity (63 Stokes I [lii Grouping: Fine Sort order: DATE	Show fields: FILE INSTRUME DATE_OBS DATEPATH SUBPATH HOURPATH FILESZ GZFILESZ Y Auto-include search field Y Show thumbnails 1 leads only Itensity Int flux density Int flux density <td< th=""><th>NFI (SOT/NB) SOT/BFI (SOT/WB) SOT/SP Archive status & news 2008/10/27: SOT/SP level 1/1D images available 2008/10/27: Version 1.9 released 2008/10/27: Quicklook files that have not been superseeded by Level 0 files will be automatically purged after about 20 days. Quick hints Each box like this forms a single criterion • Blank/unfilled criteria are ignored • There are <i>no mandatory criteria</i> • It's <i>perfectly fine</i> to select millions of files • Used criteria (i.e. all boxes) are combined with AND • Instrument-specific criteria only rejects among its 'own' files • Enable tooltips & hover over a keyword/texbox for more info • Criterion colour coding after checking w/server: Blank/ignored Used, ok Orthogonal Empty Malformed 'Orthogonal' criteria reject all files when combined with all other criteria. 'Empty' criteria reject all possible files (separately). Examples/recommended searches</th></td<>	NFI (SOT/NB) SOT/BFI (SOT/WB) SOT/SP Archive status & news 2008/10/27: SOT/SP level 1/1D images available 2008/10/27: Version 1.9 released 2008/10/27: Quicklook files that have not been superseeded by Level 0 files will be automatically purged after about 20 days. Quick hints Each box like this forms a single criterion • Blank/unfilled criteria are ignored • There are <i>no mandatory criteria</i> • It's <i>perfectly fine</i> to select millions of files • Used criteria (i.e. all boxes) are combined with AND • Instrument-specific criteria only rejects among its 'own' files • Enable tooltips & hover over a keyword/texbox for more info • Criterion colour coding after checking w/server: Blank/ignored Used, ok Orthogonal Empty Malformed 'Orthogonal' criteria reject all files when combined with all other criteria. 'Empty' criteria reject all possible files (separately). Examples/recommended searches
Ca XVII 192.82A Fe XII 195.12Å He II 256.32Å Fe XI 180.40Å Maps: Velocity	Grouping: Fine Sort order: DATE Lines/page: 50	e <u> </u>	▼
More search criteria: (FITS) (Plan) (Quality) (Misc) (El Save current criteria as: Search 1	s) (xrt) (sot)		
(Search) (Reset) (Full reset) (Home) (Use	Hinode Euro	pe	

Hinode SDC Europe - Search results

Search completed in 0.27 sec. Showing 10 groups representing 717 matching files,

out of 21 groups w/842 matching files (0.01% of all files). Page 1 of 3.

		(Modify search) (Zoom	Retrieve) File p	aths) (ASCII) (Summarise)	TinyURL)
Add fields:	Common	▼ N-valued ▼ EIS	XKI ≪I 1 2 ▼ XRT		G SOT/SF	SOT/XRT
Rows/page: 10 Grouping: Fine Thumbnails						
Select All:	Actions/ <u>N files</u>	<u>©FILE</u>	©INSTRUME	ODATE_OBS	©STATUS	⊗FOV/data images
□≣ <u></u> ∦?≛	∓ 🔀 33	XRT20070424_180301.5 -	XRT	2007-04-24 18:03:01 -	Level 0	
□≣ <u></u> ≵?≛	∓ दि 332	XRT20070424_175303.4 -	XRT	2007-04-24 17:53:03 -	Level 0	
□≣ <u></u> ₽?≛	Ŧ	XRT20070424_174402.2d	XRT	2007-04-24 17:44:02	Level 0	
□≣ <u></u> ₽*	∓ ∑2	XRT20070424_174301.6 -	XRT	2007-04-24 17:43:01 -	Level 0	
⊏≣ ≵?≄	∓ ¥ 25	XRT20070424_131203.7 -	XRT	2007-04-24 13:12:03 -	Level 0	
□≣ <u></u> ≵?≛	↓ 🔀 253	XRT20070424_130203.5 -	XRT	2007-04-24 13:02:03 -	Level 0	
□≣ <u></u> ±?≛	∓ ∑6	XRT20070424_120201.8 -	XRT	2007-04-24 12:02:01 -	Level 0	
□≣⊎?≛	∓ ∑ 62	XRT20070424_115203.7 💌	XRT	2007-04-24 11:52:03 💌	Level 0	

What else is needed...?

Hinode/SOT observation (14th November 2007, 15^{:00}-17^{:00} UTC)

(saturation level: 10⁻⁸ kg/m³)

(saturation level: -70 km/s)

Comparison to observations

Hinode XRT and SOT observations (vertical line-of-sight)

- X-ray emission (~1.5 MK)

- Photospheric magnetic field (AR+QS)

(Bourdin et al., 2013, A&A 555, A123)

Comparing to observations (Hinode EIS/SOT)

Model fieldlines follow observed loops

Comparing to observations (STEREO A/B)

Comparison of intensity

- Alignment accurate to 3 arcsec

(Bourdin et al., 2013, A&A 555, A123)

Comparing to observations (Hinode EIS)

Coronal heating and energy source

Coronal heating Temperature: (horizontal cut) (black: 1.65 MK) Structures span between main polarities Connectivity to surrounding plage & network (height: 11.2 Mm)

Coronal heating

Ohmic heating per particle: (horizontal cut)

Structures mostly follow Ohmic heating

• Ohmic heating is predominant in the corona

(height: 11.2 Mm)

Energy source

Vertical Poynting flux: (horizontal cut)

 $(\pm 50 \text{ kW/m}^2)$

Hot AR core located where Poynting flux towards corona is high

(height: 3 Mm)

Energy source

Temperature: (horizontal cut)

(black: 1.25 MK)

Structures mostly follow field lines

Magnetic field quite parallel in the corona

(height: 11.2 Mm)

Energy source

67'000 field lines: (AR core area)

Rosner, Tucker, Viana (RTV, 1978):

$$T_{RTV} \sim F_{Ohm}^{2/7} L^{2/7}$$
$$F_{Ohm} = \int_{0}^{L} H_{Ohm}(s) \cdot ds$$
$$n_{RTV} \sim F_{RTV}^{4/7} L^{-3/7}$$

Serio et al. (1981):

$$T_{Serio} \sim F_{Ohm}^{2/7} L^{2/7} \cdot E_T^{5/7}$$

$$E_T = \exp\{-0.04 \cdot L\left(\frac{2}{s_H} + \frac{1}{s_P}\right)\}$$

$$n_{Serio} \sim F_{RTV}^{4/7} L^{-3/7} \cdot E_T^{-1}$$

Transition region and coronal Doppler-shift riddle

Statistical Doppler-shift analysis - Observation vs. Model

Summary:

Summary:

- First observationally driven 3D MHD "1:1" model of a full Active Region.

Matches observation (3D loop structure of hot AR core & dynamics).
 Ohmic (DC) heating from field-line braiding drives the coronal heat input. (rather slow "magnetic diffusion" than fast "nanoflares")
 Model sufficiently describes the coronal heating mechanism to explain a broad variety of coronal observations on the "real Sun".

More specific...?

- => Magnetic topology dominated by bipolar field, no sudden outbreaks.
- => Heating and steady magnetic reconfiguration by "slow reconnection".
- => Bulk plasma motion follows the raising field and leads to draining loop legs.
- => Particle acceleration by strong E-parallel fields yields up to MeV electrons.

"Dankeschön!"