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SUMMARY

In this thesis I investigate the dynamics of charged particles and plasma
into non-uniform distributions of the electric and magnetic fields.

In the first part attention is focused on the motion of test particles. The
interaction between particles as well as the perturbations they might produce
to the external charge and current density is neglected. I investigate a distri-
bution of the magnetic field that depends on only one spatial coordinate, x,
with the Bx component of the magnetic field being equal to zero everywhere,
like in tangential discontinuities. The magnetic vector, B, can rotate across
the discontinuity by an angle α ∈ [00, 1800]. In addition to the B-field distri-
bution I assumed different distributions of the electric field, E, with Ex = 0.
I have considered three cases: (A) a uniform electric field; (B) a non-uniform
electric field perpendicular everywhere to B and conserving the zero order
drift, and (C) a non-uniform electric field, perpendicular everywhere to B
and conserving the magnetic moment of the drifting particles. The particles
are drifting into these steady state electromagnetic field distributions; their
orbits together with the path of the first order guiding center are integrated
numerically.

The numerical results show that the ”antiparallel” distribution of the
magnetic field (obtained when α = 1800) with B = 0 at x = 0 does not pro-
duce anomalous acceleration of the test-particle as assumed in some steady
state reconnection models. Although the zero and first order guiding center
approximations diverge where B = 0, the exact equation of motion is not
singular, it can be integrated throughout the integration time. The math-
ematical singularity of the approximative solutions does not correspond to
a “true” (physical) singularity of the exact equation of motion. When the
magnetic field is sheared with a non-zero By-component, and B can rotate
with respect to E (case A), the particle orbit is confined into a sheath cen-
tered onto the x-position where B becomes parallel to E. Partial or total
penetration of the test-particle is equally possible, as demonstrated for the
E-field distributions of case B and case C. In case C the distance of penetra-
tion depends on the initial total energy of the test particles. Except for one
of six different configurations considered, the reversal point of Bz does not
correspond to a point of particle acceleration in the direction normal to B
nor is the stopping point of the particle’s motion in the direction normal to
B. Indeed, it is the relative orientation between E and B, together with the
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total initial energy of the particle that determine the distance of penetration
across the sheared magnetic field distribution. Penetration into the region
of non-uniform magnetic field produces separation of charges. Particles with
the highest energy are deflected the most.

In the second part of the thesis I treat the dynamics of an ”ensemble” of
electrons and protons forming a plasma stream. The plasma flow is spatially
two-dimensional. In this case the plasma ”internal” contribution to the exter-
nal fields is evaluated and self-consistently computed. The method adopted
is the kinetic theory approximation of plasma physics instead of one-fluid
magnetohydrodynamic (MHD) approximation or the Particle-In-Cell (PIC)
generally used. Both the ensembles of electrons and protons are described
by their velocity distribution function (VDF) that has to satisfy the Vlasov
equation derived from the general Liouville theorem for a collisionless plasma.
The VDFs are given in terms of the two constants of mechanical motion, the
total energy, H, and one canonical momentum, px. The first adiabatic invari-
ant, µ - the magnetic moment which is almost conserved when the Alfven
conditions are satisfied, approximates a third constant of motion. I have
found a velocity distribution function that describes a plasma moving in the
Ox direction with a two-dimensional bulk velocity Vx(y, z) depending both on
y and z. The moments of the VDFs of electrons and ions were computed ana-
lytically. The self-consistent electromagnetic potentials are found by solving
the Maxwell equations and the plasma quasineutrality equation. The par-
tial current densities, jx(y, z), determined by the first order moments of the
VDFs were introduced into Ampere’s equation in order to compute Ax(y, z),
the component of the magnetic vector potential. The charge densities of
the component species, qαnα, determined by the zero order moments of the
VDFs have been introduced into the quasineutrality equation,

∑
α qαnα = 0,

from which the distribution of the electric potential, Φ(y, z), is computed.
The solutions for the electromagnetic potentials are found numerically.

I have obtained a kinetic model that describes a two-dimensional plasma
stream whose perpendicular bulk velocity varies (or is sheared) both in the
direction normal to the magnetic field (perpendicular shear) and parallel to
the magnetic field (parallel shear). The parallel shear of velocity has never
been modeled before using kinetic equations. On the other hand the two
dimensional models proposed till now for the dynamics of magnetospheric
plasma did not consider differential (or sheared) plasma motion across mag-
netic field lines.

Several kinetic solutions are given for two-dimensional plasma flows and
for different values of asymptotic densities, temperatures and bulk velocity.
The key-feature of these numerical models is the existence of a parallel com-
ponent of the electric field, Eparallel. It is shown that the parallel electric field
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is sustained by the parallel shear of the perpendicular plasma velocity. The
amplitude of the parallel electric field depends on the value of the magnetic-
field-aligned gradient of the perpendicular plasma velocity and also on the
relative density and temperature of the moving stream with respect to the
background, stagnant plasma. This is a new mechanism to generate parallel
electric fields that adds to the ones already described in the literature and
that are discussed in part 2 of this Thesis.

In the kinetic models presented in the second part I have adopted a set of
plasma densities and temperatures typical for the terrestrial magnetopause
region. A parallel gradient of the density or electronic pressure enhances
the intensity of the parallel electric field. The scale length of the boundary
layer of transition from moving to stagnant regime can be of the order of
the electron Larmor radius (“electron layer”) or the proton Larmor radius
(“proton layer”). The scaling of the boundary layer is determined by the rel-
ative orientation of the magnetic field and the plasma bulk velocity. Eparallel

is stronger in the case of Parallel Sheared Electron Layer than in the case of
Parallel Sheared Proton Layer.

The existence of a parallel component of the electric field invalidates
the MHD approximation. In the case of the two-dimensional plasma flow
studied in this Thesis the MHD convection velocity, UE = E ×B/B2 is not
a satisfying approximation of the plasma bulk velocity, V . I illustrate the
differences between UE (assigned in MHD approximations to a “frozen-in”
motion of B-field lines) and V obtained by the kinetic models described in
part 2. It is shown that the “de-freezing” is produced in those regions where
a non-vanishing parallel electric field component was determined.

The kinetic treatment of the plasma dynamics adopted in this Thesis
evidence kinetic effects disregarded in the one-fluid approximations: finite
Larmor radius effects that are illustrated in Part I and non-MHD parallel
electric fields that are described in Part II. These effects play an important
role in the processes taking place at the magnetopause, the interface region
between the solar wind and the terrestrial magnetosphere.
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Introduction

Plasma dynamics and its self-consistent interaction with non-uniform elec-
tric and magnetic fields is a topic of interest for the theoretical investigator
as well as for the laboratory experimenter and the space physicist. Labora-
tory experiments and in-situ measurements of plasma parameters in space
contribute to accumulate large collection of data that can be used to study
the value and evolution in time for a broad range of physical parameters
characterizing the plasma state like : Debye length, screened free mean path,
plasma frequency, (Larmor) gyration radius, etc.

The aim of this work is to investigate the electrodynamics of a non-
uniform, classical, sub-Alfvenic plasma flow in the presence of an external
magnetic field. I have been led into this field of investigation by my interest in
understanding the physical processes that take place at the interface between
the solar wind and the Earth’s magnetosphere.

Solar Wind, Magnetosphere, Magnetopause

The plasma stream ejected continuously from the Sun, the solar wind,
convects through interplanetary space with supersonic/super-alfvenic veloci-
ties ranging from 350 km/s to 1000 km/s. At 1 AU the solar wind ”collides”
with the obstacle formed by the geomagnetic field and the terrestrial plasma
shell - the magnetosphere. A bow shock is formed that slows down the plasma
to a subsonic/sub-alfvenic regime. It is this ”shocked” plasma stream that
”flows” quasi-permanently over the outer layers of the magnetosphere.

The latter takes an elongated shape, having a long tail in the antisunward
direction as illustrated schematically in figure 1. In the antisunward direc-
tion the magnetosphere extends beyond 200 − 300 Earth radii (RE) while
in the sunward direction the magnetosphere extends to 10 − 15 RE . The
”lateral” extension of the magnetosphere, in the plane (Y OZ)GSE

1 is equal

1the GSE reference system is determined by the Sun-Earth direction (Ox), the Earth’s
axis of rotation (Oz) and the normal on the plane determined by the two directions.

1
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Figure 1: Schematic illustration of a meridional, (xOz)GSE, cross section
through the main magnetospheric regions.

to 20-25 RE . The outer boundary of the magnetosphere is a 3D surface - the
magnetopause.

The inner boundary of the magnetosphere is the electrically conducting
ionosphere - the ionized layer on top of the neutral atmosphere. At lower
magnetospheric altitudes the gravitational force plays an important role in
determining the distribution of the cold ionospheric plasma versus altitude.
At higher altitudes the role of gravity diminishes and the most significant
forces of the system are of electromagnetic origin. Therefore, a proper as-
sessment of the electric and magnetic fields at high altitudes is essential.

The plasma density in the magnetosphere (in the region Earthward of the
magnetopause) is of the order of 5 cm−3, approximately ten times smaller
than upstream, in the magnetosheath. The temperature in the outer parts
of the magnetosphere is of the order of 102 eV, i.e. one order of magnitude
larger than in the magnetosheath. The value of the magnetic induction at the
magnetopause is of the order of 10 nT . In a plasma with average parameters
defined above the screened free mean path between two binary collisions is
approximately equal to LDH = 346.000.000 km (or ≈ 54000 Earth radii, or
2 AU); the screening distance of the Coulomb field due to collective effects
(or the Debye length) is equal to λD = 7, 43 m; the radius of gyration in
the external magnetic field (or Larmor radius) of an electron is equal to
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rLe = 1, 06 km while the proton Larmor radius is equal to rLi = 45, 69 km.

Experimental data from laboratory and space

Some relevant laboratory experiments can illustrate globally the interac-
tion of fast plasma stream with external magnetic fields and plasma. Their
results are challenging and do not always support the standard predictions
of the one-fluid, magnetohydrodynamic approximation of plasma physics.

The experiment of Baker and Hammel (1965), illustrated and briefly com-
mented in figure 2, addresses the question whether the deflection of the solar
wind plasma around the magnetosphere is mainly due to the effects of local
magnetic forces on the impacting charged particles. The interaction of solar
wind particles with the geomagnetic field was reviewed in the seminal papers
of Willis (1975, 1978). The non-local effects of the conducting ionosphere
short-circuiting the convection electric field in the external plasma stream
is an additional mechanism that plays also a key role to stop the impacting
solar wind plasma. Laboratory experiments that studied plasma convection
across magnetic field were carried on successfully by Bostick (1956), Demi-
denko et al. (1967, 1969, 1972), Wessel and Robertson (1981), Wessel et al.
(1988), Dimonte et al. (1991) and very recently by Hurtig et al. (2003).

On the other hand active experiments in the Earth’s magnetosphere
(Haerendel et al., 1967; Bernhard et al., 1987; Kazeminezhad et al., 1993)
provide data concerning the dynamics of artificial ion clouds injected above
the Earth’s ionosphere. The results show that the ion clouds drift across the
geomagnetic field, experience deformations and eventually dissipate in the
background plasma. There are many examples of artificial plasma clouds
moving distances inside the magnetosphere orders of magnitude deeper than
predicted by MHD theory or approximation of plasma physics. Indeed, op-
tical observations show snapshots of artificial clouds ”skidding” across ge-
omagnetic field lines over distances in the range of 5 to 10 proton Larmor
radius (Delamere et al., 2002). The mechanism enabling the perpendicular
drift is not fully understood.

Naturally occuring plasma irregularities or clouds have been detected in
the inner magnetosphere and/or ionosphere (Perkins et al., 1973, Zabuski et
al., 1973, Kelley et al., 2003). There is increasing evidence (Walbridge, 1967;
Sperling and Glassman, 1985; Sperling, 1986) that, as in the experiments of
Baker and Hammel (1965), the kinetic energy of plasma irregularities drifting
in the magnetosphere is Joule dissipated in the ionosphere, contrary to the
models of plasma-field coupling proposed in MHD approximations (Wright,
1996).

Spacecraft observations put in evidence, upstream of the magnetopause,
the existence of moving plasma structures, often called plasma or magnetic
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Figure 2: Laboratory experiment of Baker and Hammel (1965): a plasma
flow injected normal to an external magnetic field into a vacuum chamber
having insulating walls. An electrically conducting plate is attached to one
of the walls. The stream is slowed down/stopped when it crosses the region
where the magnetic field lines are connected to the conducting plate. Note
the peculiar, elongated shape of the stream in the wedge of the conducting
region resembling the Earth’s magnetotail. Note that this tail is not formed
by the presence of a non-uniform B-field distribution as in Birkeland Terella
experiments or in Demidenko et al. (1967, 1969, 1972) ones.

clouds, with scale lengths comparable with the magnetospheric size (Lepping
et al., 1997; Farrugia et al., 1998). Plasma irregularities with scales smaller
than 1 RE are also always present in the solar wind (see Celnikier et al., 1987).
The borders of these solar wind irregularities, large or smaller one, are the
sites of sharp gradients in the plasma momentum density, number density,
bulk velocity and higher order moments of the particle velocity distribution
function, as well as gradients of the total magnetic field (Burlaga, 1971;
Burlaga and Lemaire, 1977).

Kinetic and fluid treatment of plasma dynamics

In-situ satellite measurements in the transition region between magne-
tosheath and the magnetosphere show that the magnetopause has a thick-
ness, lMP , of the order of 500 − 1000 km or 0.1 − 0.3 RE. Considering the
range of plasma average temperature and density at the magnetopause the
following inequality holds:

λL � rLe < rLi ≈ lMP � LDH (1)
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where λL is the Debye length, rLe, rLi are the electron and ion Larmor ra-
dius respectively, LDH is the screened mean free path. This shows that the
plasma is collisionless and that the kinetic approximation holds to model the
transport of plasma in this region.

Without collisions to randomize the thermal motion of particles there is
no a-priori reason to treat the plasma at the magnetopause as a fluid. Chew,
Goldberger and Low (1956) show that whenever the effects of kinetic pressure
along magnetic field cannot be neglected (e.g . when there are significant
gradients parallel to B) the plasma must be treated kinetically and not in
the fluid approximation. In the second part of this thesis an addition to this
constrained will be discussed

Kinetic models of tangential discontinuities

Sestero (1964, 1965, 1966, 1967) pioneered the first kinetic models de-
scribing the E-field and B-field transition across discontinuities in monoionic
collisionless plasmas when magnetic field lines are parallel to each other and
the component of B normal to the discontinuity surface is equal to zero. The
first application of kinetic models to tangential discontinuities (TD) observed
in the solar wind plasma was proposed by Lemaire and Burlaga (1976) and
Burlaga and Lemaire (1977). Their kinetic model of a TD extended Sestero
collisionless model to take into account sheared B-field distributions where
magnetic field lines rotate about k the normal to the TD’s surface.

The one-dimensional model of Roth (1984) (see review in Roth et al., 1996)
is the first one in the literature that takes into account simultaneous large
perpendicular shears of the plasma flow and of the B-field. Using this one-
dimensional model and assuming an empirical model of the solar wind flow
around the magnetopause based on satellite observations, DeKeyzer and Roth
(1997a, 1997b, 1998) predicted which region of the magnetopause correspond
to equilibrium configuration for a given B-field rotation.

The TD models of the magnetopause are only valid for steady state flow
in the magnetosheath when the total pressure balance between inner and
outer plasmas and fields has been achieved (Mead and Beard, 1964; Schield,
1967; Sotirelis and Meng, 1999). Satellite measurements show examples of
magnetopause crossings for which the magnetopause can be approximated
by a tangential discontinuity (Papamastorakis, 1984).

In ”open” magnetospheric models geomagnetic field lines interconnect or
reconnect over a larger portion of the magnetopause surface, B · k �= 0,
and the magnetopause (MP) is then better approximated by a rotational
discontinuity (RT). Experimental observations show also examples of MP
crossings when the magnetopause can be approximated by a RT (Lee and
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Kan, 1982; Berchem and Russell, 1982; Sanchez and Siscoe 1990; Phan and
Paschmann, 1996a,b) . The kinetic solutions for the Vlasov equilibrium
problem of a rotational discontinuity have not yet been resolved.

In MHD theories a TD is a nonpenetrable surface: mass and energy
transport across this surface is not possible unless some instabilities disrupt
the sheet and ”open” it to the external flow (Petchek, 1964; Kiendl et al.,
1997 ). In the view of MHD approximation a rotational discontinuity may be
penetrable provided a peculiar, antiparallel magnetic field distribution exists
at the magnetopause such that an anomalous process, called magnetic re-
connection, may act to transfer plasma from outside into the magnetosphere
(Dungey, 1961; Vasyliunas, 1975; Pudovkin and Semenov, 1985). The mag-
netic reconnection mechanism is based on the ”frozen-in” field concept that
implies complete coupling between the convection of plasma and ”motion”
of magnetic field lines.

Impulsive entry of plasma inside the magnetosphere

Lemaire (1977, 1985) and Lemaire and Roth (1978, 1991) have proposed
the impulsive penetration mechanism as an non-steady state alternative pro-
cess for the steady-state ”closed” and ”open” magnetospheric models under
debate at that time (Dungey, 1961; Axford and Hines, 1961).

A magnetosheath plasma irregularity (or plasmoid) impacting on the
magnetopause with an excess density and/or bulk velocity with respect to
the background plasma has an excess of the tensor of the momentum flux
density given by :

∆P = m∆nV V + mn∆ (V V ) + ∆p

(in the rest of the Thesis vector quantities are notated with bold fonts; tensor
variables are notated with a double bar on top). As a consequence of its ex-
cess momentum the plasma element penetrates the magnetopause and moves
inside the magnetosphere. The polarization drift of ions and electrons sus-
tains a polarization electric field that enables the forward motion (Schmidt,
1960, Lemaire, 1985).

Figure 3 shows a schematic view of the distribution of the electric field
in the plane normal to the magnetic field. Inside the magnetosphere the
plasmoid is braked by two competing processes: (i) adiabatic breaking due
to the conservation of the average magnetic moment of ions and electrons
(Lemaire, 1985) and (ii) non adiabatic (Joule) breaking by short circuiting
of the polarization electric field in the resistive (ohmic) ionosphere (similar to
the process simulated in the laboratory by Baker and Hammel, 1965). The
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Figure 3: Schematic illustration of a cross (xOy) section through an impul-
sive penetrating plasmoid at the dayside magnetopause. Differential drifts
(grad-B and polarization) sustain the convection electric field. Space charge
layers can exist for time scales less than that associated with the depolariza-
tion rate. Adapted from Echim and Lemaire (2002a).

edges of the impacting plasmoid are sites of gradients of the velocity and/or
density in direction parallel and perpendicular of the magnetic field.

The model of impulsive penetration is not constrained to the Chew-
Goldberger-Low fluid approximation and does not rely on a peculiar magnetic
field distribution. Reviews of the impulsive penetration model were proposed
by Lemaire and Roth (1991) and Echim and Lemaire (2000).

Experimental data at high latitudes detected the propagation of magne-
tosheath plasma blobs across the magnetopause, inside the magnetosphere
(Lundin and Dubinin, 1985; Woch and Lundin, 1992). A controversial fluid
model of the impulsive penetration was proposed by Heikkila (1982, 1986).

Objectives of Part 1

The first part of the thesis is devoted to numerical integration of test-
particle orbits injected in three different electric field distribution superim-
posed over a magnetic field distribution of a tangential discontinuity.

In case A the electric field is uniform and the magnetic field is sheared
as in the steady-stade reconnection models. In case B we test a non-uniform
distribution of E that conserves exactly the zero order drift. In case C the
electric field distribution is non-uniform and conserves exactly the average
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(over the velocity distribution function) of the magnetic moment. The ob-
jectives of the section devoted to numerical integration of orbits are:

• to study the dynamics of the test-particle in regions where the mag-
netic field is equal to zero and to compare it with the dynamics of the
corresponding first order guiding center;

• to identify the magnetic and electric field distribution that lead to a
non-adiabatic acceleration of particles in a localized region where B = 0
and can therefore be called a region of reconnection or merging;

• to study the effect of magnetic shearing on the particle and guiding
center orbits injected into non-uniform E-field distributions;

• to study the dynamics of test-particle and its corresponding first order
guiding center injected into E-field distributions proposed theoretically
by the model of the impulsive penetration.

Objectives of Part 2

The dynamics of test-particles is a first approximation to the plasma flow
only when the particle density is very small and the binary and collective
interactions between particles can be completely neglected. The orbits of
individual charges can then be considered as “tracers” of the global dynamics
of the collisionless rarefied plasma (Longmire, 1963; Karlson, 1962, 1963). In
general, however, the collective interactions of plasma particles cannot be
neglected and a self-consistent treatment must therefore be considered. This
is precisely the objective of Part 2.

We give a self-consistent, kinetic description for a two-dimensional flow
across a magnetic field distributions of a plasma formed by electrons and
protons. The main objectives of Part 2 are :

• to find the velocity distribution function for each species, electron and
proton, describing the transition from two-dimensional moving plasma
to stagnant plasma regime;

• to compute analytically the moments of the VDF and to develop the
appropriate numerical method to solve the Maxwell equations for com-
puting the self-consistent electromagnetic potentials;

• to check the kinetic model and the numerical method by simulating the
case of the one-dimensional Sestero Tangential Discontinuity;
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• to compute the self-consistent distribution of the electric and mag-
netic potential, of the electric and magnetic field and of the plasma
density and bulk velocity for boundary conditions corresponding to a
non-uniform, two-dimensional plasma flow.



10 INTRODUCTION



Part I

Motion of charged particles
across sheared electric and

magnetic fields
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Chapter 1

Equation of motion and field
distribution

This section describes the system of equations that will be integrated numer-
ically as well as the electric and magnetic field distributions that will be used
in these numerical experiments.

1.1 Equation of motion for charged particle

and its associated guiding center

The equation of motion of a particle of mass mα and electric charge qα is
given by:

r̈ =
qα

mα
(E + ṙ × B) + g (1.1)

where r is the position vector of the particle, E and B are the electric
and magnetic fields (can be nonuniform and time-dependent), and g is the
total non electromagnetic (in general gravitational) force per unit mass.
An analytical solution of equation (1.1) for general non-uniform and non-
stationary fields is generally not available. Throughout this study the non-
electromagnetic force will be neglected as well as the time dependence of the
electric and magnetic fields. Indeed in the region of the magnetopause the
gravitational force and binary collisions can be neglected. The equation of
motion (1.1) is solved numerically for different one-dimensional distributions
of E and B.

The magnetic field is assumed strong enough or the electric current den-
sity carried by the charge is small enough so that B is not perturbed by the
current carried by the moving test particle. It is also assumed that B is not
rapidly changing with time and in space, i.e. both types of Alfven conditions

13
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are satisfied. The electric field intensity is also assumed to be sufficiently
weak such that E/B is much smaller than the velocity of the particle.

1.1.1 Larmor gyration

The simplest possible solution of equation (1.1) is found in the case of a
vanishing electric field and a uniform and steady-state magnetic field. If the
initial parallel velocity of a particle (whose species is indexed with α) is zero
then its trajectory is two-dimensional: it is a circle confined in the plane
perpendicular to B whose radius is equal to:

rLα =
mαV⊥
qαB

(1.2)

where mα and qα are the mass and charge of the particle. The period of
gyration on the circle is equal to:

TLα =
2πmα

qαB
(1.3)

If the particle has an initial non-zero velocity in the direction of B then the
orbit is three-dimensional: it is a helix centered on a magnetic field line.

1.1.2 Alfvén conditions

It is Alfven (1940) who, inspired by the pioneering work of Störmer (1907,
1913), gave a first perturbative analysis of the dynamics of the charged par-
ticle in non-uniform magnetic field. In Alfven’s own words: ”... if a charged
particle (mass=m, charge=e, energy E = E‖+E⊥) moves in a magnetic field
H and [conditions] are satisfied, it is convenient to substitute the spiraling
particle with a small >>equivalent magnet<< which is antiparallel to the
magnetic field and has the moment

µ =
E⊥
H

.

This moment remains constant during the motion”(Alfven, 1940). Alfven’s
small magnet has been later on called the ”guiding center” of the particle’s
motion (Alfven, 1953). The instantaneous center of curvature of the trajec-
tory (i.e. the center of the oscillatory circle tangent at each point to the
actual trajectory) should not be confused with the guiding center which is
the origin of a non-Galilean frame of reference.

The conditions that need to be fulfilled in order for the guiding center
approximation to be valid were given by Alfven and are listed below:



1.1. NEWTON-LORENTZ AND FIRST ORDER DRIFT 15

1. very smooth spatial variation of the magnetic field with respect to the
ion Larmor radius (first type of Alfven condition):

rL|∇B| � B (1.4)

2. very slow time variation of B with respect to the Larmor period (second
type of Alfven condition):

TL
dB

dt
� B (1.5)

3. the longitudinal advancement of the particle must be much smaller
than the radius of curvature R of the magnetic line of force (third type
of Alfven condition):

rL

v‖
v⊥

� R (1.6)

4. the non-magnetic force g must be much smaller than the Lorentz force
(fourth type of Alfven condition):

mg � eBv⊥ (1.7)

The conditions above outline the framework of Alfven’s perturbative theory.

1.1.3 Guiding center equation of motion

The mathematical formalism for treating a classical perturbation theory ex-
isted before Alfven(1940). Indeed Born (1936) developed a formalism for
treating quasi-periodic motions. More formal derivations of the guiding cen-
ter approximation were proposed only later on by Kruskal (1962) and oth-
ers. A deductive analysis starting from the first principles was given later
by Northrop (1963), and this is the work that we will follow in treating the
dynamics of the guiding center in the first order approximation.

The equation of motion of the guiding center is obtained by substituting
in equation (1.1) the following expansion:

r = rgc + rL (1.8)

As illustrated by figure (1.1), r is the position of the particle, rgc is the
position of the guiding center (Alfven’s ”small magnet”) and rL is a vector
from the guiding center’s position to the particle position whose length is
equal to the Larmor radius defined by (1.2). In the first order approximation
the perpendicular component of the velocity of the particle in the guiding
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gcr

Larmor
circle

L
Particle

center
Guiding

r
B

r

Figure 1.1: Guiding center position, Larmor radius and particle position with
respect to the local magnetic field line. Adapted from Northrop (1963).

center frame is evaluated as the difference between particle’s instantaneous
velocity and the zero order drift velocity:

w⊥(r) = v⊥ − vgc0⊥ (1.9)

The vector Larmor radius is determined by:

rL =

(
mα

qαB2

)
B × w⊥ (1.10)

Assuming that the Alfven conditions (1.4)-(1.7) are satisfied, rL is much
smaller than the scale of variation of E and B. Northrop (1963) showed that
the first order Taylor expansion of equation (1.1) about rgc is given by:

r̈gc + r̈L =
qα

mα
{E + rL · ∇E + (ṙgc + ṙL)×

[B + rL · ∇B]} + O(ε2) (1.11)

where O(ε2) defines second order terms in rL/r.
In a reference system whose z-axis is parallel to B, the Larmor circle is

confined in the xOy plane. Since the average of rL, ṙL and r̈L over a Larmor
period is equal to zero, the average over a Larmor period of equation (1.11)
is equal to:

< r̈gc >=
qα

mα
[E + (< ṙgc > ×B(rgc))] − µα

mα
∇B + O(ε2) (1.12)
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where µα = mαw⊥2/2B is the magnetic moment. This is the basic differential
equation that determines the acceleration of the guiding center’s motion.

1.1.4 First order perpendicular drift

Taking the vectorial product of equation (1.12) with b̂, the unit vector parallel
to B one obtains after some algebra:

< ṙgc,⊥ >=
E × b̂

B
+

µα

qα

(
b̂ × ∇B

B

)
+

mα

qα

(
< r̈gc > ×b̂

B

)
+ O(ε2) (1.13)

where in the first order approximation < r̈gc > the acceleration of the guiding
center, is defined by:

< r̈gc >=
d

dt

[
E × b̂

B
+ b̂

(
< ṙgc > ·b̂

)]

where d/dt = ∂/∂t + vgc0⊥ · ∇ is the Lagrange derivative.
The first order drift in the direction perpendicular to the magnetic field

is determined by :

< ṙgc,⊥ >=
E × B

B2
+

mαw⊥2

2qαB3
B × ∇ (B) +

mαv‖2

qαB4
B × (B · ∇) B +

mαv‖
qαB3

B × (UE · ∇) B +
mα

qαB2
B × d

dt

(
E × B

B2

)
(1.14)

The first term corresponds to the zero order (or electric) drift:

vgc0⊥ = UE =
E × B

B2
(1.15)

The following three terms in (1.14) are first order terms proportional to rL

or ε. The second term in (1.14) corresponds to the gradient-B drift, the third
term and fourth term corresponds to the inertial drift. In stationary fields
and when the electric field is weak the third term is dominant. It corresponds
to the curvature drift. The curvature drift is identically equal to zero when
magnetic field lines are straight lines as in TDs where B(x) is a function of
x only. Indeed in this case (B · ∇)B is equal to zero.

The last term in (1.14) corresponds to the polarization drift; it is often ig-
nored in the first order guiding center approximation, when vgc � V⊥ (Banos,
1965). The polarization drift will be however considered here although it is a
second order term and under some circumstances it may be small compared
to the gradient-B drift and/or curvature drift. Schmidt (1960) and Lemaire
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(1985) have emphasized that the small polarization drift is essential in trans-
porting charges across magnetic field lines and producing inside the plasma
an internal polarization electric field, Ep, which is perpendicular to B. It is
only recently that the role of the polarization drift has been recognized by
the MHD plasma physicists. Vasyliunas (2001) recognized that the polar-
ization drift maintains the forward motion of plasma flows across magnetic
fields and sustains the polarization electric field that drives the convection of
plasma with the velocity UE (eq. 1.15).

The values of w⊥, B and ∇B in (1.14) must be evaluated at the position
of the guiding center, rgc, instead of the position r of the particle. The
differences resulting from these approximations are second order corrections
which will be neglected in the (first order) guiding center approach.

Note that for a planar, one-dimensional tangential discontinuity (TD) the
gradient-B drift velocity is perpendicular to the magnetic field direction and
parallel to the surface of the TD.

1.1.5 First order parallel drift

Generally the guiding center has also a non-zero parallel velocity in the direc-
tion of the magnetic field. Its value is found by computing the scalar product
of equation (1.12) with b̂:

< r̈gc,‖ >=
qα

mα
E‖ − µα

mα

∂B

∂s
+ UE ·

(
∂b

∂t
+ vgc,‖

∂b

∂s
+ UE · ∇b

)
(1.16)

where b is the unit vector in the direction parallel to the magnetic field, s is
the curvilinear coordinate along the magnetic field line and µα = mαV⊥2

2B
is

the magnetic moment of the particle.

1.2 Electric and magnetic fields distribution

In the following we describe the magnetic and electric field distributions used
in the numerical integration of test-particle trajectories. Inductive effects are
disregarded, since the electromagnetic fields are assumed stationary in all our
case studies. The contribution of the particle charge and drift to the space
charge density and to the electric current density is assumed negligibly small
everywhere.
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Figure 1.2: Sheared magnetic field across a tangential discontinuity (from
Roth et al. 1996)

1.2.1 B-field distribution

We consider a stationary magnetic field that depends on a single spatial
coordinate, x. Let us first consider a magnetic field distribution for which
Bx = 0 and for which the components By and Bz are a function of x given
by the following equation :

B(x) =
B1

2
erfc

(
x

L

)
+

B2

2

[
2 − erfc

(
x

L

)]
(1.17)

where the complementary error function is defined by:

erfc(x) =
2√
π

∫ ∞

x
e−t2dt (1.18)

with erfc(∞) = 0, erfc(0) = 1 and erfc(−∞) = 2 (Abramowitz and Stegun,
1964). Here, B1 and B2 correspond to the magnetic intensity at x = −∞
and x = +∞ respectively. At x = 0, B = 1

2
(B1 + B2). The By and Bz

components of B1 and B2 can both be different from zero.
This particular dependence of B on x is not essential for this study; it

is dictated by the need to use a mathematically simple model of a sheared
B-field distribution. The magnetic field distribution adopted here is similar
to that of a tangential discontinuity (TD) for which the value L is the char-
acteristic scale length (along the x-axis) over which the B-field components
change significantly. The B-field distribution is prescribed, it is not com-
puted self-consistent as in the kinetic models of Sestero (1964), Lemaire and
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Burlaga (1976), Roth (1978, 1984), Lee and Kan (1979), Roth et al. (1996)
or in chapter 4 of this thesis.

The magnetic field distribution assumed in steady state reconnection the-
ories can be considered as a limiting ideal case for which the magnetic field
changes from B1 at x = −∞ to B2 = −B1 at x = +∞ and becoming equal
to zero at x = 0, i.e. inside a neutral sheet where B = 0; this neutral sheet
corresponds to the neutral line generally considered in reconnection models,
e.g. the ”open” magnetospheric model of Dungey (1961).

1.2.2 E-field distribution

Let us first consider a uniform electric field, indeed is closest to the case
considered in steady-state reconnection models.

Case A: uniform electric field

B1

2B

E A

E A

E A

E A

x

z

y
1

2
y

x

z

TD

Figure 1.3: Superposition of a sheared magnetic field (illustrated by black ar-
rows) of a tangential discontinuity and a uniform electric field (blue arrows).

The simplest electromagnetic field distribution is given by the superposi-
tion of a uniform electric field:

E(x) = EA = ct. (1.19)

and the ”sheared” B-field distribution (1.17). This is an electromagnetic
field distribution where the parallel component of E may have a nonzero
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component:
E‖ = E · B �= 0

i.e. when one of the condition on which MHD theories are based is violated
and when reconnection takes place. Its role will be discussed in section 2.1.
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B

B

Figure 1.4: Superposition of a sheared magnetic field of a tangential dis-
continuity and a non-uniform electric field. B (solid black arrows) rotates
and increase from ”left” to ”right” side of the discontinuity; when B rotates
about the Ox-axis the vector E (solid blue arrows) rotates also and satis-

fies everywhere the condition E · B = 0 and
∣∣∣E×B

B2

∣∣∣ = UE1; the convection

velocity (red arrows) is everywhere parallel to the Ox direction.

Case B: non-uniform electric field conserving UE

Unlike in the previous case A, one can assume that the direction of E(x)
remains perpendicular to B(x): i.e. the condition E · B = 0 is satisfied
everywhere. So far we did specify the orientation of the electric field vectors
(shown in blue in fig. 1.4) but not yet the distribution of their modulus, E(x),
as a function of x. We assume this distribution could be any continuous func-
tion of x without further discussion of the origin of any particular function
adopted. We will consider two particular limiting cases that are different
from the uniform electric field (case A’, see below) for which steady-state
reconnection occurs.

In case B we assume that the electric field intensity, E(x), is such that
the electric drift UE(x) = UE1 is constant:

EB(x) = −UE1 × B(x) (1.20)
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UE1 is parallel to the Ox axis and independent of the coordinate x. This
implies also that the polarization drift, fourth term in equation (1.14), is
everywhere equal to zero. When the B-field rotates around the Ox axis, the
E-field vector rotates by the same angle and E(x)/B(x) is independent of x.

Case C: non-uniform electric field conserving µ

In case C we will assume that E⊥B everywhere and that E(x) is chosen
such that the magnetic moment of electrons, µ−, and ions, µ+, drifting across
the TD is an adiabatic invariant. This is precisely the E-field distribution
expected to exist inside of a plasmoid or plasma element moving across a
non-uniform magnetic field satisfying the Alfven conditions (Schmidt,1960;
Lemaire, 1985).
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Figure 1.5: Electric field (solid blue arrows) conserving the average magnetic
moment of ions traversing the sheared TD magnetic field. It illustrates the
situation when the particle is stopped at point (A) where its initial convection
energy has been completely transformed into gyromotion perpendicular to
the magnetic field B.

When the magnetic moment is conserved

µ± =
m±|v⊥ − UE|2

2B
= ct. (1.21)

with UE defined by equation (1.15), the following equation is valid (Lemaire,
1985):

1

2

(
m+ + m−)UE

2(x) +
(
µ+ + µ−

)
B(x) = ct. (1.22)
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where the bars over quantities indicate averaging over the velocity distribu-
tion functions of electrons or ions. The electric field, EC(x), in case C is
determined from :

EC(x) = −UE(x) × B(x) (1.23)

The function UE(x) is determined such that µ++µ− is a constant independent
of x:

µ+ + µ− =
1

B0

[
1

2
m+(w⊥+)2 +

1

2
m−(w⊥−)2

]
0

def
=

(m+ + m−) w⊥0
2

2B0
(1.24)

where w⊥0
2 is considered here as a free input initial parameter in the nu-

merical integration of the particle orbit and guiding center path. It will be
further called initial averaged thermal velocity.

In the following chapter we give the results obtained by integrating numer-
ically the orbits of test-particles injected into these non-uniform distributions
of the electromagnetic field.
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Chapter 2

Numerical orbits of
test-particles injected into the
sheared electromagnetic field of
a 1D tangential discontinuity

We integrate simultaneously the system of equations of motion of the particle
and of its guiding center (gc) :

d2r

dt
=

qα

mα

[
E +

dr

dt
× B

]
(2.1-a)

drgc,⊥
dt

= vgc,⊥ (2.1-b)

d2rgc,‖
dt2

=
dvgc,‖

dt
(2.1-c)

where the right hand side of the equations (2.1-b) and (2.1-c) were defined
by eqs. (1.14) and (1.16) respectively. In the simplified geometry of a
one-dimensional, planar TD illustrated in figure 1.2, the curvature drift is
equal to zero. In this case equations (1.14) and (1.16) are reduced to simpler
expressions. The perpendicular drift and parallel acceleration of the guiding
center become:

vgc,⊥ =
E × B

B2
+

mαw⊥2

2qαB3
B × ∇ (B) +

mαv‖
qαB3

B × (UE · ∇)B +

mα

qαB2
B × d

dt

(
E × B

B2

)
(2.2-a)

dvgc,‖
dt

=
qα

mα
E‖ (2.2-b)

25
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In the simulations discussed in this chapter the test-particle is injected
on the left hand side of the TD, at the initial position r1 = (x1, 0, 0) with
an initial velocity equal to ṙ1 = v1⊥x̂ + v1‖b̂ where x̂ is the unit vector

parallel to the Ox direction, b̂ is the unit vector in the direction of the
local magnetic field. B1 = (0, B1y, B1z) and B2 = (0, B2y, B2z) are the
asymptotic fields of the distribution (1.17). E1 = (0, E1y, E1z) is the electric
field intensity at x = x1; it is also an initial value for integration. Indeed,
E1/B1 determines the perpendicular velocity of the guiding center at x = x1;
the parallel velocity of the gc is equal to v1‖, the parallel velocity of the
particle at x = x1. Thus x1, v1⊥, v1‖, B1y, B1z, E1y, E1z are free parameters
that are inputs of the numerical integration code. We will work with the
dimensional equation in order to obtain results easier to apply to the physical
space in the magnetopause region.

The role of the ”adiabaticity” parameter (see below) is formally played
by ε = mα

qα
, the ratio between mass and charge of the test-particle (Northrop,

1963). The initial conditions for all the simulations discussed here are in-
troduced in Table 2.1. The differential equations (2.1-a)-(2.1-c) have been
integrated by the Cash-Karp-Runge-Kutta (CKRK) fifth order algorithm
with adaptive step size (Press et al., 1992) and is briefly described in the
Appendix.

Table 2.1: Initial conditions for the integration of test-particle orbits
Fig./Case L B1y B2y B1z B2z E1y E1z v1⊥ v1‖ α

2.1/A′ 103 0 0 −3 +5 −0.3 0 3 0.5 1800 n
2.2/A 103 +2 +6 −3 +5 −0.3 −0.2 3 0.5 950 n
2.4/A 103 +2 +5 +3 +7 −0.3 −0.2 3 0.5 100 p
2.5/B′ 103 0 0 −3 +5 −0.3 0 3 0.5 1800 p
2.6/B 103 +2 +6 −3 +5 −0.3 −0.2 3 0.5 950 p
2.8/B 105 +2 +6 −3 +5 −0.3 −0.2 3 0.5 950 p
2.7/B 103 +2 +5 +3 +7 +0.3 −0.2 3 0.5 100 p

2.11/C ′ 103 0 0 −3 +5 −0.3 0 3 0.5 1800 n
2.12/C ′ 103 0 0 −3 +5 −0.7 0 4 0.5 1800 p
2.13/C 103 +2 +6 −3 +5 −0.9 −0.6 5 0.5 950 p

B1y, B1z, B2y, B2z = asymptotic values (in nT ) of B;
E1y, E1z = initial values (in mV/m) of the electric field;
v1⊥, v1‖ = initial components (in 102 km/s) of test-particle velocity;
α = angle of shear across the TD;
L = scale-length of the TD (in km);
p: indicates a penetrating orbit, n: indicates a non-penetrating orbit
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2.1 Case A: uniform electric field

When EA = 0 the particle spirals along an helicoidal trajectory centered on
the local magnetic field line. Its guiding center drifts in planes parallel to
the TD surface.

When EA �= 0 the particle drifts across B. The zero order drift velocity
has also a component normal to the TD. The initial velocity of the guiding
center is equal to:

vgc0‖ = v0‖
vgc0x = vgc0⊥ = UE1 = EA/B1 (2.3)

Since the E-field and B-field distributions are stationary the polarization drift
velocity (fourth term in eq. 2.2-a) can be transformed into :

mα

qαB2
B × [(UE · ∇) UE ] = −mαUE

2

qαB3
B × ∇B (2.4)

2.1.1 Antiparallel B-field distribution

Figures 2.1 c, d show two projections of the 3-D trajectory of the test-proton
for the initial conditions specified in table 2.1. The magnetic field is zero at
x = 0 (figure 2.1 a) where the Bz component changes sign from a negative
(“Southward”) value to a positive (“Northward”) value. The By component
is everywhere equal to zero. The electric field is everywhere perpendicular to
B: thus E‖ = 0. This electric and magnetic field distribution is quite similar
to that considered in MHD steady-state reconnection models since B = 0
at x = 0. Note that here B = 0 in the whole yOz plane not only along an
X-line as in the reconnection model of Dungey (1961). (This special case is
labeled case A’ )

The insert of figure 2.1 e shows that close to x = 0 where B = 0 the

velocity of the guiding center diverges. Indeed, UE = E×B
B2 → ∞ when

B → 0. The integration of the guiding center trajectory is then interrupted.
This constitutes a mathematical singularity of the first order guiding center
equation, similar to that occuring at the X-line in MHD reconnection models
where the convection velocity, UE, also becomes infinitely large. However,
the integration of the exact equation of motion of the particle continues since
the actual velocity of the particle does not diverge where B = 0. There is no
true physical singularity, but a mathematical one both in the first order gc
approximation and MHD approximation.

The proton oscillates in the region centered on x = 0, and its pitch angle
tends asymptotically to 900. The particle moves parallel to the current sheet
and oscillate about the plane where B = 0.
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Figure 2.1: case A′; panels show: a) the B-field distribution; b) the E-field
distribution; c) the xOy projection of trajectories: particle, guiding center (ygc),
and averaged gc (< ygc >); d) gives the xOz projections; panel e) shows the
velocities of the particle (vx) and gc (vgc,x); panel f) shows the changes of By and
Bz (solid thick line) and of Ey and Ez (dashed thick line) as ”seen” by the drifting
particle while it moves across the TD.
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Similar results were obtained previously by Speiser (1965, 1967) and
Speiser et al. (1981) in their studies of the motion of charged particles at
the neutral sheet of the magnetotail where B reverses. The downward os-
cillatory motion of the particle observed in the xOz projection of the orbit
(figure 2.1 d) is due to the initial non-zero parallel velocity of the particle.
In this case v‖ remains constant during the whole simulation time.

In the region where the magnetic field tends to zero the particle is accel-
erated by the electric field in the −Oy direction as along X-lines in MHD
reconnection models. The electrons and ions can be accelerated respectively
in the +Oy and −Oy direction to any energy by the electric field, EA. This
is a configuration that can produce jetting of energized charged.

2.1.2 Sheared B-field distribution

When a non-zero component By is added in equation (1.17), the B-field does
not vanish at x = 0 nor at any other point. The B-field rotates around and
all along the Ox axis. The orbit of a test-proton injected into such a B-field
distribution is shown in figure 2.2. The total angle of rotation, or shear angle
in the case simulated in figures 2.2 a-f is equal to α = 950. The particle is
accelerated in the direction parallel to the magnetic field (see figure 2.2 e).
The parallel component of the electric field ”seen” by the particle increase
along its orbit due to the rotation of B with respect to the uniform E-field.
When B becomes exactly parallel to E (and E⊥ = 0) the advancement in
the direction normal to B stops and the particle gyrates around the field line
of ”maximum penetration” (x ≈ 500 km).

The pitch angle decreases asymptotically towards 00. This would be an
interesting way to produce thin sheets of accelerated particles and at the same
time to inject them into the loss cone along polar cusps. The location of the
field line of ”maximum penetration” depends on the relative orientation of
B and E vectors but not on the location of the reversal of the Bz component
as in case A′. This is shown by the ”hodogram” of B and E in figure 2.2 f.

Since there is no point where B = 0, the convection velocity and guiding
center velocity does no more diverge, unlike in case A′. The gc trajectory
could be integrated over the whole time interval, as show figures 2.2 c, d.
Nevertheless, the guiding center path failed to follow exactly the average
particle orbit because rL/L ≈ 1 and the first type of Alfven condition (eq.
1.4) is then not satisfied. The insert of figure 2.2 c shows that the sharp
gradient of B around x = 0 produces the offset between the gc path and the
exact trajectory.
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Figure 2.2: Case A: same panel distribution as in figure 2.1 but for a higher
shear-angle α. The advancement in the Ox direction stops at x ≈ 500 km
where the magnetic field is parallel to the uniform E-field and E×B/B2 = 0;
the particle is then accelerated in the parallel direction.
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Figure 2.3: Case A: same panel distribution as in figure 2.1 but with By �= 0
and a large magnetic shear angle, α. Different colors correspond to different
initial energies of the three pairs ion-electron. Each electron is initialized
with the same energy as the corresponding ion.
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Figure 2.4: Case A: same panel distribution as in figure 2.1 but for a small
magnetic shear angle α.
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The orbits of three pairs of ions and electrons with different initial energies
are plotted in figure 2.3. The ions are deflected in the −Oy direction, the
electrons deviate in the +Oy direction. A large number of such electrons
and protons can carry the appropriate diamagnetic current density parallel
to the surface of discontinuity such that µ0J = ∇ × B.

When the magnetic field never becomes exactly parallel to the uniform
electric field the particle moves in the Ox direction without being stopped.
Such an example is given in figures 2.4 a-f in the case of a small magnetic
shear angle (α = 100). The parallel component of the electric field is smaller
than in the simulation shown in figure 2.2; it accelerates moderately the
particle. The perpendicular component of the electric field is everywhere
different from zero; it drives the particle and the guiding center across B-
field lines. The particle penetrates all through the magnetic barrier and
reach the right side of the transition region, as shown in figures 2.4 c-d. Its
average velocity is slowed down when traversing the discontinuity as shows
the phase space plot given in fig. 2.4 e. On the other hand its gyro velocity
increases. In this case the guiding center path follows closer the averaged
particle’s position (see panels 2.4 c-d).

In summary, the numerical integration of equations (2.1-a)-(2.1-c) with a
constant electric field illustrate the divergence of the first order drift in the
case of an antiparallel distribution of B. Equations (2.1-b) and (2.1-c) for
the motion of the guiding center, have a point of singularity at x = 0 where
B = 0; rL → ∞ and therefore the first Alfven condition is violated since rL÷
L 	 1. Both the guiding center and the ideal MHD approximations break
down where B = 0. None of these approximations of plasma physics can be
then used to describe the actual trajectory of a particle as the superposition
of a Larmor gyromotion plus a first order drift.

The equation of motion of the particle (2.1-a) has no mathematical singu-
larity and can be numerically integrated — the result is a classical oscillatory
motion about the surface of discontinuity. The velocity of the particle itself
does not experience any anomalous/explosive energization at x = 0 where
B = 0. The motion in the direction perpendicular to B stops at a ”maximum
penetration” distance where B ‖ E and E × B/B2 = 0.

In the case of B-field distributions having a small angle of rotation (or
magnetic shear) there is a constant acceleration of the particle parallel to
the B-field lines, but the motion across magnetic field is stopped nowhere.
The test-particle drifts then all across the TD or the “magnetic barrier”, e.g.
the magnetopause. Test-electrons and test-protons injected simultaneously
with different energies are diverted in opposite directions, parallel to the TD
surface which corresponds to a kind of magnetopause Chapman-Ferraro layer
(Chapman and Ferraro, 1931).
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These examples of magnetic and electric fields show that in the case of
a uniform electric field, the relative orientation of B with respect to E and
the overall magnetic shear angle determine the distance a particle can move
across a region of sheared magnetic field.

2.2 Case B : Non-uniform E-field conserving

the zero order drift

This subsection discusses the results obtained by integrating numerically the
trajectory of the test-particle injected into a non-uniform sheared distribution
of the magnetic field given by (1.17) and the E-field described by (1.20).

2.2.1 Antiparallel B-field distribution

First we will inject the particle into the antiparallel B-field distribution with
B = 0 and Bz changing sign in x = 0. The results, further referred to as
case B’, are shown in figures 2.5. The first two panels (figures 2.5 a-b) show
that when the Bz component changes sign, Ey changes sign also. By and Ez

are equal to zero everywhere.
According to (1.20), although B takes zero value at x = 0, the zero order

drift remains finite in the vicinity of x = 0 plane:

lim
x→0

EB(x)

B(x)
= UE1 (2.5)

Figure 2.5 e shows indeed that the average of the particle velocity has a
constant value in the simulation domain and does not diverge at x = 0.
Nevertheless, the first order guiding center velocity, vgc, diverges (see the
insert of figure 2.5 e). Indeed, the gradient-B drift velocity diverges at that
point because it is proportional to |∇B|/B3. The integration for the gc orbit
then stops at x = 0 where, as in the case A′, a mathematical singularity
occurs in the first order drift approximation.

The integration continues, however, for the exact equation of motion of
the particle since there is no singularity in this equation where B = 0. Unlike
in the previous case A′, in case B′ both Bz and Ey reverse sign at x = 0.
Thus the particle can now cross the point of fields reversal as show figures
2.5 c-d. In the region around the discontinuity the average of the particle’s
velocity varies but retrieves its initial value when the particle drifts across
the TD into the region of asymptotically uniform fields (figure 2.5 e). The
difference between the two antiparallel distributions is evident: while in case
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A′ the non-divergent trajectory of the particle oscillates around the neutral
plane, in the case B′ the actual trajectory of the particle proceeds beyond
the plane where B = 0.

2.2.2 Sheared B-field distribution

In figures 2.6-2.10 are given the numerical trajectories corresponding to
magnetic field distributions that have a non-zero By component. All these
numerical integrations have in common the fact that, like in case B′, the
test-particle penetrates all the way through, into the region beyond the dis-
continuity. Since there is no null point in the B-field distribution, the tra-
jectory of the guiding center does not diverge; it traces the average orbit of
the particle better than in case B′.

Figures 2.6 c and d show the orbit of the test-proton injected into a
B-field distribution that has a total magnetic shear angle of 950. The tran-
sition region has here a scale length of the same order as the Larmor radius
of the test-particle thus violating Alfven’s condition 1.4. As a matter of
consequence the guiding center path departs more and more from the ac-
tual trajectory of the particle as one can observe in figures 2.6 c and d
at x > 3000 km. The gyration energy of the particle decreases slightly at
the traversal of the discontinuity surface (see, figure 2.6 e). The magnetic
moment decreases also. Nevertheless, the zero order (electric) drift velocity
remains uniform and is a good approximation of the actual average of the
particle velocity.

A test-proton with the same initial energy has been injected into a mag-
netic field distribution with a smaller magnetic shear angle, α ≤ 60. Figures
2.7 a-f give the results of the numerical integration. The value of B increases
from 4 nT at the left side to 9 nT at the right hand side of the discontinuity.
The electric vector rotates by the same angle α as the B vector. Although
the characteristic scale length of the discontinuity is the same as in the case
A figures 2.7c-d show that here the gc path follows more closely the actual
trajectory of the particle.

The scale length of the discontinuity can increase such that it becomes
much larger than the Larmor radius of the test-particle. This is the case for
the results given in figures 2.8 a-f. They illustrate an example of adiabatic
motion satisfying the Alfven condition (1.4). Figures 2.8 c-d shows that the
guiding center path and mean trajectory coincide fairly well.

In order to illustrate the effects of mass and charge of the injected particle,
we have injected simultaneously three test-electrons and three test-protons.
In a first numerical experiment the electron and proton of each pair have the
same initial thermal energy: KTe0 = KTi0 (K - Boltzmann constant).
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Figure 2.5: Case B′: the first two panels show a) Magnetic field distribution;
b) Electric field distribution; panel c) gives the xOy projection of trajectories:
particle (y), guiding center (ygc), and averaged gc (< ygc >); panel d) gives xOz
projections; in panel e) is given the phase space plot for particle and gc; panel f)
shows the B and E fields as ”seen” by the drifting particle.
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Figure 2.6: Case B - large magnetic shear angle , α ≈ 950. The distribution
of the graphs in the six panels is the same as in figure 2.5. The initial energy
of the test-proton is equal to 15 eV .
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Figure 2.7: Case B - small magnetic shear angle (α ≤ 60); the distribution
of the plots in the six panels is the same as that of figure 2.6
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Figure 2.8: Case B - moderate magnetic shear angle and adiabatic motion
of a 15 eV proton; the distribution of graphs in the six panels is the same as
in figure 2.6
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Figure 2.9: Case B: orbits of three protons and three electron. The panels
shows the same graphs as in fig. 2.5; gc path is not shown. Each pair ion-
electron is injected in the same point with the same initial ”thermal” energy,
KTe0 = KTi0. The initial velocity of the guiding center of all particles:
vgc = UE = 100 km/s.
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Figure 2.10: Case B: orbits of three protons and three electrons of differ-
ent energies. In this case each pair electron-ion is injected with the same
”thermal” velocity, vp0 = ve0. The initial velocity of the guiding center for

the six particles is equal to vgc = UE = 100 km/s.
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In the example given in figures 2.9 a-f the initial velocity of the guiding
center has a value of vgc = 100 km/sec in the direction perpendicular to the
magnetic field. The ensemble of three electron-proton pairs simulates then
a non-diamagnetic, collisionless, rarefied plasma moving across B-field lines
with the convection velocity UE = vgc.

The initial energy of the three electron-proton pairs is equal to
52 eV , 460 eV and 1.3 keV respectively. The magnetic and electric field
distribution given in figures 2.9 a-b produces a separation of test-particles
according to their energy and charge. Indeed, figures 2.9 c-d illustrates how
the electrons deviate in the negative sense of the Oy axis. The test protons
deviate in the opposite direction. This charge separation depends of course
on the energy : the largest deflection is observed for the particles with the
larger initial energy.

Figures 2.10 a-f show the results of another numerical integration of
the orbits of three electron-proton pairs. As in the previous case the guiding
center velocity of each particle is vgc = 100 km/s in the Ox direction. Instead
of having the same initial energy, the electron and proton of each pair have
the same initial injection velocity, ve0 = vp0. The three values of the initial
velocity are 100, 300 and 500 km/s respectively. Thus the electrons have
smaller gyration energies (mew

2
⊥/2) than in the previous simulation. Indeed

one can observe a smaller deviation of the electrons in the negative direction
of Oy and a larger deviation of protons in the positive direction. A charge
separation is produced during propagation across the sheared B-field and
E-field distributions but it is reduced compared to the previous simulation.
All the test-particles drift forward across the TD and penetrate all together
inside the right hand side where the fields are uniform.

These results may be extrapolated to a collisionless, diamagnetic plasma
drifting across a sheared B-field distribution with a uniform velocity UE.
The simulations discussed above indicate that an electromagnetic field dis-
tribution can be imagined such that plasma particles drift all together with
uniform velocity normal to a sheared B-field distribution. The particles pen-
etrate inside the magnetosphere without the process of reconnection often
invoked to describe the physical processes operating at the magnetopause.

The numerical integrations performed with the sheared B-field distribu-
tion and the E-field distribution of the case B can be summarized as below.
In the case of an antiparallel B-field distribution with a neutral plane where
B = 0 the value of the guiding center drift velocity diverges at the neutral
plane, although the zero order drift velocity remains finite. Although this
constitutes a mathematical singularity for the first order drift approximation
the actual trajectory of the particle can be integrated all the way through.
The particles drift across TD for a large range of the magnetic shear angles
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when the Alfven conditions are satisfied or not.
The E-field distribution tested in case B produces a charge separation

inside the discontinuity; the guiding center velocity of the electron drift is
opposite to that of the positively charged ions. This combination of electric
and magnetic field enables plasma transport across magnetic field with a
uniform and constant convection velocity, UE .

2.3 Case C : Non-uniform E-field conserving

the average magnetic moment

The next electric field distribution that is tested by numerical integration
of test-particle orbits is that described in subsection 1.2.2 as case C. We
remind that this E-field distribution is defined such that E is perpendicular
to B everywhere. The intensity of the electric field is computed at each point
along the trajectory such that the magnetic moment of the test-particle is
conserved and the following relation holds true for each value of x:

m+ + m−

2

(
E1yB1y + E1zB1z

B2
1y + B2

1z

)2

+
(
µ+ + µ−

)√
B2

1y + B2
1z =

m+ + m−

2

(
EyBy + EzBz

B2
y + B2

z

)2

+
(
µ+ + µ−

)√
B2

y + B2
z (2.6)

where E1y, E1z, B1yB1z are the asymptotic values of the E and B fields on the
left side (i.e. initial values for the numerical integration) and Ey, Ez, By, Bz

are the values of the fields all along the orbit. The electric field at the starting
point is determined by:

E1 = −vgc1 × B1 (2.7)

where vgc1 is the initial velocity of the guiding center.
The first term in both sides of (2.6) is related to the energy associated

with the drift velocity of the particle while the second term corresponds to
the gyration energy. The equation (2.6) determines how the translational
energy is transformed into gyration energy when the particle penetrates into
the TD while conserving its magnetic moment invariant. Demidenko et al.
(1967,1969) explained their laboratory experiments by this mechanism which
later on was generalized by Lemaire (1985) for sheared B-field distribution.

If the magnetic field intensity increases with x, equation (2.6) implies
that the electric field intensity necessarily decreases. When the value By

and/or Bz of the right hand side of equation (2.6) are large enough such that(
µ+ + µ−

)√
B2

y + B2
z can become equal to the value of the left hand side,
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the electric components, Ey, Ez will necessarily become equal to zero such
that (2.6) is satisfied. In this case the particle will not be able to penetrate
all the way through across the TD and magnetic barrier.

2.3.1 Antiparallel B-field distribution

The first numerical integration corresponds to case C ′. The antiparallel mag-
netic field distribution satisfies the condition: By = 0. The B-field distribu-
tion has a null point, B = 0, at x = 0 when Bz changes sign from negative
(”Southward”) to positive (”Northward”) values. This is a magnetic field
topology similar to those already used in the cases A′ and B′.

Figures 2.11 a-f illustrate the results obtained for a proton having an
initial energy equal to ≈ 430 eV . The magnetic field increase from B1 = 3 nT
on the left hand side to B2 = 5 nT at the right side; the only one non-
vanishing component, Bz, changes sign at x = 0. The initial velocity of the
guiding center is vgc1 = 100 km/s and the initial electric field intensity is

equal to E1 =
√

E2
1y =

√
(vgc1B1)

2 = 0.3 mV/m.

At x ≈ 500 km the magnetic field intensity increases enough such that
the gyration energy equals the initial total energy of the particle. When this
occurs the electric field intensity computed from (2.6) is equal to zero as
figure 2.11 b shows. This is also the location where the forward motion of
the particle is stopped.

The zero order (electric) drift velocity goes to zero at x ≈ 500 km where
the energy of the drift motion has been completely converted into gyroenergy.
The velocity of the guiding center diverges in x = 0 where B = 0 and the
gradient-B drift velocity increases to infinity. The integration of the first
order drift equations stops. Therefore, the applicability of the first order
guiding center theory breaks down again at x = 0. As in the previous
two cases, A′ and B′, this is only a mathematical singularity where the gc
approximation breaks down but. The exact equation of motion of the test-
particle is not singular and can be integrated.

The test-particle advancement in the Ox direction is stopped at the ”max-
imum penetration distance”, xM = 500 km. The projections of the trajectory
illustrated in figures 2.11 c-d show that its final gyration is centered on the
magnetic field line localized at xM . The particle gets trapped within a sheath
of one Larmor radius width and oscillates about the plane x = xM .

Though the orbit looks similar to that illustrated in case A′, the mech-
anism which produces it is different. Since in case A′ the electric field was
uniform and non-vanishing, there was a non-vanishing electric force at x = 0
(where B = 0) that accelerated the test-particle in the Oy direction. In sec-
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tion 2.2 we argued that this acceleration would produce thin current sheets
of accelerated particles or jetting. In case C ′ at x = xM where the electric
field vanishes, the electric force acting on the particle tends to zero, but the
magnetic field intensity BM is not equal to zero. In the absence of the elec-
tric force, the Lorentz force acting on the right hand side of the Bz reversal
point drives the particle back towards the discontinuity. No acceleration (or
jetting) is expected in this case (see 2.11 e).

The particle can penetrate the discontinuity when the gyration energy,
µB2, at the right hand side of the discontinuity is smaller than the initial total
energy of the particle at the left side. This condition can be accomplished by
increasing the left hand side term of eq.(2.6). This is precisely what has been
done to obtain the results shown in figures 2.12 a-f . The initial convection
energy has been increased by increasing the initial velocity of the guiding
center from 100 km/s to 250 km/s. Thus the initial value of the electric
field has also been increased to E1 = 0.75 mV/m.

The test-particle penetrates through the discontinuity as illustrated in
figures 2.12 c-d. The electric field decreases across the discontinuity but
keeps a finite value as shown by figure 2.12 b. Figure 2.12 e shows that the
particle is decelerated during the traversal of the discontinuity.

The guiding center velocity diverges again at x = 0 where B = 0,
i.e. where the gyroradius becomes infinitely large and where the Alfven
conditions are violated. This is illustrated by the insert of figure 2.12
e. As in all previous simulations with antiparallel distributions of B, the
mathematical singularity of the first order drift approximation does not cor-
respond to a physical singularity of the actual motion of the test-particle.

2.3.2 Sheared B-field distribution

When one adds a non-zero component, By1 = 2 nT , the minimum value
of the initial convection energy needed for the particle to move across the
magnetic barrier is increased.

Figures 2.13 a-f show an example. The magnetic field intensity increases
from B1 = 3.5 nT to B2 = 7.5 nT . The initial value of the gc velocity is equal
to 300 km/s; the initial value of the electric field is equal to E1 = 1.1 mV/m.
The trajectory of a ”penetrating” particle is shown in figures 2.13 c-d.

Prior to the interaction with the discontinuity, the electric field is so
intense that the projections of the particle’s orbit in xOy and xOz planes
are prolate cycloids. However at x = 0 the guiding center velocity in the
direction normal to the TD is slowed down.
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Figure 2.11: Case C ′ - non-penetrating proton trajectory : panel a) gives the
B-field distribution; panel b) gives the E-field distribution; panel c) shows the xOy
projection of particle, guiding center, and averaged gc trajectories; panel d) shows
the xOz projections; panel e) gives the (x, vx) phase space plot for particle and
guiding center; panel f) shows the B and E fields as ”seen” by the drifting proton
of 430 eV .
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Figure 2.12: case C ′ - penetrating proton trajectory; the distribution of the
plots in the six panels is similar to figure 2.11
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Figure 2.13: case C - penetrating proton trajectory injected into a B-field
distribution having a large angle of shear; the six panels show the plots of
the same variables as figure 2.11
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Figure 2.14: case C - three penetrating protons and electrons across a sheared
B-field distribution; the six panels give the distribution of the same variables
as in figure 2.11
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Figure 2.13 e shows clearly that when the particle enters the region of
increased B-field it experiences an increase of the gyration (kinetic) energy.
At the same time the convection energy and consequently the velocity of
advancement in the Ox direction decrease. The calculated guiding center
path does not track the average of the actual orbit of the particle as shown
in figures 2.13 c-d. The reason for this mismatch is that the scale length of
the discontinuity, L, is comparable to the Larmor radius of the test-proton
and as a matter of consequence the Alfven condition (1.4) is not satisfied.

Additional particle simulations for magnetic field gradients whose charac-
teristic scale length, L, is much larger than the local Larmor radius demon-
strate that the particle cannot penetrate beyond the point where the gyration
energy becomes equal to the initial total energy even when the Alfven con-
ditions are strictly satisfied (Echim, 2002b; Echim and Lemaire, 2003).

Assuming that the electric field distribution of case C is produced inside a
moving non-diamagnetic plasma irregularity the results discussed here can be
used to understand the interaction of the solar wind with the magnetosphere.
They illustrate at a kinetic scale the mechanism of plasma penetration across
magnetic field barriers proposed by Lemaire (1985). In order to penetrate
into the magnetosphere a plasmoid needs to have a sufficiently large momen-
tum density to pass through the magnetic barrier at the magnetopause. The
results of case C indicate that the penetration takes place for any magnetic
shear angle and/or relative orientation of B on both sides of the magne-
topause, provided that the plasmoid has enough initial momentum.

In order to illustrate the mass and charge effects figures 2.14 a-f show
the results obtained for three pairs of electrons and protons having different
initial energies and momentum. The magnetic field is sheared and its inten-
sity increases from 3 nT to 5 nT over a distance equal to 5000 km. The
initial velocity of the guiding center is equal to 300 km/s. The electric field
intensity decreases from an initial value E1 = 1.3 mV/m to 0.75 mV/m. All
the protons and ions have enough initial energy to pass through the discon-
tinuity and to enter the right hand side of the TD. Tracing the numerical
trajectories of particles shows that the deflection of the particles from their
initial drift direction depends on their energy: the particle with the highest
energy is deflected most.

The deflection in the y-direction, perpendicular to B is due to the gra-
dients of the magnetic and electric fields and depends on the charge and
velocity of the particle in the gc frame. This deflection contributes an elec-
tric current in the Oy direction. In case of a moving plasma element the Jy

current evidenced above is called a displacement current. At the front edges
of the penetrating plasma element it this current that carries continuously
charges to the lateral edges of the moving plasma element. The displace-
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ment current sustains the polarization electric field that drives the forward
motion of plasma. The role of the displacement current has been theoreti-
cally outlined by Schmidt (1960) and Lemaire (1985) in their kinetic theories
of plasma motion across magnetic field.

To summarize this subsection, we point out that the electric field distri-
bution described by equations (2.6) and (2.7) simulates the polarization field
produced by charge separation at the edges of solar-wind plasmoids. It is
based on the theoretical models proposed by Demidenko et al. (1967, 1969)
and generalized by Lemaire (1985) for sheared magnetic fields. The numeri-
cal results discussed in the subsection devoted to case C are relevant for the
plasma particles forming the ”core” of the impulsively penetrating plasmoid.
Indeed, test-particles considered here are assumed not to contribute to the
space charge and current density.

The numerical results illustrate both quantitatively and qualitatively the
mechanism of adiabatic breaking of the particle injected into B-field distri-
bution having a positive gradient (dB/dx > 0). This mechanism is based
on the conservation of the first adiabatic invariant imposing that the con-
vection energy of the particle is transformed into gyration energy. Provided
the particle has enough initial total energy, it is braked in regions of increas-
ing total magnetic field but can penetrate all the way through the region of
non-uniform B-field.

In the case of an antiparallel distribution of the magnetic field, there is a
neutral plane, x = 0, where the magnetic field intensity is equal to zero. As
in the previous two cases the exact equation of motion of the particle has no
singularity at the neutral plane. It is only the first order drift approximation
that is (mathematically not physically) singular at x = 0. In case C ′ no
jetting of particles is observed on the contrary to the case A′.

2.4 Summary and conclusions

We have performed a set of numerical simulations by integrating numerically
the trajectory of test-particles injected into the magnetic field distribution of
a one-dimensional tangential discontinuity. The main feature of this distri-
bution is that the magnetic field vector is confined into the yOz plane and
Bx = 0 everywhere. The particles are ”test-particles” in the sense that their
motion does not perturb the electromagnetic field.

Previous studies of test-particles trajectories injected into non-uniform
B-field distributions have pointed out the role of Bn, the normal component
of B, in driving the particles across rotational discontinuities. When Bn is
different from zero the particle dynamics is non-integrable from the point of
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view of fundamental dynamics, i.e. there are only two independent constants
of motion (Chen and Palmadesso, 1986; Büchner and Zelenyi, 1989 ).

In our work we emphasize the role of the electric field superimposed onto
a B-field distribution when Bn = 0. Indeed, we have tested three different
distributions of the electric field: (A) uniform, (B) conserving the zero order
drift, and (C) conserving the magnetic moment.

The main objective of this part was to show that at the location where
B = 0 (or at an X-line in reconnection models) drifting particles do not nec-
essarily experience anomalous acceleration or 900 deflections as assumed to
be the case in the diffusion region around the X-line. As our results demon-
strate, the exact equations of motion of charged particles are not singular at
an X-line or in a plane where B = 0. It is only the MHD convection velocity,
UE = E ×B/B2 that diverges as well as the Larmor radius of the particles.
The actual velocity does not diverge. The drift path of the guiding center is
not necessarily deflected at right angles.

True acceleration of particles occurs in a steady B-field distribution when
and where the electric field intensity has non-zero component parallel to the
magnetic field lines. True reconnection occurs also when the electric field
intensity has a non-zero component parallel to the X-line. From the six case
studies simulated here only one (case A′) reproduce the particle dynamics
predicted by the steady-state reconnection model. Indeed in case A′ we have
retrieved an acceleration of the particles in the direction normal to the neutral
plane. This corresponds to the formation of thin current sheets and jetting
at the reconnection site where B = 0 and E �= 0.

In the other five cases the test-particle simply moved across the field
reversal region and penetrated inside the right hand side of the TD along a
distance that depends on the initial energy of the particle and the electric and
magnetic field distribution. In case A the electric field had a finite parallel
component throughout the simulation domain, not only in the neutral plane
as in the reconnection models. The particle experiences a true acceleration in
the direction of the magnetic field. In cases B′, B, C ′ and C the electric field
was everywhere perpendicular to the magnetic field. In all these cases we
found electric field distributions that enable mass transport across a sheared
B-field distribution.

These results demonstrates that the topology of the electromagnetic field
prescribed by the steady-state reconnection models is by no means necessary
to transport plasma from the magnetosheath into the magnetosphere. We
give here five alternatives that may also exist at the magnetopause. It re-
mains for some of them to be tested using comprehensive experimental data
collected in the magnetopause region.
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Chapter 3

Kinetic model of a
two-dimensional sheared
plasma flow

In the previous chapter it has been investigated the dynamics of test-particles
injected into a non-uniform electromagnetic field, like that existing in the
magnetopause when this surface can be approximated by a tangential dis-
continuity. The one-dimensional distributions of E and B fields used for
numerical integration were prescribed. It has also been assumed that the
test-particles do not perturb the background fields. In the following chap-
ters some of these limitations/approximations will be relaxed. Electric and
magnetic field distributions will be determined as a solution for the system
of equations that couples the plasma velocity distribution functions (Vlasov
equation) and the electromagnetic field (Poisson-Ampere equations).

Instead of integrating individual trajectories we will study an ”ensemble”
of positive ions (protons) and electrons. Each species is described by its own
velocity distribution function (VDF). In the MHD (or zero order) approxima-
tion of plasma physics it is considered that this ensemble of charged particles
–the plasma– is drifting across magnetic field lines with an average velocity
equal to the convection velocity :

UE =
E × B

B2

where E and B are the total electric and magnetic field, including the ex-
ternal as well as the internal (plasma) contribution.

In the kinetic approximation the average velocity –or bulk velocity– of
plasma is computed from the partial average velocities ,< vα >, of each
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component ion species and electrons respectively :

V =

∑
α mαnα < vα >∑

α mαnα

UE can be considered an approximation of V only when the electric and
magnetic field distributions are uniform and steady state. Whenever the
electromagnetic fields have gradients and/or shears, this approximation is
not valid anymore.

In the following we will study the problem of a two-dimensional non-
uniform streaming of a plasma across the magnetic field. Both E and B
field can be non-uniform. An external magnetic field, B ≡ (0, 0, B0) is
assumed but the perturbation produced by internal plasma currents will be
also calculated. In the discussion that follows below “perpendicular” and
“parallel” refer to the direction of the total magnetic field (including the
plasma internal contribution).

The case of plasma flow across magnetic field with the perpendicular bulk
velocity varying in the direction perpendicular to B and V has been studied
by the one-dimensional kinetic models of tangential discontinuities (Sestero
1966; Roth, 1984; Roth et al., 1996). We will call this type of variation of the
bulk velocity a perpendicular shear since the perpendicular velocity varies
only in the direction perpendicular to the magnetic field. Experimental data
from laboratory and space show that the perpendicular component of the
plasma bulk velocity can vary also in the direction parallel to the magnetic
field. This type of variation of the plasma bulk velocity will be called then a
parallel shear. In the general case both types of shear can be present. This
situation will be called a mixed shear.

In this study we consider a two dimensional plasma flow. The bulk ve-
locity is oriented in the Ox direction, V = (Vx(y, z), 0, 0). We will look for
a kinetic solution that gives a non-uniform bulk velocity that is sheared in
both directions: perpendicular and parallel to the magnetic field. Kinetic
solution for the parallel shears of velocity were not reported yet in the litera-
ture. The self-sustained electromagnetic field, including the electric parallel
component, will be computed starting from Vlasov and Maxwell equation.
The geometry of the problem is inherently two-dimensional.

This chapter is organized as follows: section 3.1 introduces briefly the
main concepts used by the plasma kinetic theory; section 3.2 describes the
geometry and the 2D boundary conditions to be fulfilled by the fields; section
3.3 gives the velocity distribution function that is solution of the Vlasov
equation; in section 3.4 the moments of the VDF are computed analytically
by integrating the Vlasov solution in the velocity space.
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3.1 The Vlasov-Poisson-Ampere system of

equations

The global plasma dynamics may be described in terms of macroscopic quan-
tities like mass and particle density, bulk velocity and momentum, energy,
etc., that are ”observable” by physical instruments like detectors, probes,
magnetometers, etc. It is important to keep in mind however that the gen-
erally called ”global/macroscopic/fluid” behavior of plasma is intrinsically
related to its microstructure or kinetics, i.e. the velocity distribution func-
tion (VDF) of the electrons and each ion species.

The equation describing the evolution of the VDF (f) in a collisionless
plasma has been given by Vlasov (see Vlasov, 1961) by applying the general
Liouville theorem for a collisionless plasma :

∂f

∂t
+ v · ∂f

∂r
+

q

m
(E + v × B) · ∂f

∂v
= 0 (3.1)

where the E and B fields include both the external component and the inter-
nal component produced by the electric charge density and electric currents
of the plasma itself. For a mixture of positive ion species and electrons, each
component species, α, will be described by its own velocity distribution, fα,
that satisfies equation (3.1).

The Vlasov equation (3.1) is a nonlinear partial derivative equation. The
charge and current density are nonlinear functions of fα; they are determined
by the moments of the velocity distribution functions. Once the velocity
distribution function is determined from (3.1), one can compute the spatial
distribution of the charge and current density by integrating over the entire
velocity space:

ρ(r, t) =
∑
α

qα

∫ ∫ ∫
fαd3v (3.2)

j(r, t) =
∑
α

qα

∫ ∫ ∫
vfαd3v (3.3)

where d3v = dvxdvydvz is the infinitesimal volume element of the velocity
space.

The electromagnetic field satisfies Maxwell equations: the electric poten-
tial distribution satisfies Poisson’s equation and the magnetic vector potential
distribution satisfies Ampere equation:

∇2Φ = − 1

ε0
ρ (3.4)

∇2A = −µ0j − ε0
∂E

∂t
(3.5)
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where ρ and j are the charge density and current density of the plasma itself.
In a steady state situation, ∂/∂t = 0, the electric and the magnetic

intensities are defined as:

E = −∇Φ (3.6)

B = ∇ × A (3.7)

Of course the other two Maxwell equations must also be satisfied:

∇ × E = 0 (3.8)

∇ · B = 0 (3.9)

(3.8) is automatically satisfied due to (3.6). Equation (3.9) is also satisfied
due to eq. (3.7).

In the remainder of this thesis we will search for a steady-state solution
of the system of equations (3.1) and (3.4)-(3.5) with the plasma charge and
current densities calculated from (3.2)-(3.3).

3.2 Equations and two-dimensional bound-

ary conditions for the electromagnetic

fields

Let us briefly state the problem we want to solve in this chapter: we assume
that a driving force sustains a stationary plasma flow in the direction Ox,
normal to the magnetic field (see figure 3.1). The bulk velocity of the plasma
is non-uniform: it varies along the direction of the magnetic field (z-direction
in figure 3.1) generating a parallel shear. The plasma bulk velocity may also
vary in the direction perpendicular to the magnetic field (y-direction in fig.
3.1) generating a perpendicular shear.

3.2.1 Flow and field geometry

The main (external) magnetic field is parallel to Oz, B0 = (0, 0, B0). The
internal plasma currents may produce an additional component, By. There
is an additional condition, Bx = 0 that is satisfied everywhere.

We search the velocity distribution functions of each species (H+ and
electrons in this study) – solutions of the Vlasov equation– and the electric
and magnetic field distributions –solutions of the Maxwell equations– that
satisfy the flow and field pattern described above. The front edge interaction
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z

E

O

y

x

B(y,z)

V(y,z)

(y,z)

Figure 3.1: Field and flow distribution with parallel shear (∂Vx/∂z �= 0) illus-
trated in the case when the plasma magnetic perturbation is very small with
respect to the external magnetic field (By � B0). Dotted lines illustrate the
magnetic field distribution, solid arrows illustrate the plasma bulk velocity
profile that has a maximum in the plane z = 0.

of the flow with the ambient plasma and field is not treated here. As a matter
of consequence the spatial coordinate x is ignorable.

The cross-B propagation of a plasma element sets-up a polarization elec-
tric field which is perpendicular to both B and V . The polarization com-
ponent of the electric field that sustains the plasma advancement in the
direction normal to the magnetic field has been discussed by Schmidt (1960)
and Lemaire (1985) from a microscopic/kinetic point of view. Two-fluid,
non-MHD, models have also treated the polarization electric produced by
the plasma motion across B-field lines (Dolique, 1963; Peter and Rostoker,
1982; Buneman, 1992). Recently the problem of ”what drives what” has
been investigated by Vasyliunas (2001) in the framework of magnetohydro-
dynamics. He reaches the same result as put forward by kinetic theory: the
cross-B flow drives a polarization electric field and not the reverse as pos-
tulated in the ideal MHD where the displacement current is neglected in
Maxwell’s equation (3.5).

The two independent spatial variables considered in this chapter are z and
y. We assume that there is an external magnetic field aligned with z. We
also assume that V , the plasma bulk flow is parallel to Ox but non-uniform;
V is sheared, i.e. it depends on z and y. When the internal contribution of
the plasma currents is taken into account a By component may also exist.
There are two privileged directions in this sheared magnetized plasma flow:
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Oz - the direction of the main magnetic field B0 and Ox - the direction of
the main plasma bulk velocity V . A schematic picture of the geometry of the
flow described above is given in figure 3.1 for the case when the diamagnetic
currents do not modify the external magnetic field.

3.2.2 Maxwell’s equations

Since x is an ignorable coordinate of the problem we can introduce ∂/∂x = 0
in Maxwell’s equations (3.4) - (3.9). For the electric field we obtain :

E(y, z) = (E0, Ey(y, z), Ez(y, z)) (3.10)

where E0 is a constant that necessarily is equal to zero in order to satisfy
the requirement that the plasma flow is aligned with Ox-direction. The only
non-vanishing components of the electric field are Ey(y, z) and Ez(y, z). The
magnetic field distribution is given by

B(y, z) = ∇ × A(y, z)

For the sake of simplification and without loss of generality we assume that
Ay = Az = 0. implying that:

B(y, z) ≡
(

0,
∂Ax(y, z)

∂z
,−∂Ax(y, z)

∂y

)
(3.11)

Under steady-state conditions (ε0∂E/∂t=0) one can write:

µ0J =

(
−∂2Ax

∂y2
− ∂2Ax

∂z2
, 0, 0

)
(3.12)

From equation (3.11) above one can note that

∇ · B = 0

is automatically satisfied. In a steady-state electromagnetic field the equation
(3.8) becomes:

∂Ez

∂y
− ∂Ey

∂z
= 0

and is satisfied due to (3.6). The equations above define the general config-
uration of the fields under the assumptions that ∂/∂x = 0 and ∂/∂t = 0.
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The distribution of the electric, Φ(y, z), and magnetic vector potentials,
A(y, z), are solution of the Maxwell’s equations (3.4) - (3.9) that in 2D read
as below:

∂2Φ

∂y2
+

∂2Φ

∂z2
= − 1

ε0

ρ(y, z) (3.13)

∂2Ax

∂y2
+

∂2Ax

∂z2
= −µ0jx(y, z) (3.14)

with

Ey = −∂Φ

∂y
, Ez = −∂Φ

∂z
(3.15)

By =
∂Ax

∂z
, Bz = −∂Ax

∂y
(3.16)

The solutions of the system (3.13)-(3.14) will be computed in a rectangular
domain of the yOz plane. The boundaries of the two-dimensional simulation
domain are determined by y ∈ [−y∞, +y∞] and z ∈ [−z∞, +z∞] respectively.
Recall that all physical quantities are independent of the x-coordinate which
is ignorable in the rest of this text.

3.2.3 Asymptotic values of fields and potentials.

Boundary conditions

Since in Chapter 4 we will test the 2D kinetic solution by simulating a one-
dimensional case, let us discuss first the asymptotic conditions for a plasma
flow and field depending only on y.

Sestero Tangential Discontinuity

In Sestero one-dimensional model of a tangential discontinuity (TD) all the
quantities vary only with the coordinate normal to the discontinuity surface
(Sestero, 1966). The plasma flow is everywhere perpendicular to B. A
graphical illustration of the flow pattern is given in figure 3.2.

The plasma bulk velocity takes a non-zero value (VL) at the left hand
side of the discontinuity (y = −y∞). The bulk velocity decreases and takes
the zero value at the right hand side (y = +y∞). The transition between
these two asymptotic values is computed self-consistently. In a Sestero TD
the magnetic field is everywhere parallel to the Oz-axis. The intensity of B
is fixed at the two lateral edges: BL = BR = B0.

This asymptotic behavior is also described by the general boundary condi-
tions given in table 3.1. They correspond to a TD that is parallel to the plane
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00−y
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00−z

00+z

B B

y

z

Figure 3.2: Flow configuration of the Sestero Tangential Discontinuity.
Plasma flows in the positive x-direction, out of the page. Plasma bulk ve-
locity is represented by circles whose diameter is proportional to V (y). The
bulk velocity has a maximum at the left hand side (y → −y∞) and decreases
with increasing y, taking zero value at the right side (y → +y∞). Dotted
lines illustrate the B-field distribution. The TD is centered in y = 0.

xOz; the electromagnetic potentials and fields as well as plasma parameters
depend only on y - the coordinate normal to the TD plane.

Not all the boundary values specified in table 3.1 are independent. Indeed,
the boundary values of the convection velocity and magnetic field intensity
determine the boundary values of the convection electric field. Thus at the
left hand side the electric field is oriented parallel to Oy-axis and takes the
value: EL = V0B0. At the right hand side the electric field is equal to zero
since the convection velocity is equal to zero. The parallel component of E
is everywhere equal to zero in a Sestero TD. The profiles of variation for
AB

x (y), AT
x (y), B(y), ΦB(y), ΦT (y), EB

y (y), ET
y (y) and Vx(y) are computed

self-consistently as will be described in the next chapter. The free input
parameters of the boundary conditions are V0 and B0.

In the Sestero TD the electric potential, Φ(y), is computed from the
plasma quasineutrality equation. The non vanishing component of the mag-
netic vector potential is computed from the Ampere equation (3.14) with
the boundary conditions of Robin-type specified in table 3.2. The values of
Ax are specified on the z = ±z∞ boundaries while the derivatives ∂Ax/∂z
are specified on the y = ±y∞ borders. The latter condition is equivalent to
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imposing By = 0 but letting Bz to vary with y. The Sestero TD will be
simulated in Chapter 4 as a test case for our 2D kinetic model.

Table 3.1: Two-dimensional boundary/asymptotic values of the electromag-
netic potentials and fields and of the plasma bulk velocity characterizing a
Sestero-type tangential discontinuity

y = −y∞ y = +y∞ z = −z∞ z + z∞
Φ ELy∞ + φL φR ΦB(y) ΦT (y)
Ax B0y∞ + AL

x −B0y∞ + AR
x AB

x (y) AT
x (y)

B (0, 0, B0) (0, 0, B0) (0, 0, B(y)) (0, 0, B(y))
E (0, EL

y , 0) (0, 0, 0) (0, EB
y (y), 0) (0, ET

y (y), 0)

V (V0, 0, 0) (0, 0, 0) (Vx(y), 0, 0) (Vx(y), 0, 0)

Table 3.2: Robin-type boundary conditions used in the Ses-
tero TD model to solve the Ampere equation (3.14) in the
2 − D domain [−y∞, +y∞] × [−z∞, +z∞] .

y = −y∞ y = +y∞ z = −z∞ z = +z∞
Ax B0y∞ −B0y∞ - -
∂Ax

∂y
- - - -

∂Ax

∂z
- - 0 0

Two-dimensional sheared plasma flow

The asymptotic values and boundary conditions defined in the previous
subsection will be modified to describe the more general case of a two-
dimensional plasma flow.

An illustration of the 2D flow is given in figure 3.3. The asymptotic
values of the electromagnetic fields and velocity for a 2D plasma flow are
given in table 3.3. The boundary value of the plasma bulk velocity at the
left hand side of the simulation domain (y = −y∞) depends on z. In the
computations of chapter 4 the profile of VL(z) is computed self-consistently;
the only constraint is that it takes a maximum value in z = 0. The bulk
velocity decreases and takes the zero value at the right hand side (y = +y∞).
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The transition between the two asymptotic plasma flowing regimes will be
computed self-consistently.

The asymptotic magnetic field is assumed to be parallel to the Oz-axis ex-
cept for the left boundary, y = −y∞, where an additional ByL(z) component
is added. Not all the asymptotic values described in table 3.3 are indepen-
dent. The asymptotic values of the electric field satisfies: EL

⊥ = V L × BL,
EB

y = V B
x (y)B0 and ET

y = V T
x (y)B0. We impose also that the parallel electric

component tends to zero at z = ±z∞.

00−y

00+z

00
+y

00−z

B B

z

y

Figure 3.3: 2D plasma flow across B-field - plasma bulk velocity is every-
where parallel to the positive x-direction, out of the page; it is illustrated by
circles having the diameter proportional to V (y, z). Dotted lines illustrate
the distribution of the external magnetic field. Plasma internal perturbation
of B is not shown but it is self-consistent computed.

The asymptotic conditions for plasma and fields given in table 3.3 define
the mathematical boundary conditions used in Maxwell’s equations. The
electric potential, Φ(y, z) will be determined from the equation of plasma
neutrality. The non vanishing component of magnetic vector potential will be
found from the Ampere equation (3.14) with Dirichlet boundary conditions
specified in table 3.4.

So far we specified the values of the potentials and fields on the boundaries
of the two-dimensional domain. We will now define the charge density and
current density that are the “sources” of the potentials inside the domain.
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Table 3.3: Two-dimensional boundary/asymptotic values of the electromag-
netic potentials and fields and of the plasma bulk velocity characterizing a
2D sheared plasma flow.

y = −y∞ y = +y∞ z = −z∞ z + z∞
Φ −EL(z)y + φL φR ΦB(y) ΦT (y)
Ax B0y∞ + ζ(z) −B0y∞ −B0y −B0y
B (0, BL

y (z), BL
z (z)) (0, 0, B0) (0, 0, B0) (0, 0, B0)

E (0, EL
y (z), EL

z ) (0, 0, 0) (0, EB
y (y), 0) (0, ET

y (y), 0)

V (V L
x (z), 0, 0) (0, 0, 0) (VxB(y), 0, 0) (VxT (y), 0, 0)

Table 3.4: Dirichlet-type boundary conditions used in the 2D
sheared model to solve the Ampere equation (3.14) in the
2D domain [−y∞, +y∞] × [−z∞, +z∞] .

y = −y∞ y = +y∞ z = −z∞ z = +z∞
Ax B0y∞ −B0y∞ −B0y −B0y
∂Ax

∂y
- - - -

∂Ax

∂z
- - - -

3.3 Steady-state kinetic solution of the 2D

sheared flow

The velocity distribution function , fα is generally considered to be the prob-
able number of particles of the species α that are confined in space in a sphere
centered in r having the radius dr and with velocities in the range (v, v+dv),
at time t. In the case of a steady-state two-dimensional problem, with x being
ignorable, the Vlasov equation (3.1) reads as follows :

vy
∂fα

∂y
+ vz

∂fα

∂z
− qα

mα

[
vy

∂Ax

∂y
+ vz

∂Ax

∂z

]
∂fα

∂vx

− qα

mα

[
∂Φ

∂y
− vx

∂Ax

∂y

]
∂fα

∂vy
− qα

mα

[
∂Φ

∂z
− vz

∂Ax

∂z

]
∂fα

∂vz
= 0 (3.17)

where Φ(y, z) and Ax(y, z) are the electromagnetic potentials.
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Equation (3.17) shows that the symmetry of the problem does not elim-
inate the variation of the VDF with any of the velocity components, vx, vy,
vz. Thus the solution of (3.17) shall depend on the three velocity compo-
nents. Indeed, the velocity distribution function of a plasma streaming in
the Ox direction, across the main magnetic field parallel to Oz-axis, is not
gyrotropic (Mahajan and Hazeltine, 2000).

3.3.1 Constants of motion and adiabatic invariant

It is known that the general solution of the steady-state Vlasov equation is
any function of the constants of motion (see, Holt and Haskell, 1965; Delcroix
and Bers, 1994).

In the geometry chosen here rectangular coordinates are appropriate. The
Lagrangian of the charged particle is equal to :

L =
mα

2

(
vx

2 + vy
2 + vz

2
)
− qαφ(y, z) + qαvxAx(y, z) (3.18)

In the case of stationary fields the Hamiltonian H of the charged particle is
a constant of motion:

H =
mα

2

(
vx

2 + vy
2 + vz

2
)

+ qαφ(y, z) (3.19)

Because x is ignorable, the corresponding component of the canonical mo-
mentum, px, is also a constant of motion:

px = mαvx + qαAx(y, z) (3.20)

A thorough analysis of the Hamiltonian dynamics of the charged particle can
be found, for instance, in Lehnert (1964).

As the solution of the Vlasov equation shall depend on all three velocity
components, a third constant of motion is needed to write the solution in
the velocity space and to compute its moments. We therefore introduce
the magnetic moment as an adiabatic invariant that approximates well a
constant of motion when the Alfven conditions (see eqs. 1.4-1.7) are fulfilled.
Considering that the zero order drift velocity has only one non-vanishing
component, UEx, and that B is mainly parallel to Oz-direction, the third
constant of motion is approximated by:

µα =
mα

[
(vx − UEx)

2 + v2
y

]
2B

(3.21)

Any function of the 3 constants of motion, H, px and µ, is a solution of
the Vlasov equation (3.17). In the following we will define the asymptotic
conditions that must be satisfied by the solution.
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3.3.2 Asymptotic values of the velocity distribution

function

In section 3.2 we discussed the boundary values to be imposed onto the
electromagnetic potentials. Additional assumptions must be imposed onto
the asymptotic values of the velocity distribution function in order to remain
consistent with the asymptotic values given in tables 3.1-3.4.

We assume that the plasma is non-moving and in thermal equilibrium
at the right hand side (y = +y∞); thus each component species, α, can be

described by an exponential function of the total energy, fα1 = e
−mα(v2

x+v2
y+v2

z)

2KTα1

whose first order moments (see section 3.4) are all equal to zero (K is the
Boltzmann constant, Tα1 the equilibrium temperature). This type of equi-
librium VDF is known as the isotropic Maxwellian distribution function. At
the left hand side boundary the plasma is moving and each species can be de-
scribed by an exponential function of the energy that gives a uniform average

velocity in the Ox-direction equal to V0, fα2 = e
−

mα[(vx−V0)2+v2
y+v2

z]
2KTα2 . This type

of VDF is known as the displaced Maxwellian distribution function. If the
bulk velocity of the plasma is non-uniform, the displaced Maxwellian does
not satisfy the Vlasov equation and cannot be used to describe the moving
plasma. A more general solution must be found.

Before giving the solution in the whole spatial domain we must define first
the desired asymptotic values of the VDF at the borders of the 2D domain.

Asymptotic values of the VDF for y = ±y∞

The boundary values of the VDF must be consistent with the boundary
values chosen for the electromagnetic potentials and fields. Therefore in the
left side (y = −y∞) the first order moment of the VDF must give a non-
zero plasma bulk velocity in the Ox direction, V L

x , for any z. Note that the
solution given at the reference level (see sect. 3.3.3) fixes the bulk velocity
in y = −y∞ for only one z value, i.e. V L

x (z = 0) = V0.

In the case of a 2D flow, V L
x is a function of z described by the profile

V L ≡ (V L
x (z), 0, 0). For y = +y∞ the plasma must be at rest and the average

velocity equal to zero. The asymptotic behavior on y = −y∞ and y = +y∞
can be expressed in the integral form as below:

lim
y→−y∞

[∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
vxfα(y, z, vx, vy, vz)dvxdvydvz

]
= V L

x (3.22)

lim
y→+y∞

[∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
vxfα(y, z, vx, vy, vz)dvxdvydvz

]
= 0 (3.23)



68 CHAPTER 3. KINETIC MODEL

where V L
x can be a function of z.

Asymptotic values of the VDF for z = ±z∞

The asymptotic values of the VDF in the z direction must be consistent
with the condition that the plasma bulk velocity is sheared in the direction
parallel to B. The plasma bulk velocity must vary asymptotically to V B ≡
(V B

x , 0, 0) for z = −z∞ and to V T ≡ (V T
x , 0, 0) for z = +y∞. Since the

asymptotic average velocities V B and V T may depend on y one can specify
the asymptotic behavior of the VDF in the z-direction in terms of first order
moment :

lim
z→−z∞

[∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
vxfα(y, z, vx, vy, vz)dvxdvydvz

]
= V B

x (3.24)

lim
z→+z∞

[∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
vxfα(y, z, vx, vy, vz)dvxdvydvz

]
= V T

x (3.25)

VB and VT are functions that can depend on y. Thus we have defined the
asymptotic behavior of the Vlasov solution at the borders of the 2D domain.
We will know give the solution in the entire domain.

3.3.3 Solution of the Vlasov equation

In order to give the Vlasov solution in the entire 3D space1 we need to specify
it on a reference plane.

Velocity distribution function in the z = 0 plane

We take the plane xOy as a reference level where we will write the solution
of the Vlasov equation as a function of H, px and µ. In the plane xOy we
define a velocity distribution whose first oder moment gives a plasma velocity
similar to that described in subsection (3.3.2) and the asymptotic conditions
(3.22)-(3.23). Thus we look for a solution of the Vlasov equation that satisfies
in the xOy plane the following conditions:

lim
y→+y∞

fα(y, vx, vy, vz) = fα1(vx, vy, vz) (3.26)

lim
y→−y∞

fα(y, vx, vy, vz) = fα2(vx, vy, vz) (3.27)

with :

fα1 (vx, vy, vz) = Nα1

(
mα

2πKTα1

) 3
2

e
−

mα(v2
x+v2

y+v2
z)

2KTα1 (3.28)

1in the 3D space there is no variation with the x-coordinate
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fα2 (vx, vy, vz) = Nα2

(
mα

2πKTα2

) 3
2

e
−

mα[(vx−V0)2+v2
y+v2

z]
2KTα2 (3.29)

where Nα1, Tα1 are the equilibrium density and temperature of the corre-
sponding species of the asymptotic stagnant plasma; Nα2, Tα2 are the equilib-
rium density and temperature of the corresponding species of the asymptotic
moving plasma. Equations (3.26)-(3.29) describe that in the plane z = 0 the
solution of the Vlasov equation goes asymptotically to a displaced Maxwellian
for y = −y∞ and to an isotropic Maxwellian for y = +y∞. As in the plane
z = 0 the solution depends only on y it is similar to that given in the 1D
kinetic models of the tangential discontinuities of Sestero (1966) and Roth et
al. (1996).

The two asymptotic boundary VDF described by eqs. (3.28)-(3.29) can
be rewritten in terms of the constants of motion:

fα1(H, px) = Nα1

(
mα

2πKTα1

) 3
2

e
− H

KTα1 (3.30)

fα2(H, px) = Nα2

(
mα

2πKTα2

) 3
2

e
−H−pxV0+1

2 mαV0
2

kTα2 (3.31)

A function fα(H, px) that goes asymptotically to (3.30) when y → −y∞ and
to (3.31) when y → +y∞ is given by:

fα(H, µ, px) = g1(H, px)fα1 + g2(H, px)fα2 (3.32)

with the functions gi, i = 1, 2 satisfying:

lim
y→−y∞

g1(px) = 0 , lim
y→+y∞

g1(px) = 1

lim
y→−y∞

g2(px) = 1 , lim
y→+y∞

g2(px) = 0

Since fα1, fα2 and g1, g2 are functions of H and px only, the functions
(3.32) are solutions of the Vlasov equation. These functions need not nec-
essarily to be continuous functions but can be Heaviside step functions like
those used by Sestero (1964,1966) and Lemaire and Burlaga (1976) in their
kinetic models of tangential discontinuities. Lee and Kan (1979) and Roth
et al.(1996) have used complementary error function to define the gi in more
elaborated kinetic models of tangential discontinuities.

In order to keep the system as simple as possible from the mathemat-
ical point of view, in the following we will use Heaviside step functions to
describe the transition of the velocity distribution function from a displaced
Maxwellian to an isotropic Maxwellian.
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Without loss of generality one can also choose the system of reference
such that B0 > 0. In this case, from the boundary conditions given for Ax

in Table 3.1 and Table 3.3, it follows that

lim
y→y∞

Ax = −∞

lim
y→−y∞

Ax = +∞

From eq. (3.20) it follows:

lim
y→y∞

px = lim
y→y∞

qαAx = −sign(qα) · ∞ (3.33)

lim
y→−y∞

px = lim
y→−y∞

qαAx = +sign(qα) · ∞ (3.34)

the signum function being defined as:

sign(t) =

{ −1 if t < 0
+1 if t > 0

(3.35)

The asymptotic behavior of px(y) suggests that the functions gi can be writ-
ten as Heaviside step functions of px. The discontinuous step function, η(t),
is defined as:

η(t) =

{
0 if t < 0
1 if t > 0

(3.36)

Thus we can write the solution of the Vlasov equation in the plane z = 0
as below:

fα|z=0 = η

(
−bα

px√
mαKTα1

)
fα1 + η

(
bα

px − mαV0√
mαKTα2

)
fα2 (3.37)

where bα = sign(qα). With (3.33) and (3.34) one can see that indeed:

lim
y→−∞ fα|z=0 = fα2

lim
y→+∞ fα|z=0 = fα1

thus (3.37) really satisfies the boundary conditions (3.28)-(3.29) or
(3.30)-(3.31).
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General solution

The function given by equation (3.37) is a solution of the steady-state Vlasov
equation in the plane z = 0. It has the remarkable property that it depends
only on the constants of motion H and px plus the parameters V0, Tα1, Tα2,
Nα1, Nα2. Thus the function fα|z=0 defined in the reference plane z = 0
can be mapped to any other point (x, y, z) along particle trajectories that
are characteristics of the Vlasov equation (Delcroix and Bers, 1994). We
can therefore consider that the solution of the Vlasov equation in any point
(x, y, z) is equal to the solution given in (3.37):

fα(H, µ, px) = fα|z=0(H, µ, px) (3.38)

Mapping of the VDF from a reference level in the whole spatial do-
main has been successfully used before in the kinetic theory to develop exo-
spheric models of the solar and polar wind (e.g. Lemaire and Scherer, 1971,
Pierrard, 1997).

In the remainder of this study we will consider a plasma consisting on
electrons and protons with the velocity distributions:

• for electrons:

fe(H, px) = η

(
px√

meKTe1

)
Ne1

(
me

2πKTe1

) 3
2

e
− H

KTe1 (3.39)

+η

(
−px − meV0√

meKTe2

)
Ne2

(
me

2πKTe2

) 3
2

e
−H−pxV0+1

2
meV0

2

kTe2

• for protons:

fi(H, px) = η

(
− px√

miKTi1

)
Ni1

(
mi

2πKTi1

) 3
2

e
− H

KTi1 (3.40)

+η

(
px − miV0√

miKTi2

)
Ni2

(
mi

2πKTi2

) 3
2

e
−H−pxV0+ 1

2
miV0

2

kTi2

The conversion from Cartesian velocity space (vx, vy, vz) to the space of
the constants of motion (H, µ, px) removes the spatial dependence of fα. The
VDF depends now only on the new variables (H, px). Nevertheless in the
space (H, px, µ) the regions effectively ”filled” with particles varies with Φ
and Ax thus with y and z. The boundaries of the regions accessible for
the particles are determined from the conservation laws written for the three
constants of motion (3.19)-(3.21). The problem of accessibility will be treated
in section 3.4.
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The general solution (3.38) satisfies also the boundary conditions (3.22)-
(3.23) and (3.24)-(3.25). Indeed, as will become more clear in the next sec-
tion, the Vx component of the plasma average velocity computed by inte-
grating (3.38) in the velocity space gives a non-zero value. In other words
the general solution describes a plasma having a non-uniform average ve-
locity in the direction normal to the main magnetic field. This velocity is
found self-consistently from 2D boundary conditions imposed on the mag-
netic potential, Ax. Note that in case of a 2D flow the plasma bulk velocity
component Vx(y, z) will be different from V0 everywhere except for the cen-
ter (z = 0) of the left border of our 2D integration domain, where we have:
limy→−y∞ Vx = V0.

The solution (3.38) is general in the sense that it describes the plasma in
each point (x, y, z). It is not unique however. From the infinite number of
possibilities to define positive functions of the constants of motion (all being
solutions of the Vlasov equation) we choose (3.38) because it conveniently
satisfies the criterion of mathematical simplicity. Although given in terms
of simple functions it still satisfies our rather complex asymptotic boundary
conditions required for the electromagnetic field as well as for the plasma
bulk velocity. In the following section we will compute analytically its zero
and first order moments.

3.4 Moments of the velocity distribution

function

Having defined the velocity distribution function (3.38), we can now com-
pute its moments. When the velocity distributions function is given in the
(y, z, vx, vy, vz) variables, the moments of the VDF are defined as below:

Qrst
α (y, z) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
vx

rvy
svz

tfα(vx, vy, vz)dvxdvydvz (3.41)

When the VDF is given in terms of (H, µ) as was shown above, the moments
are computed alternatively as below:

Qrst
α (y, z) =

∫ +∞

−∞

∫ +∞

0

∫ +∞

0

[
[vx(H, µ, px)]

r[vy(H, µ, px)]
s[vz(H, µ, px)]

t×

×fα(H, px)

∣∣∣∣∣D(vx, vy, vz)

D(H, µ, px)

∣∣∣∣∣
]
dpxdHdµ (3.42)

where
∣∣∣D(vx,vy ,vz)

D(H,µ,px)

∣∣∣ is the Jacobian of the transformation from the (vx, vy, vz)

space to the (H, µ, px) space. In (3.42) vx, vy vz must be given in terms of H,
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µ and px from the definitions of the constants of motion (3.19)-(3.21). The
following equations hold true :

vx =
px − qαAx

mα

(3.43-a)

vy = ±
√√√√2µB

mα
−
(

px − qαAx

mα
− UE

)2

(3.43-b)

vz = ±
√

2H
mα

− 2µB

mα

− 2UE

m
(px − qαAx) + U2

E − 2qαφ

mα

(3.43-c)

where UE is the zero order (electric) drift velocity. The ± sign in (3.43-b)
and (3.43-c) indicate the sign to be introduced in the integrals that give the
moments of fα(H, px) when vy and/or vz take negative and positive values
respectively (see section 3.4.2 and 3.4.3). The Jacobian of the transformation
from the variables (vx, vy, vz) to (H, px, µ) is equal to:

Jα =

∣∣∣∣∣D(vx, vy, vz)

D(H, µ, px)

∣∣∣∣∣ = B

m3
αvy(H, µ, px)vz(H, µ, px)

Jα =
B

m3
α

√[
2µB
mα

−
(

px−qαAx

mα
− UE

)2
] [

2H
mα

− 2µB
mα

− 2UE

m
(px − qαAx) + U2

E − 2qαφ
mα

]

In the next chapter the distribution of the electric potential Φ(y, z) is found
from the quasi-neutrality equation which is a good approximation of equation
(3.13). To solve this equation in terms of Φ one needs to determine analytical
expressions of the density of electrons and protons by computing the zero
order moment (Q000

α ) of fe and fi respectively.
Furthermore the magnetic potential Ax(y, z) is a solution of (3.14). To

solve this partial differential equation one needs to determine the analytical
expression of the partial current density jxe and jxi of the electrons and ions.
The current densities are obtained from the first order moments (Q100

α ) of
the two velocity distribution functions, fe and fi respectively.

3.4.1 Accessibility condition

The conservation of the three constants of motion in the case of non-uniform
fields, Φ(y, z), Ax(y, z), defines a range of accessible regions in the physical
space for the particles with a given initial energy. In other words, not all
the particles starting from a ”source” region can reach any point (x, y, z).
The phase space is non-uniformly populated. The regions accessible to the
particles must first be defined. Their boundaries depend on H, the particle
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total energy, px, the canonical momentum component and µ, the magnetic
moment at the reference level, where the VDF is specified. In our case the
reference level is the plane z = 0 where the VDF is given by (3.37).

Accessibility condition in (vx, vy, vz) space

Since the total energy of the particle must be the same at level z = 0 and at
any other point (x, y, z) the following relationship holds:

vx
2|z=0 + vy

2|z=0 + vz
2|z=0 +

2qα

mα

φ0(y) = vx
2|y,z + vy

2|y,z + vz
2|y,z +

2qα

mα

Φ(y, z)

(3.44)
where vx|z=0, vy|z=0, vz|z=0 and φ0(y) are the particle’s velocity components
and the electric potential in a point (y, 0) in the plane z = 0; the notations
vx|y,z = vx(y, z), vy|y,z = vy(y, z), vz|y,z = vz(y, z) have been used for the
velocity components in a point outside the plane z = 0.

From the conservation of the canonical momentum px and of the magnetic
moment, µ, we obtain two additional relationships between the particle’s
velocity components at level z = 0 and their corresponding values at any
”off-plane” point (y, z) :

vx|z=0 +
qα

mα
Ax0(y) = vx|y,z +

qα

mα
Ax(y, z) (3.45)

[vx|z=0 − UE0(y)]2 + v2
y|z=0

2B0

=
[vx|y,z − UE(y, z)]2 + v2

y|y,z

2B(y, z)
(3.46)

where Ax0(y) and Ax(y, z) give the magnetic potential in the z = 0 plane and
in the point (y, z) respectively. UE0(y) and UE(y, z) are the zero order drift
(or convection velocity). UE0(y) satisfies limy→−y∞ UE0 = V0. The convection
velocity, UE(y, z) = |E(y, z) × B(y, z)| /B2(y, z), depends on the local value
of the electric and magnetic field intensities.

From eqs. (3.44)-(3.46) one can determine v2
y|y,z and v2

z |y,z as functions of
vx

2|z=0, vy
2|z=0, vz

2|z=0, φ0(y), Φ(y, z), Ax0(y), Ax(y, z). Thus it is possible
to determine the conditions that must be satisfied by the initial velocity
components of the particle in z = 0 such that the particle reach a point
where the electromagnetic potentials are equal to Φ(y, z) and Ax(y, z). These
conditions are that the functions v2

y|y,z and v2
z |y,z obtained from (3.44)-(3.46)

to take values greater than zero in (y, z):

v2
y|y,z

(
vx

2|z=0, vy
2|z=0, vz

2|z=0, φ0, Φ, Ax0, Ax

)
≥ 0 (3.47)

v2
z |y,z

(
vx

2|z=0, vy
2|z=0, vz

2|z=0, φ0, Φ, Ax0, Ax

)
≥ 0 (3.48)
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The reader should not be confused about the square appearing in v2
y|y,z and

v2
z |y,z. These functions are not necessarily positive. Indeed, depending on

the values of the velocity components in z = 0 and on the values of the
electromagnetic potentials in z = 0 and (y, z), the functions v2

y|y,z and v2
z |y,z

found from (3.44)-(3.46) can take negative values as well. In that case the
point (y, z) is not accessible.

Figure 3.4: Illustration of the integration subspace at z = 0; the parti-
cles whose velocity components are contained within the intersection of the
interior of the two parabolic surfaces reach the point (x, y, z). The two sur-
faces are solutions of (3.49)-(3.50) for arbitrary values of potentials.

After finding explicitly the functions v2
y|y,z and v2

z |y,z the accessibility
conditions (3.47)-(3.48) can be written as below:

v2
y|z=0 − 2

[
∆U(y, z) +

qα

mα

∆Ax(y, z)
]
vx|z=0 + ∆1(y, z) ≥ 0 (3.49)

v2
z |z=0 + 2∆Uvx|z=0 − ∆2(y, z) ≥ 0 (3.50)

where the functions ∆1(y, z) and ∆2(y, z) were defined as :

∆1 = [UE0(y) + UE(y, z)]∆U +
2qα

mα
UE(y, z)∆Ax −

[
qα

mα
∆Ax

]2
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∆2 =
2qα

mα

UE(y, z)∆Ax − 2qα

mα

∆Φ + [UE0(y) + UE(y, z)]∆U

with

∆U(y, z) = UE0(y) − UE(y, z)

∆Ax(y, y) = Ax0(y) − Ax(y, z)

∆Φ(y, z) = Φ0(y) − Φ(y, z)

UE0(y), Ax0(y) and Φ0(y) are parametric functions of the model implement-
ing the boundary values we impose in the plane z = 0 where the VDF was
defined. UE(y, z) is a parametric function providing an initial estimate of con-
vection velocity that varies monotonically with the perpendicular component
of the electric field. Ax(y, z) and Φ(y, z) are the unknown distributions of the
magnetic and electric potentials that have to be computed from the Maxwell
equations and/or quasi-neutrality equation as outlined in Chapter 4.

(a) Integration region in the vx0Ovy0

plane (for vz0 = 0).
(b) Integration region in the vx0Ovz0

plane (for vy0 = 0).

Figure 3.5: Intersections of the parabolic surfaces plotted in figure 3.4 with
the vx0Ovy0 and vx0Ovz0 planes at level z = 0. The hatched regions are the
domain of integration to calculate the number of particles originating from
the plane z = 0 that can reach the point (x, y, z).

The two inequalities (3.49)-(3.50) define in the velocity space (vx, vy, vz)
the subspace containing the velocity components of all the particles that
can reach the point (x, y, z) where the fields take the values Φ(y, z) and
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Ax(y, z). These subspaces of the velocity space are visualized in figures 3.4
and 3.5(a)-3.5(a). The graphics illustrates the situation when the parabolic
hypersurface given by (3.49) is ”interior” to the one determined by (3.50).

In order to find the number of particles that indeed reach this point one
has to compute the zero order moment of the VDF by integrating only over
this subspace. Similar relationships can be found between velocity compo-
nents at any other level (z). A thorough analysis of the classes of particles
determined by the conservation of the total energy and of the magnetic mo-
ment in a convergent geometry of the magnetic field has been done by Lemaire
and Scherer(1970, 1971a, 1971b) and Pierrard and Lemaire (1996) in their
exospheric models of the polar and solar wind.

An alternative to defining the classes of particles of the system as in
the exospheric models, is to find the accesibility conditions in terms of the
constants of motion. The two methods are completely equivalent as was
shown by Liehmohn and Kazhanov (1998) and Kazhanov et al. (1998).

Accessibility condition in the (E, px, µ) space

The condition for the particles to be locally reflected at level z given by
equations (3.48) and (3.50) can be rewritten with the aid of equation (3.43-c)
in terms of the constants of motion as:

H ≥ Hcα (3.51)

where the function Hcα(px, µ, Φ, Ax) is defined as:

Hcα = µB + [px − qαAx(y, z)]UE(y, z) + +qαΦ(y, z) − mαU2
E(y, z)

2
(3.52)

From (3.43-b) the conditions of accesibility of particles in the Oy direction
given in (3.47) and (3.49) can be rewritten as below:

µ ≥ µcα (3.53)

where the function µcα(px, Φ, Ax) is defined as below:

µcα =
mα

2B

[
px − qαAx(y, z)

mα

− UE(y, z)

]2

(3.54)

The last two equations define the regions “populated” with particles in
the (H, px, µ) space. In other words they define the limits of integration, Ecα,
µcα, that must be used to compute the moments of the VDF.
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(a) section in the Hpx plane for µ = 0 (b) section in the Hµ plane for px = 0.

Figure 3.6: Illustration of a possible shape of the integration region defined
by (3.51); arbitrary units and potentials.

Figure 3.7: Illustration of a possible shape of the integration region defined by
(3.51) at level z = 0: intersection with H = 0, arbitrary units and potentials.
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The moments Qrst
α (Ax, Φ) will be computed by integration in the

(H, px, µ) space as below:

Qrst
α =

⎧⎨
⎩ 4

∫+∞
−∞

∫+∞
Hcα

∫+∞
µcα

[
(Vx)

r(Vy)
s(Vz)

t
√

Bfα(H,µ,px)

2m2
α

√H−Hcα
√

µ−µcα

]
dHdµdpx ,

0
(3.55)

where Vx(H, px, µ), Vy(H, px, µ) and Vz(H, px, µ) are the functions (3.43-a)-
(3.43-c) defined by the transformations from the (vx, vy, vy) space into the
(H, px, µ) space. Note the change of the lower bound of the integrals over H
and µ.

Qrst
α is equal to zero whenever at least one of the exponents “s” or “t”

is odd. Indeed, in (3.42) we have obscured the dependence of the veloc-
ity distribution function on the sign of vy and vz as these velocity compo-
nents appeared squared in (3.19) and (3.21). Therefore we have to integrate
separately for each of the four quadrants defined in the vyOvz subspace:
I ≡ (vy > 0, vz < 0), II ≡ (vy > 0, vz > 0), III ≡ (vy < 0, vz < 0),
IV ≡ (vy < 0, vz > 0).

In the integral (3.55), corresponding to each quadrant, the functions Vy

and Vz will take the correct sign given in (3.43-b)-(3.43-c). Thus whenever
the VDF moment implies an integration of an odd power of Vy the integral
corresponding to the quadrants I and II and the integral corresponding the
quadrants III and IV have the same modulus but different signs. Their
sum is equal to zero. Similarly, in case of an integration of an odd power
of Vz then the integral corresponding to the quadrants I and III cancels
the integral over quadrant II and IV . It is only when both powers, s and
t, appearing in the moment Qrst are even that the contributions from all
quadrants add and give the factor 4 in front of the integral in (3.55).

3.4.2 Densities

The number density of the species α is given by the moment Q000
α :

Q000
α = 4

∫ +∞

−∞

∫ +∞

Hcα

∫ +∞

µcα

√
Bfα(H, µ, px)

2m2
α

√H−Hcα

√
µ − µcα

dHdµdpx (3.56)

The following expressions for the electron and ion density are then found:

ni(y, z) =
Ni1

2
e
− eΦ(y,z)

KTi1 erfc

(
eAx(y, z)√
2miKTi1

)
+

Ni2

2
e
− eΦ(y,z)

KTi2 e
eAx(y,z)V0

KTi2 erfc

(
− eAx(y, z)√

2miKTi2

)
(3.57)
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ne(y, z) =
Ne1

2
e

eΦ(y,z)
KTe1 erfc

(
eAx(y, z)√
2meKTe1

)
+

Ne2

2
e

eΦ(y,z)
KTe2 e

− eAx(y,z)V0
KTe2 erfc

(
− eAx(y, z)√

2meKTe2

)
(3.58)

where Ni1, Ni2, Ne1, Ne2 are constant values that can be adjusted such that
(3.57)-(3.58) give the correct asymptotic densities in z = 0, z → +z∞, y →
−y∞, y → +y∞, for ions respectively for electrons. The integrals computed
in order to obtain the densities written above are given in the Appendix.

It can be verified that the analytical moments given above give the cor-
rect particle density for a uniform, stagnant plasma, immersed in a uniform
magnetic field. Indeed, taking V0 = 0 (plasma stagnant everywhere), and
a uniform magnetic field, Ax(y, z) = −B0y, with Φ(y, z) = ΦL = ΦR = 0
(no electric field), Ti1 = Ti2 = Ti, Ni1 = Ni2 = Ni and Te1 = Te2 = Te,
Ne1 = Ne2 = Ne, equations (3.57)-(3.58) give:

ni(y, z) = Ni

ne(y, z) = Ne

since erfc(−x) = 2 − erfc(x). Thus the solutions correctly describe the
plasma in a thermal equilibrium state: the density is uniform throughout
the 3D space.

It is useful to use normalized densities, thus ni and ne can be scaled as
below:

n∗
i1 =

N∗
i1

2
e−τiΦ

∗
erfc (

√
γτiA

∗
x) +

N∗
i2

2
e−τi2Φ∗

e2τi2A∗
xV ∗

0 erfc (−√
γτi2A

∗
x)

n∗
e1 =

N∗
e1

2
eτeΦ∗

erfc (
√

γτeA
∗
x) +

N∗
e2

2
eτe2Φ∗

e−2τe2A∗
xV ∗

0 erfc (−√
γτe2A

∗
x)

(3.59)

The scaling factors for electric and magnetic potential, velocity and the co-
efficients γ, τe, τe2, τi, τi2 are defined below:

Φ = λΦΦ∗, λΦ =
KTe

e

Ax = λAxA
∗
x, λAx =

√
2meKTre

e

V0 = λV V ∗
0 , λV =

√
2KTre

me
(3.60)

γ =
me

mi

, τe =
Tre

Te1

, τe2 =
Tre

Te2

τi =
Tre

Ti1

, τi2 =
Tre

Ti2
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3.4.3 Currents

The partial currents density jxα of the species α is defined as:

jxα = qαnα < vx >α= qαQ100
α (3.61)

where < vx >α is the average velocity of the species α and qα its charge with
algebraic sign. The moment Q100

α is equal to:

Q100
α = 4

∫ +∞

−∞

∫ +∞

Hcα

∫ +∞

µcα

(
px − qαAx

mα

) √
Bfα(H, µ, px)

2m2
α

√H−Hcα

√
µ − µcα

dHdµdpx

(3.62)
The contribution of the four quadrants corresponding to the positive and
negative values of vy and vz are added in this case as discussed in section
3.4.1. After calculating the integrals occuring in (3.62) one finds the following
expression for Q100

i and Q100
e :

Q100
i = Ni2

√
KTi2

2πmi
e
− eΦ(y,z)

KTi2 e
eAx(y,z)V0

KTi2

[
V ∗

0ierfc

(
− eAx(y, z)√

2miKTi2

)
+ e

− (eAx)2

2miKTi2

]

−Ni1

√
KTi1

2πmi
e
− eΦ(y,z)

KTi1 e
− (eAx(y,z))2

2miKTi1 (3.63)

Q100
e = Ne2

√
KTe2

2πme
e

eΦ(y,z)
KTe2 e

− eAx(y,z)V0
KTe2

[
V ∗

0eerfc

(
− eAx(y, z)√

2meKTe2

)
− e

− (eAx)2

2meKTi2

]

+Ne1

√
KTe1

2πme
e

eΦ(y,z)
KTe1 e

− (eAx(y,z))2

2meKTe1 (3.64)

By multiplying the moments Q100
i and Q100

e with the charge of the proton
(+e) and electron (−e), one obtains the corresponding partial current:

jxi = eNi2

√
KTi2

2πmi
e
− eΦ(y,z)

KTi2 e
eAx(y,z)V0

KTi2

[
V ∗

0ierfc

(
− eAx(y, z)√

2miKTi2

)
+ e

− (eAx)2

2miKTi2

]

−eNi1

√
KTi1

2πmi

e
− eΦ(y,z)

KTi1 e
− (eAx(y,z))2

2miKTi1 (3.65)

jxe = −eNe2

√
KTe2

2πme
e

eΦ(y,z)
KTe2 e

− eAx(y,z)V0
KTe2

[
V ∗

0eerfc

(
− eAx(y, z)√

2meKTe2

)
− e

− (eAx)2

2meKTi2

]

−eNe1

√
KTe1

2πme

e
eΦ(y,z)
KTe1 e

− (eAx(y,z))2

2meKTe1 (3.66)

where e is the magnitude (without sign) of the elementary charge
(1.626 × 10−19 C) and the following notations have been used:

V ∗
0i =

√
πmi

2KTi2
V0
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V ∗
0e =

√
πme

2KTe2
V0

The total current is then equal to :

jx = jxi + jxe (3.67)

A simple verification consists in considering the case of a plasma in ther-
mal equilibrium, stagnant and immersed in a uniform magnetic field. Taking
again V0 = 0, Ax(y, z) = −B0y, Φ(y, z) = ΦL = ΦR = 0, Ti1 = Ti2 = Ti,
Ni1 = Ni2 = Ni, Te1 = Te2 = Te and Ne1 = Ne2 = Ne one obtains from the
formulas above the following values:

jxi = 0

jxe = 0

These results are correct since inside the thermal plasma there should be no
current.

The current density can be normalized and one obtains :

j∗xi = Ni2

√
γ

πτi2

e−τi2Φ∗
e2τi2A∗

xU∗
E0

[√
πτi2

γ
V ∗

0 erfc (−√
γτi2A

∗
x) + e−γτi2(A∗

x)2
]
−

−
√

γ

πτi

N∗
i1e

−τiΦ∗
e−γτi(A∗

x)2 (3.68)

j∗xe = −N∗
e2

√
1

πτe2

eτe2Φ∗
e−2τe2A∗

xU∗
E0

[√
πτe2V

∗
0 erfc (−√

γτe2A
∗
x) − e−γτe2(A∗

x)2
]
+

−N∗
e1

√
1

πτe
eτeΦ∗

e−τe(A∗
x)2 (3.69)

where in addition to the scaling factors given in (3.60) we have introduced :

j = λjj
∗, λj = (eN0)

√
2KTre

me
(3.70)

The jαy component of the partial current density is determined by com-
puting the moment:

Q010
α = 4

∫ +∞

−∞

∫ +∞

Hcα

∫ +∞

µcα

{
Vy

√
Bfα(H, µ, px)

2m2
α

√H−Hcα

√
µ − µcα

}
dHdµdpx (3.71)

that is precisely equal to zero because the exponent of Vy is odd, s = 1. Thus
the total protonic and electronic current is equal to :

jyi = 0

jye = 0
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The jz current is found by computing the moment:

Q001
α = 4

∫ +∞

−∞

∫ +∞

Hcα

∫ +∞

µcα

Vz

√
Bfα(H, µ, px)

m2
α

√H−Hcα

√
µ − µcα

dHdµdpx (3.72)

that is equal to zero according to 3.55 since it contains an odd power of
Vz, t = 1. Thus the protonic and electronic partial current densities in the
Oz-direction are equal to :

jzi = 0

jze = 0

It this thus demonstrated that in the geometry of the flow defined above the
only non-vanishing component of the current density is jx = jxi + jxe.

3.4.4 Bulk velocity

In the fluid models of plasma dynamics one assigns to the plasma velocity
the value of the zero order drift or convection velocity, UE. In these models
it is assumed by default that all the ions and electrons move with the same
velocity UE.

In our kinetic model however we consider that the plasma moves with a
velocity determined by average velocity of ions, < vi >, and of electrons,
< ve >. The partial average velocities are computed by integration in the
velocity space of the corresponding VDF, i.e. by computing the zero and first
order moments. We can then define V , the plasma average or bulk velocity,
as below:

V =
mini < vi > +mene < ve >

mini + mene
(3.73)

In the geometry of the flow chosen for this study the only non-vanishing
component of V is Vx. With the definitions (3.57), (3.58), (3.63) and (3.64)
the non-vanishing component of the plasma bulk velocity is equal to:

Vx =
miQ

100
i + meQ

100
e

miQ
000
i + meQ000

e

(3.74)
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Chapter 4

Kinetic numerical models of
sheared plasma flows

The charge and current densities computed in the previous chapter are now
introduced in the right hand side terms of the Maxwell’s equations (3.13)-
(3.14) in order to determine the electromagnetic potentials satisfying the
boundary conditions defined in tables 3.1 and 3.3.

The right landside term of equation (3.13) is equal to the net charge
density. In plasma even a very small charge imbalance, ni − ne, produces
important electric fields. Therefore plasmas in general and space plasmas
in particular have the tendency to remain quasineutral with ne ≈ ni. Fur-
thermore, solving the Poisson equation for a plasma is a difficult numerical
problem since the right landside term is several orders of magnitude smaller
than the left landside, driving numerical instability of the algorithms.

Therefore instead of solving the Poisson equation to determine the electric
potential we will solve the quasineutrality equation:

ni(Φ(y, z)) − ne(Φ(y, z)) ≈ 0 (4.1)

with ni(Φ, Ax) and ne(Φ, Ax) given by (3.57) and (3.58) respectively.

The non-vanishing component of the magnetic vector potential is deter-
mined from the Ampere equation:

∂2Ax

∂y2
+

∂2Ax

∂z2
= −µ0[jxi(y, z) + jxe(y, z)] (4.2)

where jxi(y, z), jxe(y, z) are given by (3.65)-(3.66). Equation (4.2) is subject
to the boundary conditions specified in Tables 3.2 and 3.4

85
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4.1 Numerical method to solve the coupled

Ampére-quasineutrality equations

The solution of the system formed by equations (4.1)-(4.2) is determined
numerically. An equidistant two-dimensional mesh, with My × Nz points is
adopted in the yOz plane. The Ampere equation, which is of Poisson-type, is
discretized using a standard finite difference method (Morse and Feschbach,
1953). With the 5-point Poisson method eq. (4.2) is discretized as below:

−(Ax)j+1,k − (Ax)j−1,k − (Ax)j,k+1 − (Ax)j,k−1 + 4(Ax)j,k =

−∆2µ0[jxi(yj, zk) + jxe(yj, zk)] (4.3)

where Φj,l = Φ(yj , zl) and (Ax)j,k = Ax(yj, zl) are the discrete values of the
non vanishing components of the electric and magnetic vector potentials;
∆ = yj − yj−1 = zk − zk−1 is the step of spatial sampling (assumed equidis-
tant).

The boundary conditions in y = −y∞ and y = +y∞ (labeled BCY ) and
respectively in z = −z∞ and z = +z∞ (labeled BCZ) are also discretized.
The corresponding equations are given below in the general form of the Robin
type boundary condition:

BCY =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y = −y∞ : γ11(Ax)1l + γ21
(Ax)2l−(Ax)1l

∆
+ γ31(Ax)Ml+

+γ41
(Ax)Ml−(Ax)M−1l

∆
= γ51(l)

y = +y∞ : γ12(Ax)1l + γ22
(Ax)2l−(Ax)1l

∆
+ γ32(Ax)Ml+

+γ42
(Ax)Ml−(Ax)M−1l

∆
= γ52(l)

(4.4)
with l spanning l = 1, N .

BCZ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z = −z∞ : η11(Ax)j1 + η21
(Ax)j2−(Ax)j1

∆
+ η31(Ax)jN+

+η41
(Ax)jN−(Ax)jN−1

∆
= η51(l)

z = +z∞ : η12(Ax)j1 + η22
(Ax)j2−(Ax)j1

∆
+ η32(Ax)jN+

+η42
(Ax)jN−(Ax)jN−1

∆
= η52(l)

(4.5)
with j spanning j = 2, M − 1. The Dirichlet and/or Neumann boundary
conditions (Morse and Feschbach, 1953) can be obtained from the general
form by appropriate choice of the parameters γmn and ηmn.

Replacing in (4.4)-(4.5) the Robin-type conditions defined in table 3.2
assign the following values to the coefficients:

γ21 = γ31 = γ12 = γ42 = γ41 = γ22 = 0
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γ11 = γ32 = 1

γ51(l) = B0y∞, γ52(l) = −B0y∞
η11 = η31 = η12 = η32 = η41 = η22 = 0

η21 = η42 = 1

η51(l) = 0, η52(l) = 0 (4.6)

with l spanning l = 1, N . On the other hand the Dirichlet conditions defined
for the Ampere equation in table 3.4 correspond to the following values of
the parameters:

γ21 = γ31 = γ12 = γ42 = γ41 = γ22 = 0

γ11 = γ32 = 1

γ51(l) = B0y∞, γ52(l) = −B0y∞
η21 = η31 = η12 = η41 = η42 = η22 = 0

η11 = η32 = 1

η51(l) = −B0yl, η52(l) = −B0yl (4.7)

with l spanning l = 1, N .
The two-dimensional array Ax(j, l), j = 1, M, l = 1, N is transformed

into a one-dimensional array Ax having M × N elements. The same is done
for the discretized current density which is written into the one-dimensional
array Jx.

The PDE given in (4.2) together with the boundary conditions given in
table 3.2 or 3.4 can be written as a linear system whose unknowns are the
discretized values of Ax on the 2−D mesh. The discretized Poisson operator
in (4.3) is written in the matrix C by collecting the coefficients of (Ax)j,k

from (4.3). The linear system we have to solve reads:

CAx = Jx (4.8)

In the linear system (4.8) the lines corresponding to the point grids of the
boundaries were replaced by the appropriate equations given by the boundary
conditions (Haidvogel and Zhang, 1979).

The matrix C is a square matrix having (M × N)2 elements. Even for
a moderate number of grid points (for instance M = N = 40 for the linear
system) one has to solve a considerable number of equations and unknowns
(1600) increasing significantly the computational effort. In that case the co-
efficients matrix C has 2560000 elements and is sparse since many of these
elements are equal to zero. Thus solving the linear system (4.8) can be opti-
mized by using some of the important properties of the sparse matrix systems



88 CHAPTER 4. VLASOV NUMERICAL MODELS

(Golub and Van Loan, 1989). In the calculus presented in this chapter we
have used an iterative preconditioned Gauss-Seidel method (Lu, 1981; Eris-
man, 1986) that in general converged after a reasonable number of iterations.
A short description of the method is given in the Appendix.

Insofar as the electric potential, Φ(y, z), is concerned, we do not have to
solve a PDE but the nonlinear algebraic equation of plasma quasineutrality.
The discretized quasineutrality equation will be solved in each point of the
mesh, thus that M × N numerical solutions have to be found satisfying:

ni (Φ(yj , zl), Ax(yj , zl)) − ne (Φ(yj, zl), Ax(yj, zl)) = 0 (4.9)

in each grid point (yj, zl). The equation will be solved by a bisection method
(Ortega and Rheinboldt, 1970) that converges rapidly once a change of sign
of the left landside of (4.9) is found. The method is briefly described in the
Appendix.

It is convenient to work with non-dimensional quantities as already men-
tioned in chapter 3. Thus, using the scaling factors described in (3.60) the
discretized non dimensional quasineutrality equation can be written:

n∗
i

(
Φ∗(y∗

j , z
∗
l ), A

∗
x(y

∗
j , z

∗
l )
)
− n∗

e

(
Φ∗(y∗

j , z
∗
l ), A

∗
x(y

∗
j , z

∗
l )
)

= 0 (4.10)

The Ampere equation for the magnetic vector potential is also non-
dimensional:

∂2A∗
x

∂y∗2 +
∂2A∗

x

∂z∗2
= −µ0N0KTre

B2
0

(j∗xi + j∗xe) (4.11)

where µ0 is the vacuum magnetic permeability and N0, Tre and B0 are con-
stant parameters of the model. The spatial coordinate is normalized by the
electron Larmor radius and the magnetic field by B0 a physical free input of
the model specified in Table 4.2:

y = λyy
∗, λy =

√
2meKTe

eB
(4.12)

B = λBBj, λB = B0 (4.13)

The non-dimensional linear system that “discretizes” the Ampere equation
for Ax is:

CA∗
x = J ∗

x (4.14)

The normalized distributions of the electric and magnetic field, Φ∗(y∗
j , zl),

A∗
x(y

∗
j , z

∗
l ), are found by an iterative process. We start with an initial guess

of the magnetic vector potential

(A∗
x)00(y

∗
j , z

∗
l ) = −B∗

0y
∗
j
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giving a uniform magnetic field for all j and l. (A∗
x)00(y

∗
j , z

∗
l ) is introduced in

(4.9) for finding Φ∗
00(y

∗
j , z

∗
l ). This electric potential distribution is in turn in-

troduced in the linear system (4.8). The solution of this equation gives a new
distribution of the magnetic vector potential, (A∗

x)01(y
∗
j , z

∗
l ). The procedure

is repeated iteratively until two successive iterations give an improvement of
the solution less than ε. In the calculations presented here we took ε = 10−7

and we used non-dimensional values of all the variables. When the proce-
dure converges, one obtains the distribution of the electric and magnetic field
consistent with the kinetic model and with the boundary conditions specified
above.

4.2 Verification of the physical and numerical

model: Sestero Tangential Discontinuity

In the previous sections a kinetic model for the two-dimensional sheared
flows has been outlined as well as the numerical method used to solve the
quasineutrality-Ampere system of nonlinear-PDE equations. The velocity
distribution function of each component species (protons and electrons re-
spectively) was given in terms of the constants of motion, H and px.

As a verification of our physical model and of the numerical method,
we apply them to recover the results obtained by Sestero (1966) for a one-
dimensional tangential discontinuity. All the quantities of the TD’s model
depend on only one spatial variable – the coordinate normal to the disconti-
nuity surface.

We have defined in (3.39) and (3.40) the velocity distribution functions
of ions and electrons satisfying the desired boundary conditions. In order to
obtain a configuration consistent with the plasma state and fields similar to
the early Sestero model of the TD we introduce in our 2D model the following
approximations: (a) the magnetic field is everywhere parallel to Oz and (b)
there is no variation with z of Ax and Φ (and implicitly of Hcα and µcα in
3.56 and 3.62).

With these assumptions one recovers indeed the one-dimensional TD
model of Sestero as summarized below:

• a transition from a plasma at the left side (y = −y∞) drifting with
a convection velocity V0, to a stagnant (V = 0) plasma state at
the right side (y = +y∞);

• the tangential discontinuity is parallel to the xOz plane;
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• all the quantities vary only with y – i.e. the coordinate perpendicular
to the the surface of the discontinuity

• no shear of the magnetic field is considered; only the perpendicular
shear of the perpendicular plasma velocity is taken into account.

The boundary conditions assumed for the Maxwell-Ampère equation are
given in table 4.1. There are no boundary conditions to be imposed on the
electric potential as we solve the algebraic quasineutrality equation and not
the partial derivative Poisson equation.

Table 4.1: Robin-type boundary conditions used in the Sestero TD
model to solve the non-dimensional Ampere equation (3.14) in the
2D domain [−y∗

∞, +y∗
∞] × [−z∗∞, +z∗∞] .

y∗ = −y∗
∞ y∗ = +y∗

∞ z∗ = −z∗∞ z∗ = +z∗∞
A∗

x B∗
0y

∗
∞ −B∗

0y
∗
∞ - -

∂A∗
x

∂y∗ - - - -
∂A∗

x

∂z∗ - - 0 0

The discretized forms of the equations are given in eqs. (4.10) and (4.14).
An initial guess for A∗

x is introduced in equation (4.10) and the electric po-
tential, Φ∗

jl, satisfying the quasi-neutrality is found in each node of the 2D
mesh. The electric potential is back introduced into (4.14) and the magnetic
vector potential is found subject to the boundary conditions given in Table
(4.1). The iteration procedure converged after in 15 iterations in case of the
electron profile and after 5 iterations in case of the proton profile.

4.2.1 Sestero Electron Tangential Discontinuity -

SETD

Before starting the discussion on the numerical results we indicate that the
figures illustrating the results were collected at the end of each subsection.
Indeed, since there are numerous figures, inserting them throughout the text
of Chapter 4 might confuse the reader. A list of tables and figures is inserted
at the end of the thesis.

In Sestero (1966) the sign of the shear flow, i.e. the sign of V0, deter-
mines the nature of the transition. For Bz(y) > 0 Sestero obtained an ion-
dominated layer when V0 < 0 and an electron-dominated one when V0 > 0, an
effect due to the electric field inside the layer (see DeKeyzer and Roth, 1997a,
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1997b, 1998 for additional details). In an electron-dominated layer (V0 > 0)
the ions do not contribute to the electrical current. This is achieved when
the ion VDF is a sum of two Maxwellian distributions: the first describes
the plasma at rest at y = +y∞ and the other one is a displaced Maxwellian
describing the drifting plasma at y = −y∞:

fi(H, µ, px) = Ni1

(
mi

2πKTi1

) 3
2

e
− H

KTi1 + (4.15)

Ni2

(
mi

2πKTi2

) 3
2

e
− H

kTi2
+

pxV0
kTi2

− 1
2

miV0
2

kTi2

Since V0 > 0 this composite VDF satisfies indeed the boundary conditions:
limy→−y∞ fi = fi2 (i.e. a displaced Maxwellian) and limy→+y∞ fi = fi1 (i.e.
an isotropic Maxwellian). The density and current obtained for fi above are
equal to:

• number density:

ni = Ni1e
− eΦ(y,z)

KTi1 + Ni2e
− eΦ(y,z)

KTi1 e
eV0Ax(y,z)

KTi2 (4.16)

• jx current density:

jxi = Ni2V0e
− eΦ(y,z)

KTi2 e
eV0Ax(y,z)

KTi2 (4.17)

The corresponding non-dimensional density and current distributions are
given in the Appendix. The VDF of electrons is given by the Vlasov so-
lution written in Chapter 3:

fe(H, µ, px) = η

(
px√

meKTe1

)
Ne1

(
me

2πKTe1

) 3
2

e
− H

KTe1 (4.18)

+η

(
−px − meV0√

meKTe2

)
Ne2

(
me

2πKTe2

) 3
2

e
−H−pxV0+ 1

2 meV0
2

kTe2

The parameters used to compute the Sestero electron TD are given in
Tabel 4.2. The distribution of the magnetic vector potential is illustrated
in figure 4.1(a). In order to single out the effects of the velocity shear the
asymptotic densities and temperatures were all chosen to be equal to 3 cm−3

and 15 eV respectively. The asymptotic value of the magnetic field is equal to
10 nT . The asymptotic value of the bulk velocity at the left side (y = −y∞)
is equal to 114 km/sec.

The total magnetic field is shown in figure 4.1(b). It can be seen that
|B| has a dip inside the discontinuity as in the original model of Sestero.
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The current jx is small and the magnetic field B0 is not perturbed more than
15%. The characteristic scale length of the variation of B is of the order of
the electron Larmor radius.

The electric potential found from the quasineutrality equation is shown
in figure 4.2(a). The potential has a maximum value at the left hand side
boundary (y = −y∞) where the plasma velocity Vx is maximum. Φ decreases
with increasing y towards the right hand side boundary of the 2−D domain
where the plasma velocity Vx tends to zero. The electric potential Φ varies
with y as in the original figures of Sestero (1966). The spatial coordinates y
and z are given in units of the electron Larmor radius (as in Roth et al., 1996)
and not the electron skin depth as in the original paper of Sestero (1966).

The perpendicular component, Ey, of the electric field is shown in
figure 4.2(b). Ey is everywhere perpendicular to the discontinuity as in
the work of Sestero (1966). It has a sharp gradient inside the transition re-
gion whose scale length is of the order of the electron Larmor radius. The
maximal value, in physical units, at the left hand side edge is about 3 mV/m.
The perpendicular component of the E-field sustains a zero order drift in the
direction normal to both E and B.

The parallel component of the electric field is equal to zero within the
limits of numerical errors. Indeed, in this case the density and temperatures
are uniform along the B-field.

The electric and magnetic potential determined above have been intro-
duced in the analytical moments described in the previous chapter. The
plasma bulk velocity found from equation (3.74) is shown in figure 4.3. The
Vx component has a maximum at the left boundary (y = −y∞) and tends
to zero at the right boundary (y = +y∞) of the discontinuity. It reproduce
exactly the profile of the bulk velocity obtained by Sestero (1966).

The density of ions is shown in figure 4.4(a). The asymptotic value of
density, in physical units, is equal to 3 cm−3. It shows that the density has
a maximum exactly in the middle of the sheath. The gradient of the density
in the direction normal to the sheath is symmetric with respect to y = 0,
the center of the region of TD. The characteristic scale length of density
variation is of the order of the electron Larmor radius. The transition region
extends over approx 100 kilometers. It is a density distribution that recovers
the results obtained by Sestero (1966), Roth (1984) and Roth et al. (1996).
Figure 4.4(b) shows the distribution of the net charge. The latter was found
by computing the second order derivative of the electric potential, d2Φ/dy2.
It takes indeed very small values such that the assumption of quasineutrality
is a-posteriori verified.
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(a) Magnetic potential. (b) Total magnetic field.

Figure 4.1: SETD - distribution of the magnetic vector potential and total
magnetic field given by eq. (4.14).

(a) Electric potential. (b) Perpendicular electric field.

Figure 4.2: SETD - Electric field potential given by the quasineutrality equa-
tion (4.10) and the perpendicular component of B.
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Figure 4.3: SETD - 2D profile of the plasma bulk velocity.

(a) Total density (b) Total net charge

Figure 4.4: SETD - Total density and net charge.
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4.2.2 Sestero Proton Tangential Discontinuity - SPTD

If V0 < 0, the step functions introduced into the electron velocity distribu-
tion function can be eliminated without changing the asymptotic behavior
of fe at y → ±∞. Thus the electrons can be described by the sum of two
Maxwellians:

fe(H, µ, px) = Ne1

(
me

2πKTe1

) 3
2

e
− H

KTe1 + (4.19)

Ne2

(
me

2πKTe2

) 3
2

e
− H

kTe2
+

pxV0
kTe2

− 1
2

meV0
2

kTe2

This VDF satisfies the boundary conditions: limy→−y∞ fe = fe2 (i.e. a dis-
placed Maxwellian) and limy→+y∞ fe = fe1 (i.e. an isotropic Maxwellian).
The number density and current distributions given by fe are equal to:

• number density:

ne = Ne1e
eΦ(y,z)
KTe1 + Ne2e

eΦ(y,z)
KTe1 e

− eV0Ax(y,z)

KTe2 (4.20)

• jx current density:

jxe = −Ne2V0e
eΦ(y,z)
KTe2 e

− eV0Ax(y,z)

KTe2 (4.21)

The corresponding non-dimensional charge and current densities are given in
the Appendix.

The VDF of ions is given by:

fi(H, µ, px) = η

(
− px√

miKTi1

)
Ni1

(
mi

2πKTi1

) 3
2

e
− H

KTi1 (4.22)

+η

(
px − miV0√

miKTi2

)
Ni2

(
mi

2πKTi2

) 3
2

e
−H−pxV0+ 1

2
miV0

2

kTi2

The input parameters used in this model are given in Table 4.2. We keep
the same asymptotic value of the magnetic field and of the reference energy,
KTref . The asymptotic value of the plasma velocity is negative and one order
of magnitude smaller than in the SETD model. In figure 4.5(a) we show the
solution of the Ampere equation subject to the boundary conditions specified
in table 4.1. Figure 4.5(b) illustrates the corresponding total B-field. The
perturbation of the magnetic field is small and extended over a much broader
region than in the previous case. It retrieves the same value and orientation
at the two lateral borders y = ±y∞.
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Figure 4.6(a) shows the distribution of the electric potential found from
the quasineutrality equation. The perpendicular component of the electric
field, shown in figure 4.6(b), is everywhere perpendicular to the sheath. At
the left hand side, where the plasma is moving, the values of the perpendic-
ular electric field component, in physical units, is equal to 0.9 mV/m. The
parallel component of E-field is equal to zero in the limit of the numerical er-
rors. The velocity shear in the direction perpendicular to B does not produce
a parallel electric field.

The plasma bulk velocity, computed by replacing the moments of the
VDFs in (3.74), is shown in figure 4.7. It has a transition from a maximum

value (V0 = −0.05
√

2KTe

me
) at the left side (y = −y∞) to a minimum one

(V0 = 0) at the right edge. In physical units, the velocity at the left hand
side is equal to 28.5 km/s. In the case presented here we have ”forced”
a total amount of shear across the transition region of about 10% of the
electron thermal velocity. That is the reason why a slight oscillation of the
bulk velocity values occurs inside the TD. Oscillations of the plasma velocity
and density were reported by Sestero for values of the velocity shear exceeding
2% of the electron thermal velocity. The results (not shown here) obtained
for cases with smaller perpendicular shears of velocity show that the solution
is smooth and reproduce the asymptotic behavior at y → ±∞.

The number density of protons, is shown in figure 4.8(a). The density
increases inside the transition region by 10%. A symmetry with respect to
the middle of the sheath can be also noticed. The characteristic scale length
of the transition is of the order of the proton Larmor radius (about 40 km in
this case). The transition layer extends over approx. 1000 kilometers. The
net total charge is illustrated in figure 4.8(b) and takes again very small
values. These results reproduce well the ones obtained by Sestero (1966)
and later on by Roth et al. (1996).

It can therefore be concluded that our 2D kinetic model and the numer-
ical method used to solve the coupled system of PDE-nonlinear equations
have passed the consistency check test. Indeed we have reproduce the results
obtained previously by the 1D models of the tangential discontinuities. Our
profiles are consistent with what Sestero called ”ion dominated layer” and
”electron dominated layer” respectively, depending on the sign of the asymp-
totic velocity V0. The model produces profiles of the electric and magnetic
potential, velocity and particle density that are consistent with the results
obtained previously by 1D models of Sestero (1966) and Roth et al. (1981,
1996). In the next section we will add to the Sestero’s sheath an additional
shear of the plasma velocity in the Oz direction such that we will develop
fully our two-dimensional kinetic model.
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(a) Magnetic vector potential. (b) Total magnetic field.

Figure 4.5: SPTD - magnetic vector potential and total magnetic field given
by (4.14) with boundary conditions specified in table 4.1.

(a) Electric potential. (b) Perpendicular electric field.

Figure 4.6: SPTD - Electric field potential given by the quasineutrality equa-
tion (4.10) and the perpendicular component of B.
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Figure 4.7: SPTD - 2D profile of the plasma bulk velocity.

(a) Total density. (b) Total net charge.

Figure 4.8: SPTD - total density and total net charge.
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4.3 Solution for a 2D plasma flow with mixed

shear of the velocity : perpendicular and

parallel to the B-field

In this section a parallel shear of the plasma bulk velocity is added to the
perpendicular one studied in the case of the Sestero-type plasma sheath.
Since the VDF is given in terms of the constants of motion H and px the
dependence of the VDF on the spatial coordinates y and z is determined by
the spatial variation of the electromagnetic potentials. We will extend the
Sestero TD model, by adding a variation with z in addition to the variation
with the coordinate y discussed in the previous section.

The variation with z is introduced by modifying the boundary condi-
tions of the Ampere equation. The Poisson equation is approximated by
the quasineutrality equation. Thus the electric potential will be adjusted
such that the number of plasma positive charges is approximately equal
to the number of negative charges. The boundary conditions for the non-
dimensional Maxwell-Ampere equation are given in Table 4.3. They are ob-
tained by non-dimensionalizing the boundary conditions given in table 3.4.

The asterisk will be dropped from now on but will keep in mind that
we work with non-dimensional quantities if not mentioned otherwise. The
function ζ(z) introduces the variation of Ax with z on the left boundary.
It is chosen thus that the asymptotic behavior of the plasma, described in
section 3.3.3 is achieved, i.e. the bulk velocity defined in (3.74) satisfies the
boundary conditions mentioned in table 3.3. In the numerical models devel-
oped in the next subsection ζ(z) will be defined on grounds of mathematical
simplicity as:

ζ(z) = Θ1erfc

(
z2 − z2

lim

zc

)

with Θ1 a constant defining the amplitude of the perturbation, ±zlim the
z-limits of the perturbed region zc a constant defining the scale length of the
boundary separating the perturbation region from the rest of the plasma.
The choice of erfc function does not restrict in any way the generality of the
models. Indeed, any other function, symmetric or not with respect to z = 0
plane, can be adopted.

We use an iterative method to find the solutions for Ax and Φ: the first
guess for the magnetic potential, A∗

x00 = −B∗
0y

∗, giving a uniform magnetic
field is introduced into the quasineutrality equation. A first estimation of
the electric potential, Φ(yj , zl) is found from the quasineutrality. This solu-
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Table 4.2: Boundary/asymptotic values of the plasma density and temper-
ature used as input parameters to solve the Vlasov-Ampère-quasineutrality
equations

Model N∗
i1 N∗

e1 N∗
e2 N∗

i2 τi τe τi2 τe2 Tref V ∗
0 B0

SETD 3 3 3 3 10 10 10 10 1.5 0.2 10
SPTD 3 3 3 3 10 10 10 10 1.5 -0.05 10
PSEL1 1 1 1 1 55 55 55 55 1 1 10
PSEL2 1 1 10 10 55 55 55 55 1 1 10
PSEL3 1 1 10 10 55 55 25 25 1 1 10
PSPL1 1 1 1 1 55 55 55 55 1 -0.01 10
PSPL2 1 1 10 10 5 5 5 5 1 -0.01 10
PSPL3 1 1 10 10 5 5 51 51 1 -0.01 10
N∗

i1, N∗
e1, N∗

i2, N∗
e2 = non-dimensional asymptotic number densities;

Tref = reference energy (in eV ); τi = Ti1

Tref
, τe = Te1

Tref
, τi2 = Ti2

Tref
, τe2 = Te2

Tref

Ti1, Te1, Ti2, Te2 = asymptotic temperatures in eV
V ∗

0 = non-dimensional parameter in the displaced Maxwellian VDF

V ∗
0 = V0/

√
2KTref

me
, B0 reference magnetic field, in nT

tion is back introduced into the Ampere equation subject to the boundary
conditions given in Table 4.3.

4.3.1 Parallel Sheared Electron Layer - PSEL1

In this subsection we derive a numerical model, the Parallel Sheared Electron
Layer (PSEL1) model, that describes the plasma parameters and fields in the
case of a 2D flow. The model is defined for a positive value of the boundary
magnetic field, B0 > 0 and a positive value of the boundary velocity on the
left hand side , V0 > 0. In this case the protons and electrons are described
by the velocity distribution functions given by eqs. (4.15) and (4.18).

The input parameters introduced into the model are given in Table 4.2.
The non-dimensional amplitude of the perturbation imposed at the left hand
side boundary is equal to the non-dimensional asymptotic velocity, Θ1 = V ∗

0 .
V ∗

0 is a free input parameter of the model.

The results shown in figures 4.9-4.20 correspond to the propagation of
a plasma beam having a thermal energy of 55 eV and a bulk velocity of
approximately +590 km/sec through a background plasma with the same
temperature but which is stagnant. Both plasma populations have the same
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Table 4.3: Dirichlet-type boundary conditions used in the 2D sheared
models to solve the non-dimensional Ampere equation (3.14) in the
2D domain [−y∗

∞, +y∗
∞] × [−z∗∞, +z∗∞] .

y∗ = −y∗
∞ y∗ = +y∗

∞ z∗ = −z∗∞ z∗ = +z∗∞
A∗

x B∗
0y

∗
∞ + ζ(z∗) −B∗

0y
∗
∞ −B∗

0y −B∗
0y

∂A∗
x

∂y∗ - - - -
∂A∗

x

∂z∗ - - - -

density (1 cm−3) at the boundaries. These asymptotic conditions define a
situation that can be found at the magnetopause. The numerical procedure
converges after 13 iterations. The dimension of the 2D domain was 60 × 60
points.

The 2D distribution of the magnetic potential is shown in figure 4.9.
Ax(y, z) decreases from maximum values at the left boundary (y = −y∞) to
minimum values at the right boundary of the integration box. The small
perturbation imposed at the left boundary can be observed in the left half
of the integration domain. It depends both on y and z The total magnetic
field distribution computed from the potential Ax(y, z) is illustrated in figure
4.10. It shows two peaks in the region where the perturbation is imposed. It
has been verified that the condition ∇ ·B = 0 is strictly satisfied everywhere.

The 2D distribution of the electric potential found from the quasineu-
trality equation is illustrated by figure 4.11. One can note that the electric
potential varies with y and z throughout the integration domain. It retrieves
the general trend of the ”Sestero-type” potential for y/rLe > 0. The poten-
tial has a strong peak at the left hand side boundary where Ax(y, z) has also
a maximum.

The 2D distribution of the plasma bulk velocity is obtained by replacing
in the moment equation (3.74) the distribution of Φ(y, z) and Ax(y, z) found
from quasi-neutrality equation and the Ampere equation. The result is dis-
played in figure 4.12. A notable feature of the bulk velocity profile is the
”hump” that corresponds to an excess of velocity with respect to the rest of
the plasma flow. It occurs close to the left edge of the simulation box. This
”hump” adds to the Vx profile already found for the one-dimensional Sestero
sheath.

The observed excess of the bulk velocity is produced by: (1) an increased
mass flux, mini < vxi > +mene < vxe > (not shown) and (2) a decreased
total mass density (see fig. 4.20(a)). The 2D distribution of Vx(y, z) has
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indeed the expected behavior: it decreases with increasing y and z. The
maximum value of the bulk velocity is equal to 578 km/s. The scale of the
transition region from Vx = V0 to Vx = 0 is determined mainly by the ions
and lesser by the electrons, due to the difference of mass between the two
species.

It remains to be determined if the plasma bulk velocity has a gradient
(or is sheared) in the direction parallel to the magnetic field. A contour
plot of the plasma bulk velocity over the distribution of the magnetic field is
shown in figure 4.13. The picture gives an overall view of the variation of the
modulus of velocity with respect to the direction of the magnetic field. One
can note that in the regions close to the left hand side border the magnetic
field is inclined with respect to z-direction. The plasma bulk velocity is
everywhere directed parallel to the Ox direction, i.e. normal to the magnetic
field. One can identify in figure 4.13 regions where the same magnetic field
line is intersected by contours corresponding to different bulk velocities.

The magnetic field has only two non-zero components: By and Bz. Due to
jx currents, the external magnetic field is perturbed by the sheared plasma
flow. Indeed, the diamagnetic current in the Ox direction produces a By

component that adds to B0 as illustrated in figure 4.13.
As suggested by figure 4.13 the variation or shear of the plasma bulk

velocity has a perpendicular component as well as a parallel component in
the 2D domain for y/rLe < 100. This is a case of mixed shear. A more
quantitative assessment of the parallel shear of velocity is given by figure
4.14. The plasma bulk velocity has a non-vanishing parallel shear into a
narrower region, close to the left boundary where the z-dependent boundary
conditions were imposed for Ax. The existence of this parallel shear is a novel
feature, not studied before by the kinetic models of TD’s.

The electric field distribution is easily determined from the potential
Φ(y, z). The parallel and perpendicular component with respect to B are
computed as:

Eparallel =
E · B

B

and

Eperp = E − Eparallelb̂

where b̂ is the unit vector along the B-field direction. The results are shown
in figure 4.15.

The perpendicular component of the electric field (shown in figure 4.15)
has a maximum where the magnetic induction and plasma velocity are max-
imum. The maximum value of the Eperp is equal to 18 mV/m. This distri-
bution of the perpendicular E-field shows similar features to the electric field
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distribution used in the numerical integration of orbits discussed in cases B
and C of the Chapter 1 of this thesis.

The perpendicular electric field is sustaining the plasma advancement in
the direction normal to the magnetic field. It is an electric field similar to
the Schmidt convection electric field (Schmidt, 1960; Lemaire, 1985). The
distribution of the perpendicular electric field exhibits a transition region, like
in the Sestero sheath, within which the convection velocity (UE = Eperp/B)
decreases to zero. The sheath is no longer parallel to the yOz plane as for
the Sestero TD, but is deformed and bent as can be seen in the figure 4.16.
Thus in the model PSEL the one-dimensional Sestero TD is “deformed” into
a 2D boundary layer.

Even more notably is the existence of a parallel component of the electric
field. Indeed the right panel of figure 4.15 shows two distinct regions where
the parallel electric field is different from zero. In figure 4.16 the isocontours
of Eparallel(y, z) are superimposed over the vector plot of the magnetic field
lines. The plot shows indeed that there are two regions where equipotential
lines intersect the same magnetic field line. They are located in two distinct
regions: Region 1 around the zone of excess of momentum, where the veloc-
ity shear is maximum (delimited in the right panel of figure 4.15 by approx
z ∈ [−200, 200] and y ∈ [−400,−250]) and Region 2 within the 2D layer
mentioned before (delimited in the right hand side panel of figure 4.15 by
z ∈ [−400, 400] and y ∈ [−150, 150]). The maximum value of the parallel
component of the electric field in the so-called Region 1 is approximately 18
µV/m while in the Region 2 is much smaller: Eparallel ≈ 2 µV/m.

In order to have a better insight on the plasma and field configuration
we plot the variation with the z-coordinate of the electric potential, electric
current, parallel component of E and plasma bulk velocity at 4 different
values of y. The results are shown in figure 4.18. One can note that the
parallel electric field has two peaks localized precisely in z = zlim, where
shear of the plasma velocity is maximum. The electric potential has also a
maximum in that region.

The z-profile of the parallel component of E in the Region 1 has a “bipo-
lar” signature, resembling the profile of parallel fields reported in weak double
layers (see Chiu and Schultz, 1978; Chiu and Cornwall, 1980; Raadu, 1989;
Newman et al., 2002). These features of the electric potential and of the par-
allel electric field are centered in the Region I in z = +100 rlE and z = −100
rlE respectively. The centers of the field aligned weak double layers (WDL)
are localized symmetric with respect to the z = 0 plane, in z = ±zlim. This
symmetry is imposed by the function ζ(z). Any other, non-symmetric profile
can be also adopted. The position of WDLs coincides with the maximum of
the parallel gradient of the bulk velocity as shown by the low right panel of
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figure 4.18 and the right panel of figure 4.19.

Thus in Region 1 there is a parallel component of the electric field, with
a bipolar distribution, produced by the parallel shear of the bulk velocity.
The opposite polarization of the parallel component at both edges of the
excess of momentum flow has a confining role. Indeed it can preclude the
field-aligned spreading of the particles that are contained into the Region 1.

Since in Region 2 the parallel shear of velocity is very small, as can be
seen from figure 4.14 and right panel of 4.19, the existence of a non-zero
parallel E-field may seem unexpected. Figure 4.17 explains why there is a
parallel electric field in the Region 2. Indeed, a plasma density gradient is
formed in the direction parallel to B. This gradient has a component parallel
to B in the Region 2. It is this parallel gradient of density that produces
the second region of non-zero parallel electric field. This region is localized
precisely inside the 2D layer formed at the interface between the convecting
and stagnant regimes. In the PSEL1 model this sheath is a 2D structure not
a 1D one as in the SETD model.

The difference between the two regions is that in Region I the parallel
shear of the plasma velocity is stronger and localized within a narrower layer.
This thesis presents for the first time a kinetic model for the parallel E-field
produced by this type of shear. In Region II the parallel shear of the plasma
velocity is absent but there is a parallel gradient of the density (or kinetic
pressure) producing a parallel component of E. The region where this par-
allel E-field exists extends over much longer distances in the direction of the
magnetic field than in the case of Region I field. The distribution of the par-
allel electric field discussed in this section illustrates the situation when the
two different mechanisms act together but their contribution can be clearly
separated in the two regions discussed above.

The physical mechanism responsible for producing the double layers in
both regions analyzed above is the anisotropy of the tensor of the momentum
flux density. Indeed the latter is defined as (Longmire, 1963 ) :

P(α)ij = nαmαVαiVαj + pαij (4.23)

where Vαi is the i-th component of the average velocity of the species α and
pαij is the partial pressure tensor. In the stationary case (∂/∂t = 0) and
when there is an electromagnetic field the momentum conservation law for
the ions (α = i) and electrons (α = e) read:

∇||
(
nαmαV αV α + pα

)
= nαqαE|| (4.24)

∇⊥
(
nαmαV αV α + pα

)
= nαqα [E⊥ + (jα × B)] (4.25)
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In model PSEL1 the Region I parallel electric field is mainly due to the
first term (the shear of ion bulk velocity and ion momentum flux density of
the ions) in the left hand side of equation (4.24), while Region II parallel
E-field component is mainly due to the the second term (the gradient of the
electron kinetic pressure).

The ion density distribution is shown in figure 4.20(a). It is equal to
the density distribution of the electrons since the quasineutrality condition
is satisfied. Close to y/rLe = 0 the ion and electron densities have a maxi-
mum like that existing in the 1D Sestero sheath. Again one can note that
the sheath is deformed and became a 2D structure. The quasineutrality is
satisfied throughout the 2D layer. The net charge values (ni − ne)/(ni + ne)
(not shown) do not exceed 10−14.

The distribution of the electric current, Jx(y, z), shows also interesting
features. There is a non-vanishing current density associated to the excess
of velocity imposed at the left border of the 2D integration box. Otherwise
the current is null except for the transition layer or sheath. Figure 4.20(b)
shows that within a layer with a width of 100-200 electron Larmor radii
(corresponding to approx. 100-200 km) there are two sheets of antiparallel
current flowing in the Ox direction. This is a striking feature as antiparallel
current sheets are often encountered in the magnetosphere.

Figure 4.9: model PSEL1 - 2D distribution of the magnetic vector poten-
tial component, Ax. A small perturbation was introduced in the boundary
condition for the left border y = Y1.
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Figure 4.10: model PSEL1 - Total magnetic field given by the magnetic
vector potential shown in figure 4.9

Figure 4.11: model PSEL1 - Solution of the quasineutrality for a 2D sheared
plasma flow.
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Figure 4.12: model PSEL1 - Non-uniform distribution of the plasma average
velocity; Oz is the direction of the main magnetic field.

Figure 4.13: model PSEL1 - Illustration of the magnetic field distribution:
arrows are plotted according to the local amplitude and inclination of the
magnetic field. Contours of equal amplitude of the 2D velocity field were
over plotted.
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Figure 4.14: model PSEL1 - Distribution in the yOz plane of the parallel
shear of the plasma bulk velocity.

Figure 4.15: model PSEL1 - 2D distribution of the perpendicular component
of the electric field (left panel) and of the parallel component (right panel).
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Figure 4.16: model PSEL1 - Isocontours of Eparallel(in blue); B-field is shown
by black arrows.

Figure 4.17: model PSEL1 - Gradient in the direction parallel to B of the
density.
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Figure 4.18: model PSEL1 - Electric potential (Φ), electric current (Jx), parallel
E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.

Figure 4.19: model PSEL1 - Gradient in the direction parallel to the magnetic
field of the density (left panel) and bulk velocity (right panel) respectively.
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(a) Ion density (b) Electric current

Figure 4.20: model PSEL1 - Ion density and electric current for the 2D
sheared plasma flow.

4.3.2 Parallel Sheared Electron Layer - PSEL2

In the following we discuss the results obtained by modifying some or all of
the model parameters: asymptotic densities of both species on both sides
(Ni1, Ne1, Ni2, Ne2), asymptotic temperatures of both species on both sides
(Ti1, Te1, Ti2, Te2), external magnetic field (B0) and asymptotic maximum
velocity (V0).

First the asymptotic densities, Ni2, Ne2, of the convecting part of the
VDFs (4.15)-(4.18) are increased. In this case, called Parallel Sheared Elec-
tron Layer 2 (PSEL2), we compute the electromagnetic field and plasma
parameters at the interface between a higher density plasma moving through
a stagnant lower density plasma. Both plasmas have the same temperature,
τi = τe = τi2 = τe2 = 55. The full set of parameters used for these computa-
tions is given in Table 4.2.

The increasing of the asymptotic density reduces the amplitude of the ex-
cess of velocity at the left boundary of the integration domain, as can be seen
from figure 4.22. To explain this, one has to remind that we compute the
bulk velocity as the ratio between total mass flux and total mass density (see
eq. 3.74). In the model PSEL2 the amplitude of the perturbation imposed
on the left boundary, Θ1, has the same value as in the model PSEL1. How-
ever, Ni2 - the asymptotic density at the left hand side is 4 times greater in



112 CHAPTER 4. VLASOV NUMERICAL MODELS

the PSEL2 model than in PSEL1. Thus the relative decreasing of the den-
sity in the sheared region observed in the model PSEL1 (see figure 4.20(a))
has considerably reduced in the model PSEL2 (see fig. 4.22). The mass
density is then greater in case PSEL2 reducing the excess of velocity as can
bee seen in figure 4.22.

The width of the transition layer is of the order of the electron Larmor
radius as can be seen from density data of the right panel of figure 4.22.
The denser plasma moves with a velocity close to V0 at the left edge of the
integration domain.

The distribution of the perpendicular and parallel components of the elec-
tric field are illustrated in figure 4.23. The Region 1 feature found for the
distribution of Eparallel in the PSEL1 model is more reduced in the PSEL2
model. Still it has the same bi-polar signature revealed by the previous
model. The velocity and density parallel gradients are also much more re-
duced in that region of the 2D domain. A more important component of the
parallel electric field is found in what we have called the Region 2.

In low left panel of figure 4.21 the parallel component of the electric
field is plotted at 4 different y-coordinates. The same figure shows the corre-
sponding z-profiles for the electric potential (Φ), electric current density (jx)
and plasma bulk velocity (Vx). One can see that the peak value of Region 1
parallel component, given in non dimensional units in fig. 4.21, corresponds
to an intensity equal to 2.7 µV/m. In the Region 2 the maximum value of
Eparallel is equal to 18 µV/m.

The z-profiles of the parallel gradient of the density and of the bulk ve-
locity at the same 4 different y locations were plotted in figure 4.24. They
show that in Region 1 two mechanisms producing parallel electric fields op-
erate together: the parallel shear of the perpendicular bulk velocity and the
parallel gradient of the electron density and electron kinetic pressure.

In Region 2 the parallel shear of bulk velocity is very small. There is a
more important parallel gradient of density. As expected the enhancement
of the total density of the moving plasma on the side 2 (y = −y∞) enhances
the electron density and pressure gradient. Indeed, in Region 2 the effect of
the parallel gradient of density, ∇||n, is more important in eqs.(4.24)-(4.25)
than the parallel shear of the perpendicular velocity, ∇||Vx. Thus in Region
2, the distribution of Eparallel (fig. 4.21 low left panel) closely follow the
distribution of the parallel density gradient as shown in figure 4.24 (left).
The signature of Eparallel in Region 2 is bipolar.

One has to note also that whenever the parallel shear of velocity is non-
negligible, this seems to be the dominant process producing the parallel elec-
tric field. Figures 4.21 (low left panel) and 4.24 show that in Region 1
the Eparallel is correlated with ∇||Vx and anti correlated with ∇||n, while in
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Region 2 (where ∇||Vx is negligible) Eparallel is correlated with ∇||n. This is
consistent with the momentum conservation law (4.24).

Finally, if one compares the parallel gradients calculated in the model
PSEL2 (figs. 4.24) with those calculated in the model PSEL1 (figs. 4.19)
one can note that: (i) ∇||Vx in model PSEL2 is one order of magnitude
smaller than in model PSEL1 and (ii) that ∇||n in model PSEL2 is one
order of magnitude greater than in model PSEL2. By comparing the parallel
component of the E-field in model PSEL2 (figs. 4.23 right panel and 4.21
low left panel) with that of the model PSEL1 (figs. 4.15 right and 4.18 low
left) one can see that parallel component of E in the Region 1 is one order
of magnitude greater in the model PSEL1 while Eparallel component in the
Region 2 is one order of magnitude grater in model PSEL2.

Figure 4.21: model PSEL2 - Electric potential (Φ), electric current (Jx), par-
allel E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.
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Figure 4.22: model PSEL2 - Plasma bulk velocity (left) and density (right).

Figure 4.23: model PSEL2 - Parallel (left) and perpendicular (right) compo-
nents of the electric field.
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Figure 4.24: model PSEL2 - Parallel gradient of density (left) and bulk
velocity (right).

4.3.3 Parallel Sheared Electron Layer - PSEL3

The model Parallel Sheared Electron Layer 3 (PSEL3) describes a
moving plasma having an excess of density but a lower temperature (25 eV )
with respect to the stagnant plasma population (55 eV ). In other words, the
model PSEL3 simulates the stationary flow of a colder but denser plasma
stream through a stagnant hotter but thinner background plasma. As in
the previous models, the stream is moving parallel to the Ox-axis. The
distribution of the bulk speed, Vx(y, z), is given in the left panel of fig. 4.25.

The distribution of the total density is shown in the right panel of the
figure 4.25. The bulk velocity is uniform at the left boundary where we
have imposed non-uniform boundary condition for Ax. The decreasing of
the parameters τi2 and τe2 produces a decreasing of the ion mass flux (see
eq. 3.63) that is the dominant term in the expression of the bulk velocity
(eq. 3.74). The effect of changing τi2 and τe2 is minor for the densities.
Thus the mass flux in the model PSEL3 is less than in the model PSEL2
while the mass density is roughly the same in both models. Therefore the
excess of velocity introduced by the function ζ(z) is reduced significantly.
The parallel shear of velocity, ∇||Vx, almost vanishes at the left border where
E is perpendicular to B.

We retrieve a layer of transition from moving to stagnant regime which
is a 2D structure. By decreasing the temperature of the moving plasma, the
bulk velocity decreases more rapidly with y. It has a scale length larger than
that of total density. Indeed, the model PSEL3 shows a sharp decreasing of
the density within a layer of a few electron Larmor radii width.
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In the model PSEL3 there is no significant parallel electric field in the
Region 1 as can be seen from figure 4.28. This is a consequence of the absence
in Region 1 of the parallel shear of the perpendicular velocity (∇||Vx) and/or
of the parallel gradient of the density (∇||n).

Figure 4.27 shows that in a layer extending a few electron radii width in
the y-direction, there is a significant gradient of the density in what we called
the Region 2. The parallel shear of the bulk velocity has also a significant
value in Region 2, at the lower (z → −z∞) and upper (z → +z∞) edges of
the region. The temperature difference between the two plasmas seems to
enhance the parallel gradients inside the 2D layer.

Figure 4.26 shows that the parallel shear of velocity in Region 2 is one or-
der of magnitude greater than its corresponding maximum in model PSEL2
and 3 times greater than its corresponding maximum in model PSEL1. The
gradient of density also peaks at values one order of magnitude greater that
in the previous two models. As a matter of consequence the parallel compo-
nent of the electric field takes values greater than in the previous two models.
Indeed, as one can see from figures 4.28 (right panel) 4.26 (low left panel)
the maximum values of Eparallel is equal to 0.45 mV/m, the maximum of all
the three PSEL models. Thus the model PSEL3 gives an example of con-
current action of both the parallel gradient of electronic pressure and of the
parallel shear of ion bulk velocity producing an enhanced parallel component
of the electric field.

Figure 4.25: model PSEL3 - Plasma bulk velocity (left) and density (right).
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Figure 4.26: model PSEL3 - Electric potential (Φ), electric current (Jx), par-
allel E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.

Figure 4.27: model PSEL3 - Parallel gradient of density (left) and bulk
velocity (right).
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Figure 4.28: model PSEL3 - Parallel (left panel) and perpendicular (right
panel) components of the electric field.

4.3.4 Parallel Sheared Proton Layer - PSPL1

This subsection treats the case of a plasma flowing in the negative direction
of the Ox-axis (V0 < 0) with the asymptotic magnetic field remaining parallel
to Oz-axis (B0 > 0). The velocity distribution functions of the protons and
ions are given by eqs. (4.19) and (4.22) respectively. The partial charge and
current density of the ions are given by eqs. (3.57), (3.65) while the partial
charge and current density of the electrons are given by eqs. (4.20)-(4.21).

The results obtained for V0 = −0.01 (in dimensional units a negative
velocity of about -10 km/s) and the same asymptotic densities and temper-
atures as in the model PSEL1 are shown in figures 4.29-4.37. The full
set of parameters used to solve the quasineutrality and Ampere equations
is specified in Table 4.2. This first model will be called Parallel Sheared
Proton Layer 1 (PSPL1).

The distribution of the magnetic potential, Ax(y, z), and that of the total
magnetic field are roughly the same as in the PSEL1 case, as one can see
from figures 4.29 and 4.30. In both models, PSPL1 and PSEL1, the
diamagnetic currents are rather small such that the background magnetic
field is perturbed only in the region close to the left boundary, where the
z-dependent variation of Ax(y, z), given in Tabel 4.3, has been imposed.

The distribution of the magnetic potential Ax(y, z) found from the Am-
pere equation is introduced into the quasineutrality equation. The solution,
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Φ(y, z), is shown in figure 4.31. The electric potential takes negative values
and decreases smoothly with y. The distribution of the bulk velocity com-
puted by replacing Φ(y, z) and Ax(y, z) into the zero and first order moments
is shown in figure 4.32. One can note immediately that the scale length of
variation of Vx is much larger than in the previous case. In the y-direction
the layer expands over the entire integration domain, approx. 800 km.

There is an excess of velocity at the left boundary of the integration do-
main, although both the asymptotic velocity and its perturbation are quite
small, compared to that of PSEL1 (compare vertical scales of fig. 4.32 and
fig. 4.12). The VDFs and the computed potentials give the expected macro-
scopic behavior of the plasma, when it moves in the negative direction of
Ox-axis. Indeed, the bulk velocity decreases with y from the asymptotic
boundary value Vx = V0 to Vx = 0, but decreases also with z from the maxi-
mum value in y = 0, z = 0 to smaller values for z → ±z∞. The characteristic
scale length of this transition exceeds the limits of the integration domain.

The modulus of the perpendicular electric field is shown in the left panel
of figure 4.33. There is an increase of the Eperp component in the region of
increased magnetic field at the left border of the integration box. It peaks
to a value that in physical units is equal to 90 µV/m. The corresponding
convection velocity, UE = Eperp/B has a roughly uniform value in that region.

The parallel electric field takes non-zero values within a limited region
encircling the zone where the velocity shear is finite as illustrated by the right
panel of figure 4.33. The parallel component has a bi-polar signature, similar
to the Region 1 parallel E-field obtained in the PSEL1 model. Note however
that the value of the parallel field in the PSPL1 model is 10 times smaller
than that obtained in PSEL1. The ratio between the amplitude of the
parallel E-field in the two models is nearly proportional to the corresponding
ratio between the values of Vx/V0.

The PSPL1 model does not show a clearly identified Region 2 transition
layer as in the electron dominated models. A Region 2 parallel electric field
cannot be identified. This is probably due to the fact that the transition from
moving to stagnant regime takes place over a distance of the order of several
proton Larmor radius, exceeding the limits of the 2D domain considered in
this model. Indeed, figure 4.34 shows that parallel gradients of the density
and/or bulk velocity are much smaller than in PSEL1 model. They have only
a significant peak within Region 1 as shown by figure 4.36. The amplitude of
the parallel gradients of the PSPL1 model is 2 orders of magnitude smaller
than the corresponding values in the PSEL1 model.

The ion density, ni(y, z), and the total jx(y, z) current density are shown
in figure 4.37. The distribution of ion density clearly varies over a charac-
teristic scale length of the order of several hundreds of electron Larmor radii
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or 5-10 proton Larmor radii. The dip inside the distribution of Vx shown in
figure 4.32 on the left hand side of the simulation domain is accompanied
by an increase of the density, ni. The total current is ten times smaller than
in the model PSEL1.

Figure 4.29: model PSPL1 - 2D distribution of the magnetic vector potential.

Figure 4.30: model PSPL1 - Total magnetic field.
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Figure 4.31: model PSPL1 - Distribution of the electric potential.

Figure 4.32: model PSPL1 - Distribution of the plasma average velocity.
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Figure 4.33: model PSPL1 - 2D distribution of the perpendicular component
of the electric field (left panel) and of the parallel component (right panel).

Figure 4.34: model PSPL1 - 2D distribution of the parallel gradient of the
density (left panel) and of the Vx component of the plasma bulk velocity
(right panel).
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Figure 4.35: model PSPL1 - Electric potential (Φ), electric current (Jx), par-
allel E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.

Figure 4.36: model PSPL1 - Gradient in the direction parallel to the magnetic
field of the density (left panel) and bulk velocity (right panel) respectively.
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(a) Ion density (b) Electric current

Figure 4.37: model PSPL1 - Ion density and electric current for the 2D
sheared plasma flow of case PB1.

4.3.5 Parallel Sheared Proton Layer - PSPL2

In the following subsection we discuss the results obtained by modifying
some of the parameters of the proton model PSPL1. First let us in-
crease the asymptotic density of the moving plasma, as we did previously
for the PSEL2 model (N∗

i2 = N∗
e2 = 10, see Table 4.2). Furthermore

we decrease the temperatures of all species by one order of magnitude
(τi = τe = τi2 = τe2 = 5, see Table 4.2). The integration domain has been
enlarged: y∗ ∈ [−2000, +2000], z∗ ∈ [−600, +600] (y∗ and z∗ are normalized
with the electron Larmor radius, rLe). The full set of the parameters of the
Parallel Sheared Proton Layer 2 (PSPL2) model is given in table 4.2.

The bulk velocity profile shown in figure 4.38 has a maximum inside the
region of transition from Vx = −0.01V0 (approx. 10 km/s) to Vx = 0. Note
that the velocity scale is normalized with respect to the electron thermal

velocity
√

2KTref/me. The change of Vx/V0 extends over several proton
Larmor radii. It has the same characteristic scale length as the transition
of the density from the maximum value N = 10N0 (in dimensional units
10 cm−3) to the minimum value (N = N0) at the right hand side of the
integration domain.

Although very small and spread over large spatial distances, the density
distribution has a gradient parallel to the magnetic field direction as well as a
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very small parallel velocity shear (note the faint “waves” in their distribution
plotted in figure 4.39). In non-dimensional units the parallel gradient of
the density is 2 orders of magnitude stronger than the parallel shear of the
velocity. The latter mechanism can be neglected in case of the model PSPL2
(see right panel in figure 4.42).

The distributions of the perpendicular and parallel components of the
electric field are shown in figure 4.40. There is a smooth transition of the
modulus of the perpendicular component of E from a maximum value at the
left border toward a zero value at the right border. The peak value of Eperp

is about 0.2 mV/m. It occurs precisely at the place where the magnetic field
takes its maximum value of about 30 nT .

Low left panel of figure 4.41 shows that the parallel component of the
electric field is almost 3 orders of magnitude smaller than the perpendicular
one. The very small values of the parallel component is due to the small
velocity of the moving plasma layer in addition to the small temperature
of all species. Figure 4.42 shows that the 2D distribution of Eparallel is anti
correlated with the profile of the parallel gradient of density. This is expected

according to eq. (4.24) for the electrons, since Tr
[
nemeV eV e

]
� Tr[pe] and

pe ≈ n1eKTeI. The model PSPL2 gives an example of slow non-uniform
plasma motion across B-field producing a small parallel component of E due
to the parallel gradient of the electron pressure.

Figure 4.38: model PSPL2 - Plasma bulk velocity (left) and density (right).
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Figure 4.39: model PSPL2 - 2D distribution of the parallel gradient of the
density (left panel) and of the Vx component of the plasma bulk velocity
(right panel).

Figure 4.40: model PSPL2 - 2D distribution of the perpendicular component
of the electric field (left panel) and of the parallel component (right panel).
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Figure 4.41: model PSPL2 - Electric potential (Φ), electric current (Jx), par-
allel E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.

Figure 4.42: model PSPL2 - Gradient in the direction parallel to the magnetic
field of the density (left panel) and bulk velocity (right panel) respectively.
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4.3.6 Parallel Sheared Proton Layer - PSPL3

The next set of numerical results are obtained by increasing the tem-
perature of the drifting plasma. This model will be further called
Parallel Sheared Proton Layer 3 (PSPL3). It simulates the slow prop-
agation in the direction −Ox of a hotter plasma slab or flat stream through
a stagnant and colder background plasma. An external driving force sustains
the streaming. A stationary solution for the flow and fields will be sought.
The full set of the model parameters is given in Table 4.2.

The 2D distribution of the plasma bulk velocity and density are shown
in figure 4.43. Embedded into a background flow there is an antiparallel
plasma stream that moves with the imposed velocity Vx = −0.02V0. The
antiparallel stream has an excess of density as shown by the right hand side
panel of figure 4.43. The width of the excess density (or momentum) slab
moving antiparallel to the Ox-axis is approximately 10 proton radii (or 900
kilometers for the parameters given in table 4.2) in the Oy direction.

The gradient of the density in the direction of the magnetic field at the
edges of the excess momentum slab is shown in the left panel of figure 4.44.
The boundaries separating the excess momentum slab form the rest of the
plasma have a width of approximately 2 proton Larmor radii. These bound-
aries are the sites of a parallel velocity shear (∇||V ) shown in the right panel
of figure 4.44. The amplitude of ∇||V is smaller and has a different aspect
than that of ∇||n.

As in the previous models, the combined effect of both the parallel den-
sity gradients and parallel shear of velocities is to generate a non-zero parallel
component of the electric field. The 2D distributions of both the perpendic-
ular and parallel components of E are shown in figure 4.45.

The parallel component has a maximum in the region where the shear of
velocity is maximum, i.e. at the borders of the plasma slab moving in the di-
rection −Ox. The peak values of Eparallel are one order of magnitude greater
than those obtained with model PSPL2. The modulus of the perpendicular
E-field peaks at the left border, precisely where the intensity of the magnetic
induction is maximum.

Figure 4.46 shows a series of distributions of the electrostatic potential
(Φ), total electric current density (Jx), parallel electric field (Eparallel) and
plasma bulk velocity (Vx) across the drifting plasma slab for a series of values
of y. The characteristic scale length of variation of all these quantities is
proportional to the proton Larmor radius (approx 90 km in this case). At
the borders of the excess momentum slab one can note the two bipolar electric
signatures or weak double layers (WDL) obtained also in the previous models.
The parallel component of E has opposite polarization at the two edges.
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Thus it has a confining effect, impeding the electron and ions to spread out
along magnetic field despite their different thermal speeds.

The distribution of the parallel E-field can be compared with the distri-
bution of the parallel gradient of density and of the parallel velocity shear.
The latter are shown in figure 4.47. The plots show that at the edges of the
plasma stream both mechanisms concur to generate the parallel (magnetic-
field-aligned) electric field component. The parallel E-field distribution has
the same z-profile as the distribution of the parallel shear of velocity. In
the PSPL3 the effect of the velocity shear appears to dominate that of the
electric pressure gradient. Indeed, although the absolute magnitude in nor-
malized units of ∇||n is larger than ∇||Vx, the z-profile of Eparallel (fig. 4.46)
is correlated with the z-profile of ∇||Vx (fig. 4.47 right panel).

The kinetic treatment of plasma dynamics outlined in this chapter reveals
important features undermined in certain macroscopic, or fluid, approxima-
tions. It demonstrates the existence of parallel electric fields for non-uniform,
mixed sheared plasma flow across magnetic field. In the MHD approximation
Eparallel is always equal to zero since the magnetic field lines are considered
electric equipotentials. Our simulations illustrate that this MHD postulate
is generally violated in the case of a 2D sheared plasma flow. In the next sec-
tion we will analyze the role of the parallel E-field in decoupling the plasma
motion from the motion of so called ”frozen-in” magnetic field.

Figure 4.43: model PSPL3 - Plasma bulk velocity (left) and density (right).
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Figure 4.44: model PSPL3 - 2D distribution of the parallel gradient of the
density (left panel) and of the Vx component of the plasma bulk velocity
(right panel).

Figure 4.45: model PSPL3 - 2D distribution of the perpendicular component
of the electric field (left panel) and of the parallel component (right panel).
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Figure 4.46: model PSPL3 - Electric potential (Φ), electric current (Jx), par-
allel E-field (Eparallel) and plasma bulk velocity (Vx) at 4 different y locations.

Figure 4.47: model PSPL3 - Gradient in the direction parallel to the magnetic
field of the density (left panel) and bulk velocity (right panel) respectively.
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4.4 Decoupling of plasma motion

In the magnetohydrodynamic-MHD approximation of plasma physics it is
often stated that the plasma electrons and all positive have the bulk velocities
are both equal to each other and can be approximated by that of a single
fluid moving with the convection velocity:

UE =
E × B

B2

Assuming infinite conductivity in the direction parallel to B, Alfven (1953)
showed that in the ideal MHD approximation E · B = 0 and thus the mag-
netic field line are ”frozen” in the plasma streaming with the velocity UE.

Alfven and Falthammar (1963) have shown, however, that a parallel elec-
tric field can be sustained in a non-uniform magnetized and quasineutral
plasma, by an anisotropy of the pitch angle distribution of the electrons and
ions. Even before Alfven, Pannekoek (1922) and Rossland (1924) computed
the parallel electric field that is produced in the ionospheres of stars and
planets by charge separation due to the difference between the gravitational
force acting on the electrons and ions, meg and mig,

Lemaire and Scherer (1970, 1971) have shown that along open polar wind
or solar wind magnetic field lines an additional charge separation electric
field can be the consequence of the electron Jeans evaporation rate which is
larger than that of the slower thermal ions. There are additional physical
mechanisms that produce polarization E-field that can have a component
parallel to the magnetic field lines and violating therefore the usual MHD
condition, E · B = 0.

We were interested to describe the generation of parallel E-field, by par-
allel shears of velocity in convecting plasmas. The models presented in the
previous subsections give examples for a range of asymptotic temperatures,
densities and/or bulk velocities. Thus we can compare the bulk velocity
distribution computed in these models with the zero order drift velocity (or
convection velocity), UE , given by the distributions of total electric and
magnetic fields obtained by our kinetic models. Thus one can obtain an
evaluation of the errors introduced by assuming that plasma moves with the
MHD convection velocity UE and not with the bulk velocity V x. We will
illustrate our conclusions with the results obtained for three of the six models
discussed in the previous sections.

In figure 4.48 the distribution of the MHD convection velocity obtained
by the model PSEL1 is shown in the left hand side panel. The MHD con-
vection velocity, UE , decreases from a maximum value on the left boundary
of the integration domain to a minimum value on the right hand side bound-
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ary. Its overall distribution can now be compared to V x, the plasma bulk
velocity distribution shown in figure 4.12. There are significant differences
between the spatial distributions of the two velocities. They are illustrated
in the right panel of figure 4.48.

Indeed within the so-called Region 2 of the Parallel Sheared Electron
Layer 1 the plasma bulk velocity, V x, cannot be approximated by the MHD
convection velocity, UE. In other words, using the MHD/fluid nomenclature,
the plasma and B-field motion are decoupled across the slab Region 2. Second
panel of figure 4.48 shows the ”decoupling” of the plasma velocity or the un
freezing of pseudo equipotential magnetic field lines within the Region 2
where E · B �= 0.

The physical mechanism that is responsible for this decoupling is precisely
the parallel electric field. Figure 4.49 shows a set of profiles obtained by
the PSEL1 model for the velocity difference (Vx − UE) and for the parallel
component of the electric field Eparallel, as a function of y for 4 different
values of z. These plots show that the decoupling takes place within the
region where the parallel E-field is different from zero. The plasma flow
and fields on both sides of the electron dominated layer are decoupled. The
weak double layers formed due to the parallel gradient of plasma density and
electron pressure as well as due to the parallel shear of bulk velocity act as
”isolators” and ”unfreezes” the magnetic field lines.

Similar conclusions can be reached in the case of proton dominated layers.
The distribution of the convection velocity obtained with the model PSPL3
is shown in figure 4.50. This model gives a peculiar distribution of the bulk
velocity, for which there is an antiparallel stream, as already illustrated in
figure 4.43. Note that the distribution of the convection velocity, UE , also
shows a region of reversed flow. Nevertheless there is a significant difference
between the two velocities as illustrated by the right hand side panel of figure
4.50. Figure 4.51 shows that although the parallel electric field is very small
for y > 0, the plasma bulk velocity, Vx and the convection velocity, UE, tend
to different values. This proves that even small parallel components of the
electric field act efficiently to decouple the plasma motion from the medium
it originates from. Note however that in figure 4.51 the transition layer has
a characteristic scale length of the order of the proton Larmor radius and
extends therefore beyond the limits of the integration domain.

In order to study further the efficiency of the small parallel electric field
we have computed the convection velocity, UE , for the model PSPL2. The
results are shown in figure 4.52. Inside the transition layer which extends
over several proton Larmor radius the difference Vx − Ue is different from
zero. The y-profiles of Vx − UE and of Eparallel at 4 different z-values are
given in figure 4.53. One can see that at the right hand side border of
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the transition layer, the parallel electric field tends to zero as well as the
difference between the convection and bulk velocity. A very small electric
field component (with a maximum of about 0.018 µV/m) exists inside the
layer that now extends over large distances. These results demonstrate that
proton dominated transition layers also constitute decoupling mechanisms
although in this case the parallel electric field is smaller and distributed over
larger regions than in the case of electron dominated layers.

The associated effects of the velocity shear and parallel electric field is to
confine the plasma and to keep it quasineutral precluding its spreading along
the magnetic field lines, a process favored by the higher parallel mobility of
the electrons. The role of the velocity shear in stabilizing plasma pinches has
been recognized by laboratory plasma experimentalist (see Smolyakov et al.,
2001), but not yet by space plasma physicists who tend to restrict their lim-
its within the framework of the MHD theory where the magnetic field lines
are always electric equipotentials. This is, to our knowledge, among the first
studies that develops a kinetic model showing that in a magnetized plasma
the variation in the direction parallel to B of the cross-B plasma velocity pro-
duces a finite Eparallel component that preserves the plasma quasineutrality
and decouples the motion of plasma from the so-called motion of “frozen-in”
field.

Figure 4.48: model PSEL1 - Convection velocity and decoupling velocity of
plasma in case of an electron dominated sheath.
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Figure 4.49: model PSEL1 - Decoupling velocity and parallel electric field
vs. y coordinate at 4 different altitudes (model EB1).

Figure 4.50: model PSPL3 - Convection velocity and decoupling velocity of
plasma in the case of an proton dominated profile.
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Figure 4.51: model PSPL3 - Decoupling velocity and parallel electric field
vs. y coordinate at 4 different altitudes (model PB3).

Figure 4.52: model PSPL2 - Convection velocity and decoupling velocity of
plasma in the case of an proton dominated profile.



4.5. CONCLUSIONS AND COMMENTS 137

Figure 4.53: model PSPL2 - Decoupling velocity and parallel electric field
vs. y coordinate at 4 different altitudes (model PB3).

4.5 Conclusions and comments

Cross-B convection of plasma has been treated in the kinetic models of
tangential discontinuities proposed by Sestero (1967), Lemaire and Burlaga
(1976), Roth (1978, 1984) and Roth et al. (1996). The transverse plasma
flows considered in these models were sheared in the direction perpendicular
to the magnetic field. Thus in TD models plasma layers were considered
to be moving parallel to a surface of tangential discontinuity with the same
velocity all along the magnetic field line.

Plasma flows sheared in the direction parallel to the magnetic field are
observed in the region of the magnetospheric cusps, at the edges of plasma
irregularities impulsively injected at the magnetopause (Lemaire and Roth,
1991 ), or propagating inside the magnetosphere (Kelley et al., 2003 ), arti-
ficial ion clouds (Haerendel, 1967; Kazeminezhad, 1993; Delamere, 2002), or
in the laboratory during plasma gun experiments (Baker and Hammel, 1965;
Emmonds and Land, 1962; Wessel et al., 1988; Hurtig et al., 2003).

The kinetic model described in this thesis is a 2D development of the
kinetic models of TDs. We assumed that the plasma is flowing in the direction
parallel to the Ox-axis and perpendicular to B ≡ (0, By, Bz), but in addition
to the 1D kinetic models, we considered that the plasma bulk velocity varies
also with the coordinate z. This is a 2D flow in which we show that, under
some circumstances, a shear of the perpendicular plasma velocity occurs in
the direction parallel to the magnetic field.
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We assume here that the plasma flow and fields are stationary. In Chapter
3 we gave a theoretical outline of the equations and approximations used to
solve this problem. The beginning of Chapter 4 gives a description of the
numerical method used to solve the equations. Complete solutions of the
electrodynamics of a non-uniform plasma flow with a bulk velocity sheared
in the direction perpendicular and parallel to the magnetic field have been
illustrated in the figures of Chapter 4.

We have obtained 2D distributions for magnetic potential and magnetic
field intensity, electric potential and field, electron and ion densities, bulk
velocity, partial and total current densities. The parallel component of the
E-field as well as of the gradient of density and bulk velocity were also com-
puted. The kinetic treatment of plasma dynamics enabled us to study non-
MHD phenomena like parallel electric fields or weak double layers.

The key point is that the differential velocity or sheared flow with a non-
zero gradient parallel to the magnetic field produces a field aligned potential
drop. The largest value of E||, the parallel electric field, is indeed found
where the parallel gradient of the perpendicular plasma bulk velocity has its
maximum value. The results show that a parallel gradient of the electron
pressure may also be present in 2D sheared flows, enhancing the parallel
E-field generated by the parallel velocity shear.

We have evidenced two distinct regions where the parallel electric field
occured: Region 1 which is close to the left boundary and where we have
studied the local effects of the imposed excess of bulk velocity and Region 2
which is a 2D layer of transition from convecting to stagnant plasma regime.
The latter can be considered a two-dimensional “deformation” of the 1D
Sestero tangential discontinuity.

Our results show a bi-polar signature of the parallel electric field. The
parallel component of E is positive on one side and negative on the other
side of the excess momentum slab (Region 1) or inside the 2D layer (Region
2). This signature is retrieved in all six models simulated in Chapter 4.

The amplitude of the parallel electric field depends on the plasma prop-
erties. Thus we have shown that in case of a plasma moving in the positive
direction of Ox-axis and in the case of a positive B0, the parallel electric
field is stronger. The characteristic scale length of Region 2 is in this case of
the order of the electron Larmor radius. In case of a plasma moving in the
negative direction of Ox-axis (for B0 > 0) the characteristic scale length is of
the order of the proton Larmor radius. The parallel shear is reduced in this
case (the layer extends over larger distances) and the parallel electric field is
smaller.

The models PSEL1 (Vx(y, z) > 0) and PSPL1 (Vx(y, z) < 0) show
examples of a parallel electric field generated inside a 2D sheared flow of a
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Table 4.4: Summary of the results obtained in Chapter 4

PSEL1 PSEL2 PSEL3 PSPL1 PSPL2 PSPL3

Eparallel
Reg. 1
Reg. 2

Reg. 1
Reg. 2

Reg. 2 Reg. 1
Reg. 1
Reg. 2

Reg. 1

∇||Vx Reg. 1
Reg. 1
Reg. 2

Reg. 2 Reg. 1
Reg. 1
Reg. 2

Reg. 1

∇||n
Reg. 1
Reg. 2

Reg. 1
Reg. 2

Reg. 2 Reg. 1 Reg. 1 Reg. 1

plasma that has the same asymptotic density (Ni2 = Ne2 = Ni1 = Ne1) and
temperature (Ti2 = Te2 = Ti1 = Te1) at the borders of the 2D domain. Models
PSEL2, PSEL3, PSPL2 and PSPL3 show that differences in asymptotic
density (Ti2 = Te2 �= Ti1 = Te1) and/or temperature (Ni2 = Ne2 �= Ni1 = Ne1)
enhances the parallel component of E. A summary of the results obtained
in Chapter 4 is presented in Table 4.4. It gives the regions where the parallel
electric field, the parallel shear of velocity and the parallel gradient of density
occured in each of the six models.

It is the parallel electric field that invalidates the MHD approach. In-
deed, within the 2D layers studied in Chapter 4 we have verified that:

E + V × B �= 0 (4.26)

This is an important result indeed, since in the MHD paradigm, on which
relies some models of plasma transfer at the magnetopause, the condition:

E + V × B = 0 (4.27)

need necessarily be satisfied, i.e. the electric field has to be always perpen-
dicular to B and has nowhere a component parallel to B. The frozen-in field
approximation according to which magnetic field lines ”move” with the same
velocity, UE = E × B/B2 as the plasma is also based on the assumption
that equation (4.27) is satisfied.

Hence the results obtained in this chapter confirm that in a 2D non-
uniform (sheared) flow of plasma perpendicular to B-field a parallel compo-
nent of the electric field can be sustained. This additional mechanism must
be added to the list of those already described in the literature for producing
parallel electric fields: anisotropy of the pitch-angle distribution (Alfvén and
Fälthammar, 1963), gravity (Pannecoek, 1922, and Rossland, 1924), temper-
ature gradient (Hultquist, 1971), planetary or solar wind radial expansions or
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evaporation of plasma in ionized exosphere or coronae (Lemaire and Scherer,
1970, 1971a, 1971b; Pierrard, 1996, 1997).

In this work we have stressed the contribution of the velocity shear only
with the aim to demonstrate its effectiveness. In space plasmas, however, all
these mechanisms can be combined and may operate simultaneously. These
are non-MHD processes that must be taken into account in order to complete
the picture of plasma dynamics in magnetic fields.

The parallel electric field produced by the shear of plasma velocity con-
tribute significantly to the propagation of plasma elements/plasmoids across
magnetic field. Already in the 80ties Lemaire (1977, 1985) and Lemaire and
Roth (1978, 1981, 1991) have suggested a theoretical/qualitative model for
the dynamics of a plasma irregularity. They described the edges of the ir-
regularity as sites of density and velocity gradients. They argued that the
electric field should have a parallel component at the edges, decoupling the
plasma element from the ambient plasma and field.

Our study determines quantitatively and self-consistently the solution
for the E-field distribution at the plasmoid’s edges, showing the existence
of a parallel electric field or weak double layers sustained by the parallel
shear of the perpendicular plasma velocity. The latter is due to the excess of
velocity of the plasmoid with respect to the neighboring plasma layers. When
the plasmoid has an excess of density and/or temperature with respect to
the ambient plasma, the parallel electric component is even more enhanced
due to thermoelectric effects. Furthermore when magnetic field lines are
not parallel to each other, but diverging as in the polar wind and solar
wind, the mirror force acting on the charged particles may also contribute to
separate the electron and ions and thus produce additional parallel electric
field component.



Chapter 5

Comparison with previous
models for sheared
magnetospheric plasma flows

In the previous chapters were presented models that are relevant for studying
the dynamics of non-uniform plasma flows across magnetic field lines. In
this chapter we recall the main results obtained with our kinetic models
and how they relate to those obtained using other numerical methods or
approximations like the Particle-In-Cell (PIC) method and MHD simulations.

5.1 Kinetic models

Kinetic approximation of plasma physics has been very successful in modeling
the steady state tangential discontinuities (e.g. Sestero, 1964), exospheric
models of the solar and polar wind (e.g. Lemaire and Scherer, 1970), stability
of rotating plasmasphere (e.g. Lemaire, 1989). For a recent review on the
kinetic treatment of space plasmas see Lemaire and Pierrard (2003).

The kinetic models of tangential discontinuities have been extensively de-
scribed and discussed in the previous chapters. It is worthwhile to point
out here that they are constructed with exponential functions of energy
(Maxwellian) multiplied by truncation factors that can be step functions
(Lemaire and Burlaga, 1978) or other smoother functions as for instance
complementary error functions (Lee and Kan, 1979; Roth et al., 1996). The
cutoff functions determine the energy and pitch angle of particles that can
penetrate from one side to the other side of the discontinuity as illustrated
in the case studies of Part I.

The solutions presented in this thesis are two-dimensional solutions con-
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structed with exponentials and step functions of the constants of motion.
These solutions are not unique but they give one admissible configuration of
the plasma and fields that is consistent both at the microscopic level and at
the macroscopic level as well.

None of the earlier one-dimensional models did consider cross-B plasma
flows with a gradient in the direction parallel to the magnetic field. Indeed,
the treatment of parallel gradients of the velocity for a cross-B plasma flow
is inherently two-dimensional.

In chapter 4 it has been discussed the role of the parallel component of
the electric field in decoupling the plasma motion from the motion of the
medium where it originates from. We give a quantitative assessment of this
parallel component as well as of the “decoupling” between the plasma motion
and the background generated by the parallel component of E.

Our kinetic model assumes that an external driver sustains the sheared
steady state plasma flow. In the case of a penetrating plasmoid the driving
force is its inertia or excess of momentum. Nevertheless, time depending
effects, like Alfven kinetic waves or other nonlinear modes must be taken
into account in order to study the stability of the kinetic model discussed in
Chapter 3 and 4.

5.2 Kinetic (PIC) simulations

Important advancement in studying the dynamics of 2D and 3D plasmoids
moving across magnetic field were made by kinetic numerical simulations.
These types of investigation take into account the dynamics of individual
”macro-particles” or ”clouds” that are used to approximate the plasma struc-
ture at the microscopic level (Hockney and Eastwood, 1981; Birdsall and
Langdon, 1985).

The kinetic simulations by Galvez (1987), Livesey and Pritchett
(1989) and Koga et al.(1989) are among the most successful. Using a
two-dimensional geometry, they model correctly the charge separation and
their accumulation at the lateral edge of a neutral beam injected normally
to an external magnetic field. Indeed, they study the evolution in time of
a plasma beam injected across magnetic field lines. These numerical simu-
lation show that the plasma beam moves forward across magnetic field and
penetrate over a distance that depend on its initial energy and momentum
density. The polarization electric field perpendicular to B is correctly taken
into account. It drives continuously charges to the later edges of the intruding
plasma element. An example is given in figure 5.1 where the time evolution
of the beam is given for three successive moments of time.
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Figure 5.1: Results of two-dimensional PIC simulation for a narrow beam
injected normally to the magnetic field (adapted from Livesey and Pritchett,
1989).

There are however two basic limitations of these numerical experiments:
(a) the width of the beam is smaller than the ion Larmor radius, and (b) the
length of the plasmoid along the magnetic field is infinitely long. Nevertheless
the treatment of the electric field is self-consistent. Indeed, in order to take
into account the effect of a polarization current which corresponds to the
displacement current in Maxwell’s equation the PIC modelers are able to
solve the Poisson equation from the distribution of charged ”macro-particles”.
But still they do not take into account the mass effects as they consider in
general ion and electron mass ratio of the order of 10 or 100.

The kinetic simulations of Neubert et al. (1992) show the time evolution
of a 3-D rectangular plasma cloud injected in the x-direction with an excess
of density and velocity at time t = 0, perpendicular to a vertical uniform
magnetic field parallel to the Oz axis. The evolution in time of the system
shows the formation of space charge layers at the edges of the injected plas-
moid. A sample of their results obtained for injection into vacuum is given
in figure 5.2. Similar simulations were performed by Neubert et al. (1992)
to study the injection of a plasma cloud into an ambient plasma and B-field.
They show that in both cases space charge layers are formed at the edges of
the intruding plasma cloud. The space charge layers determined by the PIC
simulations of Neubert et al. (1992) and illustrated in fig. 5.2 may be seen as
the “sources” of the E-field distributions used in the numerical integrations
presented in Chapter 2 of the Thesis.
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Figure 5.2: Time snapshot from a three-dimensional PIC simulation for a
plasma cloud injected with the horizontal velocity, V0, parallel to OX, nor-
mally to the vertical magnetic field, B0, parallel to OZ (adapted from Neubert
et al., 1992). The three panels show the charge density in three planes, XOY ,
XOZ and Y OZ respectively. The density is color coded, blue correspond
to negative charge (electrons) and red correspond to positive charge (ions).
The space charge layers formed at the edges of the moving plasmoid are seen
in all three panels.

In the simulations of Neubert et al. (1992) the electron charge layer
expands very rapidly along the magnetic field. In the case of injection into
ambient plasma it seems that the quasi neutrality was very difficult to achieve
by these PIC simulations. Indeed, the code used to solve the equation of
motion for each of the particle of the system has to solve at each time step
the Poisson equation in each grid point. The proton electron mass ratio used
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in these studies is mp/me = 16. The number of simulated particles per Debye
sphere is not specified.

An extension of the work of Neubert et al. (1992) was given by Nishikawa
(1997) who studied the kinetic 3D motion of particles at the magnetopause.
Nishikawa’s simulations consider a 3-D model of the geomagnetic field and
the superposition of an external, solar wind, magnetic field. These simula-
tions introduce a rotation (shearing) in time of the orientation of the external
B-field. The results show that the shearing of B-field seems to correspond to
the penetration of the particles from outside into the magnetosphere. Direct,
impulsive entry of the ions is observed in the cusp regions of the dipolar field.
The numerical integration of test-particle orbits discussed in Chapter 2 evi-
denced also the penetration of particles across a sheared B-field distribution.

Very recent results of PIC simulations show interesting/novel results.
Hurtig et al. (2003) have performed laboratory experiments and 3-D PIC
numerical simulations to study the interaction of a moving plasma cloud in
a curved magnetic field. It appears that the experimental results of Hurtig
et al. (2003) support the theoretical results put forward in the chapters 3
and 4 of this thesis. Their laboratory experiment proves, as in the earlier
Schmidt’s (1960) experiment, that the streaming of plasma across a curved
magnetic field is sustained by a perpendicular electric field, the Schmidt’s
convection electric field.

The computer simulations of Hurtig et al. (2003) show also the develop-
ment of a parallel electric field immediately after the plasma moves across
B. The parallel component of the electric field is found at the edges of the
plasma element. The parallel E-field is relatively strong and have antiparallel
polarization at the upper and lower edge respectively.

The parallel electric field observed in the laboratory and numerical ex-
periments of Hurtig et al. (2003) seems to correspond to the type of parallel
E-field described by our kinetic model and presented in chapters 3 and 4.
Hurtig et al. (2003) find that, in their own words, ”the simulation reproduce
several experimental results concerning the plasma’s macroscopic behavior :
...the formation of a potential structure including (in the transition region)
magnetic-field-aligned electric fields.” This supports the results presented
in Part II of the thesis. Indeed, in Chapter 4 we have explained and assessed
quantitatively the physical mechanism that produces a parallel electric field
distribution as that reported by Hurtig et al.(2003), namely the parallel shear
of the plasma bulk velocity and the parallel gradient of the electron density
and pressure.



146 CHAPTER 5. COMPARISON WITH PREVIOUS RESULTS

5.3 MHD models and numerical simulations

In a recent study by Echim and Lemaire, (2000) the numerical simulations
devoted to the impulsive penetration mechanism at the frontier of the mag-
netosphere have been reviewed with the aim to outline their main approxima-
tions and results. All these numerical simulations investigating the interac-
tion of an excess of momentum plasma element with a model magnetopause
are based on the MHD approximation where E · B = 0, i.e. the presence of
a parallel electric field is ignored.

In ideal MHD models constructed to test the impulsive penetration mech-
anism Dai and Woodward (1994, 1995) and Huba (1996) took a vanishingly
small electric resistivity, η = 0. The following equation holds true throughout
the simulation domain :

E + V × B = 0 (5.1)

This implies that E ·B = 0 and the electric field has no component parallel to
B. Resistive MHD models (Ma et al., 1991) consider a finite resistivity that
enables some kind of ohmic decoupling between plasma motion and B-field.
The electric field is approximated in this case by:

E + V × B − ηj = 0 (5.2)

But η is very small in space plasma and therefore the last term in eq. (5.2) is
generally ignored. Furthermore in all MHD approximations the displacement
current (∂D/∂t) is ignored in the incomplete form of the Ampere equation.

In Hall MHD an additional Hall term ∇ × (j × B) /nee (Huba, 1995) is
added such that the electric field is then approximated by:

E + V × B − (j × B) /nee = 0 (5.3)

The MHD numerical simulations investigate the time evolution of the in-
teraction of an excess momentum plasma element with adjacent layers of
stagnant plasma. In general they suggest that the penetration would be pos-
sible only for certain orientation of the magentic field inside the plasmoid
and the external magnetic field.

There are however two major limitations of these models. Both are com-
mon to all MHD simulations devoted to the investigation of the dynamics of
plasmoids in the proximity of the magnetopause. The first limitation is the
oversimplified treatment of the electric field : (a) equations (5.1) - (5.3) are
not valid at the edges of the plasma elements where non-MHD processes, as
those outlined in the Chapter 4 of this thesis, produce non-zero components
of the electric field in the direction parallel to the magnetic field and (b) the
displacement current is disregarded in the Ampere equation. Although small
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in amplitude, the displacement current ε0(∂E/∂t) has a key role in sustain-
ing the formation of space charge layers. It is only recently that Vasyliunas
(2001) realized that the displacement current carries the charges that sustain
an electric field produced by the forward motion of a moving plasma. It is of
course the same electric field as that discussed fourty years ago by Schmidt
(1960).

In addition to the non-MHD processes considered in the past to produce
parallel E-field, including the ohmic resistivity taken into account by MHD
simulations (Ma et al., 1991), we have shown in chapters 3 and 4 that a
parallel shear of the convection velocity does produce a parallel electric field
Eparallel �= 0. Thus the assumption on which ideal and Hall MHD are based
fails to be satisfied.
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Chapter 6

Summary and perspectives

There is compelling evidence that in the laboratory plasma as well as in
the magnetospheric plasmas an important role is played by the shearing of
the plasma bulk velocity. Plasmoids fired by Q-machines and plasma guns,
neutral beams simulated numerically, ion or neutral clouds injected from
rockets and spacecraft or plasma irregularities plunging from the solar wind
onto the exterior layers of the magnetosphere - all have an excess of velocity
with respect to the ambient plasma.

The aim of this thesis is to improve our description from a kinetic point
of view of the differential motion of plasma density irregularities across non-
uniform magnetic field lines, as well as of the generation of a parallel electric
field invalidating the ideal MHD approximation due to the shearing of their
transverse convection velocity

Part I: In the first part we have analyzed the motion of individual
particles, electrons and protons, moving across a sheared magnetic field dis-
tribution. We have computed numerically their orbits across a tangential
discontinuity (TD) for three different electric field distributions. In the first
case we examined the effect of a uniform electric field and showed that the
particles are accelerated if the electric field is parallel to the sheared magnetic
field lines at least at some portion in the assumed model of the tangential
discontinuity. An example of sheared magnetic field penetrated all through
by the drifting particles has been also given. The guiding center drift veloc-
ity diverges when B → 0 but the equation of motion of the particle can be
integrated and is not singular.

The second non-uniform electric field distribution satisfies everywhere
the condition that E · B = 0 as well as the requirement that the electric
drift, UE = E/B, is uniform even when B → 0. In the limiting case of an
antiparallel distribution of B-field there is a mathematical singularity where
the first order guiding center approximation breaks down where B → 0 and
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E → 0 but there is no singularity in the convection velocity (E/B) nor for
the exact equation of motion of the charges particle drifting across the TD
layer. The particle can drift across the non-uniform B-field to any depth even
for large magnetic shear angles.

The third E-field distribution is a non-uniform electric field perpendicular
everywhere to the local magnetic field lines and satisfying the additional
requirement that the average magnetic moment of the drifting test particle
is adiabatically conserved. In this case we find that the particle cannot
always move to any arbitrary depth across the TD. The maximum distance
of penetration depends on its initial convection energy. When the initial
convection energy (mv2

gc0/2) is too small on side 1 (the left hand side of
the discontinuity) adiabatic deceleration of the particle can stop its forward
motion while drifting toward the side 2 where the value of B is larger. The
forward motion is stopped at the penetration depth where all the initial
convection energy has been converted into energy of Larmor gyration.

We show that when the magnetic field directions on side 1 and side 2 are
antiparallel the plane where B = 0 is a singularity for the zero and first order
approximations, but not for the exact Newton-Lorentz equation of motion,
i.e. no anomalous or reconnection-like acceleration is expected to take place.

We also demonstrate in the first part that it is not just enough to give
and draw a distribution of magnetic field lines (as in 2D/3D reconnection
models with or without X-lines or neutral points) to determine what will be
the motion of plasma particles in this B-field distribution. Indeed, depending
on the assumed distribution for the electric field, the charged particle will ex-
perience quite different drift motions among which that foreseen in magnetic
reconnection models is just one special limiting case.

Without giving also explicitly (and not implicitly as in steady state recon-
nection models) the spatial distribution of the E-field intensity, a complete
and realistic description of the motion of charged particle cannot be inferred
in the magnetopause region. In Chapter 2 we have shown that the distribu-
tion of the electric field prescribed by the MHD fluid models is by no means
unique, other distributions can be imagined and we gave two such examples.

Part II: In the second part we moved a step further by studying ”en-
sembles” of electrons and protons forming a diamagnetic plasma, instead
of individual charges as in Part I. The plasma is described by the velocity
distribution function (VDF) of each component species. These VDFs are
solutions of the Vlasov equation. The electric charge density and electric
currents carried by these ensembles of electrons and ions determine the elec-
tric field distribution and perturb the magnetic field distribution according
to the Maxwell’s equations.

In a collisionless plasma any real, positive function of the constants of
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motion of the particle can be considered a solution of the Vlasov equation.
First, we studied the simpler one-dimensional case where the VDF depends
only on one spatial coordinate (y) perpendicular to the external magnetic
field direction which is assumed to be directed in the Oz direction (see fig.
3.2). Eventually in Chapters 3 and 4 we examine two-dimensional cases
where the VDF’s are real functions of both y and z coordinates where plasma
parameters are non-uniform in the direction parallel to the magnetic field (see
fig. 3.3).

The two-dimensional problem studied in this second part of our memoire
has two constants of motion: the total energy, H and the canonical momen-
tum px. The magnetic moment, µ, is an adiabatic invariant used to determine
the domains of the velocity space where the VDFs are defined. The VDF was
specified in the plane z = 0 as a combination of exponentials and Heaviside
step functions of the constants of motion. The velocity distribution function
in this plane perpendicular to the magnetic field direction, corresponds to
a plasma with a non-zero average bulk velocity, Vx, in the ”left hand side”
(y → −y∞) and a stagnant plasma (having a zero average Vx velocity) in the
”right hand side” (y → +y∞).

The variation of the VDF with y and z is determined by the distribu-
tions of the electric and magnetic potentials, Φ(y, z), Ax(y, z) , which are
solutions of Maxwell’s equations. The variation of the electric and magnetic
potentials with y and z restricts the region of accessibility of the plasma par-
ticles. Therefore the phase space is not uniformly populated, some regions
are not accessible to all the particles. We have determined the boundaries of
the accessibility regions in terms of the constants of motion. These bound-
aries were taken into account when the moments of the velocity distribution
function are computed analytically.

The zero and first order moments of the VDF determine the charge densi-
ties and current densities contributed by electrons and ions. They were used
to calculate the self-consistent electric and magnetic potentials as solutions
of the Maxwell’s equation. The electric potential, Φ(y, z), was found from
the plasma quasineutrality condition which is a satisfying approximation of
Poisson’s equation when the VDFs of the component species do not change
significantly over scale lengths of the order of the Debye length. This is in-
deed a good approximation for all known spatial structures observed in space
plasmas. The magnetic vector potential was found by solving the Ampere
equation with appropriate boundary conditions.

A test case - the Sestero sheath - has first been introduced into the kinetic
and numerical model. We have obtained solutions that indeed reproduce the
results obtained already by the one-dimensional kinetic models of the tangen-
tial discontinuities. Next we have imposed more general boundary conditions
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onto the magnetic potential and the asymptotic values of electron and proton
temperatures and densities. Thus we have obtained several models of plasma
convection across magnetic field, with the average velocity varying in both
directions: normal and parallel to the magnetic field.

Our results show that the parallel (i.e. magnetic-field-aligned) gradient of
the perpendicular plasma bulk velocity generates a parallel component of the
electric field. Depending on the electron kinetic pressure distribution along
the magnetic field lines, an additional thermoelectric field can also be gener-
ated with a non-zero component parallel to B as in exospheric models of the
polar wind and solar wind ( Lemaire and Scherer, 1970, 1971a, 1971b; Pier-
rard and Lemaire, 1996; Pierrard, 1997). It is the first time that the parallel
electric field distribution generated by a 2D sheared plasma flow has been
modeled quantitatively within the framework of kinetic theory of collision-
less plasmas. This new mechanism must be added to those already known to
produce parallel electric fields in space plasma: i.e. gravity, anisotropy of the
pitch angle distribution, gradient of the temperature and kinetic pressure,
different evaporation rates of electrons and ions out of planetary ionospheres
or stellar coronae.

The role of this parallel electric field component is essential to under-
stand and model the motion of plasma density irregularities across the mag-
netopause as a result of their excess of momentum density. It was already
pointed out by Lemaire and Roth (1981) that at the edges of a plasma ele-
ment having an excess of velocity with respect to the neighboring layers there
is a parallel gradient of velocity. Our results give a quantitative assessment
of the parallel component of the electric field generated by this parallel ve-
locity shear. The parallel E-field component contributes also to confine the
plasma element in a 3D shape and decouples its motion from the background
medium.

Several future perspectives can be envisaged to improve/develop this work
further. An important step would be to identify a third constant of motion
to replace the adiabatic invariant, µ, used in our kinetic model. A third
constant of motion was proposed in a new kinetic model of the rotational
discontinuities (Roth, 2003, private communication). It is possible to identify
a similar constant of motion in the case of parallel velocity shears.

Another possible future development would be to give the solution of
the Vlasov equation in terms of Lorentzian(Kappa) functions instead of the
Maxwellian that we used in our model. In the magnetosphere and solar
wind the observed VDFs of particles are generally characterized by tails
with an excess of suprathermal particles that can be conveniently fitted by
kappa functions (Lemaire, 2003, private communication). Another possible
improvement to our Vlasov solution would be to replace the step functions
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with other smoother functions that would then describe smoother VDFs in
the velocity space.

The results obtained in Chapters 2, 3 and 4 offer very good perspectives
for comparisons with experimental data collected by satellites. We envisage
that in the near future some of the results described in the thesis will be
tested against plasma and field data collected at the magnetopause by the
Cluster quartet.
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[66] Landau, L.D., Lifşiţ, E.M., Mecanica, (in Romanian) Editura Tehnică,
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Scaling factors

The electric potential is scaled with the potential necessary to accelerate an
electron to the thermal energy KTe:

Φ = λΦΦ∗, λΦ =
KTe

e

The magnetic vector potential is scaled with:

Ax = λAxA
∗
x, λAx =

√
2meKTre

e

and the electric current with:

j = λjj
∗, λj = (eN0)

√
2KTre

me

The velocity is scaled with the electron thermal velocity:

V = λV V ∗, λV =

√
2KTre

me

we have also defined the non-dimensional quantities:

γ =
me

mi
, τe =

Tre

Te1
, τe2 =

Tre

Te2

τi =
Tre

Ti1
, τi2 =

Tre

Ti2

The spatial coordinate perpendicular and parallel to the magnetic field are
both scaled with the electron Larmor radius:

y = λyy
∗, λy =

√
2meKTe

eB

z = λzz
∗, λz =

√
2meKTe

eB
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Analytical moments of the
truncated velocity distribution
function

Given the velocity distribution function in terms of the constants of motion
H and px and the adiabatic invariant µ :

fα = Ni1

(
mα

2πKTi1

) 3
2

η

(
bα

px√
mαKTre

)
exp

(
− H
KTα1

)

+Ni2

(
mα

2πKTα2

) 3
2

η

(
bα

px√
mαKTre

−

bα
mαV0√
mαKTre

)
exp

(
−H + 1

2
mαV 2

0 − pxV0

KTα2

)

where bα = sign(qα) we have to compute its moments by integrating in
the (H, µ, px) space within the limits of existence of the Jacobian of the
transformation from the (vx, vy, vz) to (H, µ, px):

Qrst
α (y, z) = 4

∫ +∞

−∞

∫ +∞

Ecα

∫ +∞

µcα

[
[vx(E, µ, px)]

r[vy(E, µ, px)]
s[vz(E, µ, px)]

t×

×
√

Bfα(E, µ, px)

2m2
α

√
E − Ecα

√
µ − µcα

]
dEdµdpx

where

Ecα = µB + [px − qαAx(y, z)]V (y, z) +

+qαΦ(y, z) − mαV 2(y, z)

2

µcα =
mα

2B

[
px − qαAx(y, z)

mα
− V (y, z)

]2

The factor 4 in front of the integrals is due to the summation of the integrals
when both s and t are even. Whenever one of the two exponents is odd the
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moment is equal to zero:
Qrst

α = 0

A detailed discussion on the integration over the 4 quadrants of the (vy, vz)
subspace mapped into the (H, px, µ) space, is given in Chapter 3. As we
are primarily interested to find a solution of the Maxwell’s equations for the
electromagnetic field we will compute the zero and first order moments.

Two dimensional density distribution

The numerical density of the species α is computed as:

Q000
α = 4

∫ +∞

−∞

∫ +∞

Ecα

∫ +∞

µcα

[ √
Bfα(E, µ, px)

2m2
α

√
E − Ecα

√
µ − µcα

]
dEdµdpx

Integration over H and µ gives:

Q000
α = 4II

px
+ 4III

px

where

II
px

=
Nα1

4

⎛
⎜⎝e

−mαV 2
0

2KTα1 e
− qαΦ

KTα1√
2πKTα1

⎞
⎟⎠∫ 0

−∞
e
− (px−qαAx)2

2mαKTα1 dpx

III
px

=
Nα2

4

⎛
⎜⎝e

−mαV 2
0

2KTα2 e
− qαΦ

KTα2√
2πKTα2

⎞
⎟⎠∫ +∞

miV0√
2mαKTα2

e
pxV0
KTα2 e

− (px−qαAx)2

2mαKTα1

In finding II
px

and II
px

we used the integral:

∫ +∞

0

e−
t
β√
t

dt =
√

πβ

With the appropriate change of variables and using the integral:∫ +∞

0
e−p2x2+qxdx =

√
π

p
e

q2

4p2 −
√

π

2p
e

q2

4p2 erfc
q

2p

we finally obtain the numerical density of the species α to be equal to:

Q000(y, z) =
Nα1

2
e
− eΦ(y,z)

KTα1 erfc

(
eAx(y, z)√
2mαKTα1

)
+

Nα2

2
e
− eΦ(y,z)

KTα2 e
eAx(y,z)V0

KTα2 erfc

(
− eAx(y, z)√

2mαKTα2

)

The charge density of species α is equal to :

ρα(y, z) = qαQ000(y, z)

where qα is the charge with algebraic sign.
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Two dimensional current distribution

The current density, Jx, is obtained by calculating the first order moment
of the VDF:

Q100
α = 4

∫ +∞

−∞

∫ +∞

Ecα

∫ +∞

µcα

px − qαAx

mα

[ √
Bfα(E, µ, px)

2m2
α

√
E − Ecα

√
µ − µcα

]
dEdµdpx

Integration over H and µ gives the same results as in the case of the number
density and one can write:

Q100
α = 4JI

px
+ 4JII

px

where

JI
px

=
Nα1

4

⎛
⎜⎝e

− mαV 2
0

2KTα1 e
− qαΦ

KTα1√
2πKTα1

⎞
⎟⎠∫ 0

−∞

[(
px − qαAx

mα

)
e
− (px−qαAx)2

2mαKTα1

]
dpx

JII
px

=
Nα2

4

⎛
⎜⎝e

− mαV 2
0

2KTα2 e
− qαΦ

KTα2√
2πKTα2

⎞
⎟⎠∫ +∞

miV0√
2mαKTα2

[(
px − qαAx

mα

)
e

pxV0
KTα2 e

− (px−qαAx)2

2mαKTα1

]
dpx

And finally the integration over px gives

Q100
α = Nα2

√
KTα2

2πmα

e
− eΦ(y,z)

KTα2 e
eAx(y,z)V0

KTα2

[√
πmα

2KTα2

V0erfc

(
− eAx(y, z)√

2mαKTα2

)
+ bαe

(eAx)2

2mαKTα2

]
−

−bαNα1

√
KTα1

2πmα
e
− eΦ(y,z)

KTα1 e
− (eAx(y,z))2

2mαKTα1

where bα = sign(qα). The partial current of the species α is equal to

Jxα = qαQ100
α

where qα is the electric charge with algebraic sign.
The partial currents in the other two directions, Jαy and Jαz, are obtained

by computing other two first order moments:

Q010
α (y, z) = 4

∫ +∞

−∞

∫ +∞

Ecα

∫ +∞

µcα

[
[vy(E, µ, px)]

√
Bfα(E, µ, px)

2m2
α

√
E − Ecα

√
µ − µcα

]
dEdµdpx

Q001
α (y, z) = 4

∫ +∞

−∞

∫ +∞

Ecα

∫ +∞

µcα

[
[vz(E, µ, px)]

√
Bfα(E, µ, px)

2m2
α

√
E − Ecα

√
µ − µcα

]
dEdµdpx

which are identically equal to zero since the powers of vy(E, µ, px) in
Q010

α (y, z) and of vz(E, µ, px) in Q001
α (y, z) are odd (s = 1 and t = 1 re-

spectively) such that:

Jyα = qαQ010
α (y, z) = 0

Jzα = qαQ001
α (y, z) = 0
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Analytical moments of the
nontruncated velocity
distribution function

In Chapter 4 the velocity distribution function of ions and electrons were
simplified by taking into account the sign of V0, the parameter entering the
general solution given in Chapter 3:

• in case V0 > 0, the VDF of ions satisfying the boundary conditions,
can be written:

fi(H, µ, px) = Ni1

(
mi

2πKTi1

) 3
2

e
− H

KTi1 +

Ni2

(
mi

2πKTi2

) 3
2

e
− H

kTi2
+

pxV0
kTi2

− 1
2

miV0
2

kTi2

in this case the VDF of electrons is equal to the general solution given
in Chapter 3;

• in case V0 < 0, the VDF of electrons satisfying the boundary conditions,
can be written

fe(H, µ, px) = Ne1

(
me

2πKTe1

) 3
2

e
− H

KTe1 +

Ne2

(
me

2πKTe2

) 3
2

e
− H

kTe2
+

pxV0
kTe2

− 1
2

meV0
2

kTe2

in this case the VDF of ions is equal to the general solution given in
Chapter 3.

The densities and currents of the two VDFs were given in eqs.
(4.16)-(4.17) and (4.20)-(4.21). The corresponding nondimensional values
are equal to:
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• in case V0 > 0 :

n∗
i = N∗

i1e
−τiΦ∗

+ N∗
i2e

−τi2Φ∗
e2τi2V ∗

0 A∗
x

J∗
xi = N∗

i2V
∗
0 e−τi2Φ∗

e2τi2V ∗
0 A∗

x

• in case V0 < 0 :

n∗
e = N∗

e1e
τeΦ∗

+ N∗
e2e

τe2Φ∗
e−2τe2V ∗

0 A∗
x

J∗
xe = −N∗

e2V
∗
0 eτe2Φ∗

e−2τe2V ∗
0 A∗

x



Fifth order Runge-Kutta
algorithm to integrate ordinary
differential equations

The second order differential equation;

d2y

dt2
= f(y, x)

can be written as a system of two first-order differential equations:

dy

dx
= v(x)

dv

dx
= f(v, x)

The numerical integration of the system of ODE is based on the evaluation
of the derivative at the intermediate points between two successive samples,
xi, xi+1. The fifth order Runge-Kutta algorithm gives the following series for
successive approximation of the value yn+1 in xn+1 as a function of the value
yn in xn:

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

k3 = hf(xn + a3h, yn + b31k1 + b32k2)

· · ·
k6 = hf(xn + a6h, yn + b61k1 + · · · b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + O(h6)

where h is the step size. By modifying the step size one modifies the accuracy
of the solution. Cash and Karp have found a so called ”embedded formula”
that gives the value of the function yn+1 with a fourth order accuracy in the
step h:

y∗
n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 + O(h5)
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The difference between yn+1 and y∗
n+1 gives an evaluation of the error of the

integration:
∆ = yn+1 − y∗

n+1

and is proportional to h5. The coefficients bij , ci and c∗i computed by Cash
and Carp for the fifth order RK integration algorithm have been taken from
Press et al. (1991).

The estimate of the error of integration provided by Cash-Carp formula
is very useful for adapting the step size such that a desired accuracy, ε,
to be obtained. In practice the step size is modified and the value of the
unknown function, yn, recomputed until the integration error, ∆, is smaller
than the minimum error, ε. Adaptive step size Runge-Kutta integration were
performed in Chapter 3 to integrate the orbits of test particle injected into
sharp varying electromagnetic field distributions.



Gauss-Seidel iterative method
to solve sparse matrix linear
systems

The discretization by finite differences of the Laplace operator in a two di-
mensional Poisson problem:

∂2U

∂y2
+

∂2U

∂z2
= u(y, z)

generates a linear system whose unknowns are the values of the function on
the grid points of the discrete mesh:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1(N2−1) a1N2

a21 a22 · · · a2(N2−1) a2N2

...
...

aN1 aN2 · · · aN(N2−1) aNN2

a(N+1)1 a(N+1)2 · · · a(N+1)(N2−1) a(N+1)N2

...
...

a[N(N−1)]1 a[N(N−1)]2 · · · a[N(N−1)](N2−1) a[N(N−1)]N2

...
...

a(N2−1)1 a(N2−1)2 · · · a(N2−1)(N2−1) a(N2−1)N2

aN21 aN22 · · · aN2(N2−1) aN2N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U11

U12
...

U1N

U21
...

UN1
...

UNN−1

UNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11

u12
...

u1N

u21
...

uN1
...

uNN−1

uNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the discrete values of the 2D unknown function distribution, Uj,l =
U(yj , zl), and of the source terms, uj,l = u(yj, zl), were written into
one-column matrix. The N2 ×N2 matrix is the Laplace operator discretized
with the 5-point Poisson finite differences method given in eq. (4.3) of Chap-
ter 4.

The linear system can be written in a short form:

AU = u
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where U and u are one column matrix defined above. In the matrix A
the most part of the elements on each row is equal to zero. Therefore a
Gaussian elimination by pivoting may take unnecessary long computer time.
The Gauss-Seidel method is developed to avoid such lengthy calculation. It
implements an iterative method similar to the well known convergence of the
array:

xn =
xn−1

2
+

1

xn−1

, n = 1, 2, 3, · · ·

The method can be applied if the matrix A of the linear system is invertible
and positive definite. That is precisely the case with the matrix obtained by
the discrete transformation of the Laplace operator with the 5-point method
given in eq. (4.3). Indeed, one can see that main diagonal elements of matrix
A are equal to 4.

The first step in the Gauss-Seidel iterative method is to split the matrix
A such that one can write:

A = F − G
where the matrix F is defined as:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 · · · 0 0
a21 a22 · · · 0 0
...

...
aN2−11 aN2−12 · · · aN2−1N2−1 0
aN21 aN22 · · · aN2N2−1 aN2N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix G is defined as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · −a1(N2−1) −a1N2

0 0 · · · −a2(N2−1) −a2N2

...
...

0 0 · · · −a(N2−1)(N2−1) −a(N2−1)N2

0 0 · · · 0 −aN2N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

One can rewrite the linear system as:

FU = GU + u

that defines the actual iterative scheme. Indeed, taking any initial guess, U1,
one can demonstrate that

FUn = GUn−1 + u, n = 2, 3, 4, · · ·
the iteration converges to the solution.
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In practice the convergence rate of the method is improved by imple-
menting some matrix reordering algorithms based on the sparse nature of
the matrix A (see Dongarra et al., 1986). Indeed, since each component
of the new iterate depends upon all previously computed components, the
updates cannot be done simultaneously. The new iterate depends upon the
order in which the equations are examined. The Gauss-Seidel method is
sometimes called the method of successive displacements to indicate the de-
pendence of the iterates on the ordering. If this ordering is changed, the
components of the new iterate (and not just their order) will also change.
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Bracketing and bisection
method to find roots of a
nonlinear equation

In Chapter 4 it has been solved the nonlinear equation derived from the
quasineutrality condition. Indeed it has been obtained a nonlinear equation
for the unknown Φ:

ni(Φ) − ne(Φ) = 0

where ni(Φ) and ne(Φ) are the densities of positive and negative charges.
These are nonlinear functions of Φ involving exponentials and erfc functions
as shown in equations (3.57)-(3.58).

Since ni(Φ) and ne(Φ) are continuous functions of Φ one can find the
solution of the quasineutrality equation by bracketing and bisection method.
The procedure starts by defining a domain, [−Φm, +Φm], within which the
unknown Φ takes values. The domain is evenly sampled:

Φi = Φi−1 + ∆Φ, i = 1, 2, · · · , N

where Φ0 = −Φm and ∆Φ = (2Φm)/N . For each value Φi one calculates:

ni(Φi) − ne(Φi) = R(Φi)

Whenever a change of sign of R occurs:

R(Φi)R(Φi+1) < 0 (C.1)

one has “bracketed” the solution of the nonlinear equation. In other words,
assuming that f(Φ) = ni(Φ) − ne(Φ) is a continuous function of Φ and has
no singularities in the interval [Φi, Φi+1], one can be sure that at least one
solution of f(Φ) = 0 can be found if the condition (C.1) is satisfied.

Once the solution is bracketed several methods can be applied to find the
solution with the required accuracy. We have chosen one that surely converge
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to the solution - the bisection method. When the condition (C.1) is satisfied
for the interval [Φi, Φi+1], one calculates

R1/2 = R(Φi + (Φi+1 − Φi)/2)

and check on which side of the interval, Φi or Φi+1, the functions R(Φi) or
R(Φi+1) have the same sign as R1/2. Thus one can reduce the size of the
interval containing the solution to half of the initial interval [Φi, Φi+1]. The
new interval is in turn halved and the same procedure repeated until the
solution is determined with the desired accuracy.

If after n iterations the root is in an interval δΦn then after the next
iteration the root is in an interval δΦn+1 = δΦn/2. One knows in advance
the number of iterations, N , needed to determine the solution with a given
accuracy, ε:

N = log2
Φi+1 − Φi

ε
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