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Zusammenfassung

Charakteristik der Erdmagnetopause
anhand von Messungen mit Cluster

Das Thema dieser Arbeit ist die terrestrische Magnetopause, eine Diskontinuität, wel-
che die Grenzschicht zwischen dem vom Erdmagnetfeld kontrollierten Plasma und dem mit
Überschallgeschwindigkeit gegen das Erdmagnefeld anströmenden Plasma der Sonne bildet,
dem sogenannten Sonnenwind. Wir interessieren uns sowohl für die Bestimmung der makro-
skopischen Eigenschaften dieser Diskontinuität (wie für ihre Form, Orientierung, Bewegung
und Dicke), als auch für die physikalischen Phänomene, die in ihrer Umgebung stattfinden.
Wir haben diese Studie durchgeführt, indem wir in-situ Messungen der verschiedenen Plas-
maparameter analysiert und interpretiert haben. Die Daten wurden mit den Satelliten der
Cluster-Mission der Europäischen Weltraumbehörde (ESA) während der Durchquerungen der
Magnetopause genommen.

Nahezu alle Methoden, die zur Ableitung der Parameter eines Magnetopausendurchganges
benutzt werden, beruhen zum einen auf der Annahme einer ebenen Geometrie, zum anderen
nehmen sie an, dass alle physikalischen Größen sich nur entlang der Normalenrichtung ändern.
Wir können diese Methoden in zwei Kategorien unterteilen. Auf der einen Seite stehen die
Methoden, die sich nur auf Daten eines einzelnen Satelliten stützen und auf der Gültigkeit von
verschiedenen Erhaltungsgesetzen basieren. Die Minimum-Varianz-Analyse des magnetischen
Feldes (MVAB) zum Beispiel basiert auf dem Nichtvorhandensein von magnetischen Mono-
polen, was die Konstanz der Magnetfeldkomponente entlang der Normalenrichtung zur Folge
hat. Somit ergibt sich bei dieser Methode die Normalenrichtung als die jenige Richtung, ent-
lang der die Variationen des Magnetfeldes am kleinsten sind. Eine weitere planare Methode
ist die Minimum Faraday Residue (MFR) Methode, die auf der Erhaltung des magnetischen
Flusses beruht. In diesem Fall wird zusätzlich zur Richtung die als konstant angenommene
Geschwindigkeit entlang dieser Richtung bestimmt, so daß die Variation der Komponente des
elektrischen Feldes tangential zu dieser Richtung (das sogenannte Faraday Residuum) mini-
malisiert wird. Im Unterschied zu diesen Methoden profitiert man bei der Cluster-Mission
zum ersten Mal von korrelierten Messungen, die gleichzeitig an vier Punkten im Raum vor-
genommen werden. Aus der Kenntnis der Satellitenpositionen und der Zeiten, zu denen die
Satelliten die Erdmagnetopause durchqueren, kann man Orientierung, Dicke und Geschwin-
digkeit des Magnetopausenübergangs unmittelbar bestimmen. Die Vierpunkt-Timing Methode
nimmt üblicherweise ebenfalls Planarität an, und bietet damit einen unabhängigen Test der
verschiedenen Einzelsatelliten-Methoden.

ix



Zusammenfassung

In dieser Arbeit haben wir die Vierpunkt-Timing Methode weiterentwickelt, um damit
realistischere Situationen behandeln zu können, bei denen sich die Magnetopause auf der
Größenskala des Satellitenabstandes wie eine zweidimensionale, nichtplanare Diskontinuität
verhält. Eine solche Konfiguration kann durch lokale Ein- bzw. Ausbuchtungen der Magne-
topause verursacht werden, oder sie wird durch eine Oberflächenwelle mit großer Amplitude
hervorgerufen, die sich entlang der Magnetopause ausbreitet. Die neue Methode ist in solchen
Fällen anwendbar, wenn die Einzelsatelliten-Methoden an verschiedenen Orten unterschiedli-
che Normalenrichtungen für die Magnetopause ergeben, alle Normalen aber näherungsweise in
einer gemeinsamen Ebene liegen, die wir als Ebene der Normalen bezeichnen. Wir haben in
solchen Fällen die Magnetopause lokal durch eine parabolische bzw. zylindrische Form model-
liert. In beiden Fällen haben wir angenommen, dass die Diskontinuität eine konstante Dicke
besitzt und sich ihre Form senkrecht zur Ebene der Normalen nicht ändert. In dieser Ebene
ordnen wir der Schicht eine einheitliche Bewegung oder eine Bewegung entlang zweier zueinan-
der senkrechter Richtungen zu. Mit einem derartigen Modell können wir zwei Eigenheiten der
nichtplanaren Magnetopause beschreiben: ihre Bewegung entlang der Normalenrichtung und,
indem wir einen zweiten Freiheitsgrad zulassen, die großskaligen Wellen, die häufig entlang der
Magnetopausenoberfläche laufen.

Mathematisch ergibt sich bei jeder der Implementierungen des Modells (parabolische oder
zirkulare Geometrie, ein oder zwei Freiheitsgrade in der Bewegung der Magnetopause) ein
System von acht gekoppelten Gleichungen. Diese Gleichungen entsprechen den Bedingungen,
dass die inneren und äußeren Begrenzungen der Magnetopause mit den Satellitenpositionen
übereinstimmen, so wie sie sich aus den Timing-Informationen der Daten ergeben. Die zu be-
stimmenden Unbekannten sind die Bewegungsrichtung der Magnetopause, die räumliche Skala
der Gesamtstruktur, die Magnetopausendicke, die anfängliche Position der Struktur, sowie
drei Koeffizienten, welche die Zeitabhängigkeit der Geschwindigkeit in Form eines Polynoms
beschreiben. Im Grunde vertraut diese Vorgehensweise einzig auf die Timing-Information, und
deswegen haben wir sie als einfache Timing Analyse bezeichnet.

Da in unserem Modell die Richtung der Magnetopausenbewegung vollständig durch einen
Winkel in der Ebene der Normalen beschrieben wird, haben wir unsere einfache Timing Ana-
lyse wie folgt verbessert: Wir haben verschiedene Werte für diesen Winkel im Bereich [−π, π]
angenommen, und das Gleichungssystem für diese Winkel gelöst. Für jede Lösung wurde die
magnetische Varianz entlang der momentanen (d.h. entlang der geometrischen) Normalen für
jeden der Satelliten gesondert berechnen. Danach haben wir diejenige Richtung der Magneto-
pausenbewegung ausgewählt, für welche die globale normale magnetische Varianz ein Minimum
ist, wobei wir unter global das gewichtete Mittel über die vier Satelliten verstehen. Die auf
diese Weise gefundene Lösung hat zwei Vozüge: erstens bezieht sie die MVAB Methode ein,
und zweitens liefert sie eine bessere Beschreibung der Magnetopausenbewegung. Da nämlich
der Winkel nun ein Input-Parameter ist, stehen jetzt vier, statt drei Koeffizienten zur Bestim-
mung der Geschwindigkeits-Zeit-Abhängigkeit der Magnetopause zur Verfügung. Wir haben
diese Methode als kombinierte Timing-MVAB Analyse bezeichnet.

Die neue Methode wurde auf eine Magnetopausendurchquerung angewendet, bei der die
planaren Techniken miteinander unvereinbare Resultate zeigten. Im Gegensatz dazu sind die
Lösungen, die mit den unterschiedlichen Implementierungen der neuen zweidimensionalen Me-
thode gewonnen wurden, konsistent und stabil, und ergeben eine konvexe Form der Magne-
topause. Aus Sicht der globalen magnetischen Varianz und des globalen Faraday Residuums
erweisen sich diese Lösungen als den planaren Lösungen überlegen. Ausserdem sind in den
Einzelsatellitentechniken sowohl die individuellen Normalen als auch die Geschwindigkeiten
entlang der Normalen bei den vier Satelliten voneinander entkoppelt. Bei der zweidimensiona-
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Zusammenfassung

len Methode suchen wir dagegen nach einer globalen Lösung, deshalb sind die Normalenrich-
tung und die Geschwindigkeit durch die angenommene Geometrie und die ermittelte Bewegung
gekoppelt, woraus eine realistischere Beschreibung der Magnetopause resultiert.

Die relativ große Scherung der Plasmaströmung an der Magnetopause und deren Orientie-
rung in Bezug auf die Magnetfeldrichtung deutet auf die Kelvin-Helmholtz Instabilität (welche
‘Wind-über-Wasser’-artige Wellen erzeugt) als mögliche Ursache für die von Cluster für diesen
Fall gefundene zweidimensionale Form hin. Dieser Mechanismus ist einer der vorgeschlagenen
physikalischen Prozesse, um den Transfer von Energie, Impuls und, in seiner nichtlinearen
Phase, auch Masse durch die Magnetopause hindurch zu erklären. Mit der in dieser Arbeit
entwickelten Methode ist es relativ einfach, die Wellenlänge und Periodizität einer solchen
Struktur abzuschätzen. Betrachten wir zum Beispiel das parabolische Modell und erlauben
zwei Freiheitsgrade für die Bewegung der Magnetopause, dann ergibt sich für den von uns un-
tersuchten Fall eine Wellenlänge von ∼ 8 Erdradien und eine Periode von ∼ 10−11 Minuten.

Der wichtigste Prozess für den Transfer von Masse, Impuls und Energie ist allerdings die
magnetische Rekonnexion. Dieser Prozess konvertiert magnetische Energie in Strömungsenergie
und in Heizung und wird verantwortlich gemacht für viele dynamische Vorgänge auf der Son-
ne, in planetaren Magnetosphären und in vielen astrophysikalischen Objekten wie zum Beispiel
magnetischen Sternen und Sternwinden. Die Magnetopause bietet die einzigartige Gelegenheit,
dieses Phänomen mit in-situ Messungen zu studieren. Es tritt auf, wenn die Plasmen zu beiden
Seiten der Magnetopause, also auf der Magnetosheath- und der Magnetosphärenseite, anti-
parallele Magnetfeldkomponenten aufweisen. Durch Rekonnexion werden interplanetare und
terrestrische Magnetfelder verbunden, das Plasma kann auf diese Weise entlang den mitein-
ander verknüpften Magnetfeldlinien durch die Magnetopause hindurchfließen. Somit ist die
Magnetopause in diesem Fälle keine undurchdringliche Barriere mehr.

Im Kontext der Magnetopause sagen alle Modelle der magnetischen Rekonnexion vorher,
daß sich an der Grenzfläche eine Rotationsdiskontinuität ausbildet. Um anhand von Satelliten-
daten festzustellen, ob sich die Magnetopause wie eine Rotationsdiskontinuität verhält, führen
wir den sogenannten Walén-Test durch, der die Erhaltung der tangentialen Komponente der
Strömungsgeschwindigkeit des Plasmas, des Massenflusses entlang der Normalenrichtung und
des tangentialen elektrischen Feldes voraussetzt. Mit diesem Test prüfen wir, ob das Plasma in
einem Bezugssystem, in dem die Plasmaströmung überall parallel zum Magnetfeld erfolgt (dem
sogenannten deHoffmann-Teller System), mit der lokalen Alfvéngeschwindigkeit fließt. Dies ist
eine Bedingung für das Vorhandensein einer Rotationsdiskontinuität. Während der Walén-Test
sich als sehr erfolgreich bei der Identifizierung der Magnetopause als Rotationsdiskontinuität
erwiesen hat, bleibt als ein wunder Punkt, dass der Proportionalitätsfaktor zwischen der Plas-
mageschwindigkeit im deHoffmann-Teller System und der Alfvéngeschwindigkeit meist unter
dem idealen Wert von eins liegt, der von der Theorie gefordert wird. Diese Diskrepanz könnte
ihre Ursache in den vereinfachenden Annahmen haben, die der Walén-Analyse zugrunde liegen.

Eine dieser Annahmen bezieht sich auf die Rolle der Elektronen in der Analyse, die üblicher-
weise wegen der geringen Masse der Elektronen vernachlässigt wird. Gleichzeitig ist es aber
schwierig, einen Beweis für einen Beitrag der Elektronen zu liefern, weil Elektronenmessungen
durch das Auftreten von Photoelektronen beeinflußt werden, die durch auf die Oberfläche des
Satelliten auftreffende Sonnenstrahlung erzeugt werden, und weil deren Strömungsgeschwindig-
keit viel kleiner als ihre thermische Geschwindigkeit ist. Eine zweite vereinfachende Annahme,
die allgemein gemacht wird, ist, alle Ionen als Protonen anzunehmen, eine Näherung, die durch
den hohen relativen Anteil von Protonen an den Ionen einigermaßen gerechtfertigt wird. Wie
im Fall der Elektronen, so ist auch die Messung der weniger häufig vorkommenden Ionensorten,
sofern sie vorhanden sind, mit derzeitigen Satelliteninstrumenten eine experimentelle Heraus-
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Zusammenfassung

forderung. In Verbindung mit diesen Problemen haben wir zwei Magnetopausendurchgänge
untersucht, bei denen wir Hinweise gefunden haben, daß die Grenzfläche sich wie eine planare,
zeitunabhängige Rotationsdiskontinuität verhielt. Die magnetohydrodynamische Behandlung
war in beiden Fällen gerechtfertigt, da die Magnetopausendicke sich als viel größer als der
Ionengyroradius und die Ioneninertiallänge herausstellte.

Im ersten Rekonnexionsfall erlaubte die Vier-Punkt Methode von Cluster wegen des klei-
nen Abstandes zwischen den Satelliten im Verhältnis zur Magnetopausendicke, aus dem Am-
père’schen Gesetz das Stromdichteprofil der Magnetopause zu bestimmen. Nach den Messun-
gen des Plasma-Ionenspektrometers spielten die weniger häufig auftretenden Ionensorten (He+,
He 2+, oder O+) keine Rolle und wurden deswegen vernachlässigt. Es handelt sich also um ein
Elektronen-Protonen Plasma, und aufgrund der Ladungsneutralität sollte die Elektronendich-
te gleich der (gemessenen) Protonendichte sein. Die Protonenströmungsgeschwindigkeit wurde
ebenfalls gemessen, und so liess sich aus dem Ausdruck für die Stromdichte die Elektronenge-
schwindigkeit berechnen. Mit der Kenntnis der Elektronendichte und -Geschwindigkeit konnten
wir den Beitrag von Elektronen zum Walén-Test bestimmen, mit dem Ergebnis, daß es sich
tatsächlich um einen zweitrangigen Beitrag handelte. In der Tat lag die Verbesserung des Pro-
portionalitätsfaktors bei nur etwa 8%, von 0.60 auf 0.65 für Cluster 1, und bei etwa 5%, von
0.81 auf 0.85 im Fall von Cluster 3.

Dieses Ereignis ist zudem ideal geeignet, ein weiters Problem zu untersuchen, nämlich
die Gültigkeit der Relation ρ(1 − α) = konst, wo ρ die Plasmadichte und α der Anisotro-
piefaktor des Plasmadrucks ist. Diese Relation basiert auf denselben Erhaltungssätzen wie
der Walén-Test und sollte deshalb ebenso für eine Rotationsdiskontinuität gelten. Obwohl die
Magnetopause sich hier wie eine dicke, planare, stationäre Diskontiuität verhielt, konnten wir
experimentell zeigen, dass die Relation in diesem Fall nicht erfüllt ist. In der Tat haben wir hier
Gründe gefunden, warum dies ein generelles Resultat ist, und nicht nur eine Eigentümlichkeit
des behandelten Falles. Umso erstaunlicher ist es deshalb, daß man bei der Verwendung ei-
nes modifizierten Walén-Tests, der die Relation ρ(1− α) = konst einbezieht (und somit seine
Gültigkeit voraussetzt), typischerweise bessere Resultate erzielt. In unserem speziellen Fall
erhöhte sich der Proportionalitätsfaktor im Walén-Test um den nicht unbedeutenden Betrag
von ∼ 23% auf 0.84.

Im zweiten Rekonnexionsfall erlaubte uns der hohe Gehalt an aus der Ionosphäre stam-
mendem O+, in Zusammenhang mit dem geeignet gewählten Messmodus, zu testen, ob die
Präsenz einer weniger häufig auftretenden Ionensorte auf signifikante Weise zum Ergebnis des
Walén-Tests beitragen würde. In diesem Fall ergab das Plasma-Ionenspektrometer eine relative
Häufigkeit (in der Anzahldichte) von etwa 1% für die O+ Ionen, die 16 mal schwerer als Proto-
nen sind. Wir untersuchten zwei Magnetopausendurchgänge, die zum zweiten Rekonnexionsfall
gehörten. In beiden Fällen fanden wir durch die Verwendung des im Massenschwerpunkt der
beiden Ionensorten ermittelten Momentes anstelle des Protonenmomentes eine Verbesserung
im Ergebnis des Walén-Tests. Der Proportionalitätsfaktor erhöhte sich um 12% bis 15%, wobei
ein Intervall sogar eine Erhöhung von 22.5% auf 0.74 zeigte, und somit der eins näher kam.
Im allgemeinen ist der Einfluss der weniger häufig auftretenden Ionensorten gering, aber un-
ser Resultat zeigt, daß in seltenen Fällen, wie dem von uns untersuchten Fall mit hohem O+

Anteil, ihr Einfluss eine wichtige Rolle bei der Frage nach dem Charakter der Diskontinuität
spielen kann.

Zusätzlich zum Einfluss auf das Resultat des Walén-Tests, erlaubte uns der hohe An-
teil an O+ im zweiten Rekonnexionsereignis eine weitere bemerkenswerte Beobachtung. Wir
stellten eine Korrelation zwischen der Änderung der Magnetfeldrichtung und derjenigen der
O+-Strömungsgeschwindigkeit fest, ähnlich wie man es im Fall einer Rotationsdiskontinuität
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zwischen der (auf den Massenschwerpunkt bezogenen) Geschwindigkeit und dem Magnetfeld
erwarten würde. Wenn man den Walén-Test nur mit den O+ Größen durchführt, zeigen die Da-
ten eine Korrelation zwischen der O+ Geschwindigkeit im (O+ basierenden) HT System und
der (O+ basierenden) Alfvén Geschwindigkeit, auch wenn die Bestimmung des HT-Systems
nicht besonders gut bestimmt war. Eine derartige Relation passt nicht in den Rahmen der
generellen Theorie der Rotationsdiskontinuität, in der sich alle Konzepte (deHoffmann-Teller
System, Alfvén Geschwindigkeit, etc.) auf die Massenschwerpunkts-Flüssigkeit beziehen.
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Summary

The subject of this study is the terrestrial magnetopause, which is the boundary separating
the plasma environment controlled by the Earth magnetic field from the plasma originating
at the Sun and carried away by the solar wind. We were interested both in determining the
macroscopic properties of this discontinuity (like its shape, orientation, motion and thickness)
as well as in the physical phenomena taking place at that location. We carried out the study
by analysing and interpreting the in-situ measurements taken on-board the European Space
Agency’s Cluster mission, during the times when the spacecraft crossed the magnetopause.

Almost all the methods used in inferring the magnetopause crossing parameters assume a
planar geometry for this boundary and consider that all physical quantities vary only along
the normal direction. We can divide them into two categories. On the one hand there are
single-spacecraft techniques, based on the validity of various conservation laws. For example,
the minimum variance analysis of the magnetic field (MVAB) is based on the absence of mag-
netic poles, which implies the constancy of the magnetic field component along the normal.
Consequently, in this method the direction of minimum magnetic variance provides the direc-
tion of the magnetopause normal. Similarly, the planar method of minimum Faraday residue
(MFR) is based on the magnetic flux conservation across the discontinuity. In this case the
algorithm finds a direction in space and a velocity (assumed constant) along this direction
so that the variation in the tangential component of the electric field (the so called Faraday
residue) is minimized. On the other hand, the Cluster mission provides for the first time
correlated measurements taken simultaneously at four points in space. The differences in the
position and time of the satellites’ encounter with the terrestrial magnetopause can be used
to infer the magnetopause orientation, thickness and velocity. This four-point timing method
usually assumes a planar discontinuity as well, and offers an independent check for the various
single-spacecraft techniques.

In this thesis we extended the four-point timing method in order to accommodate the more
realistic situations when the magnetopause behaves like a two-dimensional (2-D), non-planar
discontinuity on the scale of the inter-spacecraft separation distance. Such non-planarity occurs
when the magnetopause has a local bulge or indentation, or when a large amplitude wave travels
on the magnetopause surface. The new method is designed to deal with the situation when the
single-spacecraft techniques provide individual magnetopause normals that, although different,
are contained roughly in a plane (which we call the plane of the normals). We locally modelled
the magnetopause as a layer which has either a parabolic or a cylindrical shape. In both
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cases we assumed that the discontinuity has a constant thickness and that its shape does not
change along the direction perpendicular to the plane of the normals. In the same plane of the
normals we allowed for the layer to have either a unidirectional movement or a motion along
two mutually perpendicular directions. With this model we can describe two features of the
non-planar magnetopause: its normal motion and, by allowing for a second degree of freedom,
the large-scale waves that often travel along that surface.

Mathematically, in each implementation of the model (parabolic or circular geometry, one
or two degrees of freedom in the magnetopause movement) we have established a system of eight
equations. These equations correspond to the conditions that the magnetopause leading and
trailing edges meet the positions of the satellites according to the timing information extracted
from the measurements. The unknowns to be found were: the direction of movement, the
spatial scale of the structure, the magnetopause thickness, the initial position of the structure
and three coefficients describing the velocity-time dependence, assumed polynomial. Basically,
this approach relies on the timing information alone and therefore we termed it as plain timing
analysis.

Because in our model the direction of the magnetopause movement is fully described by
an angle in the plane of the normals, we improved the plain timing analysis in the following
way: we imposed different values for this quantity in the range [−π, π], and solved the sys-
tem of equations with this condition. For each solution, the magnetic field variance along the
instantaneous (i.e. geometrical) normal at each satellite was computed. Then, we selected
that direction of magnetopause movement for which the global normal magnetic field variance
was minimum. By global we mean a weighted average over the four spacecraft. The solution
obtained in that way has two advantages: first, it incorporates the MVAB technique. Second,
because the angle is now an input parameter, four coefficients. instead of three, are available
to describe the magnetopause velocity-time dependence, which yields a much improved de-
scription of the magnetopause motion. We called this approach the combined timing - MVAB
analysis.

The new method was applied to a magnetopause transition for which the various planar
techniques provided inconsistent results. In contrast, the solutions obtained from the different
implementation of the new 2-D method were consistent and stable, indicating a convex shape
for the magnetopause. These solutions ‘perform’ better than the planar solutions from the
global magnetic field variance and global Faraday residue perspectives. Note also that in
the single-spacecraft techniques, the estimated individual normal directions and velocities are
decoupled from each other. In the 2-D method, however, we are looking for a global solution,
and thus the normal direction and velocity are linked through the geometry we adopted and
through the determined motion, giving a more realistic description of the magnetopause.

The relative large flow shear across the magnetopause and its orientation with respect
to the magnetic field direction suggests the Kelvin - Helmholtz instability (producing ‘wind
over water’ type waves) as the possible cause for the 2-D feature encountered by Cluster in
this event. The mechanism is one of the proposed physical processes to explain the transfer
of energy, momentum and, in its non-linear phase, mass across the magnetopause. With
the method developed in this thesis it is straightforward to estimate the wavelength and the
periodicity of such a structure. For example, by considering the parabolic model and allowing
for two degrees of freedom for the magnetopause movement, we obtained a wavelength of ∼ 8
Earth radii and a period of ∼ 10−11 minutes in the analyzed case.

The most important process, however, for transferring mass, momentum and energy across
the magnetopause is magnetic reconnection. The process has the effect of converting magnetic
field energy into bulk kinetic energy and heating, and is being invoked to explain many dy-
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namical processes at the Sun, in planetary magnetospheres, and in other astrophysical objects.
At the magnetopause we have the unique opportunity to study the reconnection phenomenon
with in-situ measurements. It occurs when the plasmas in the regions adjacent to the magne-
topause, i.e. in the magnetosheath and in the magnetosphere, have antiparallel magnetic field
components. Through reconnection the interplanetary and terrestrial magnetic fields become
interconnected, and the magnetopause thus ceases to act as an impenetrable barrier, the plasma
being now able to flow across it and transfer momentum and energy to the magnetosphere.

In the magnetopause context, all magnetic reconnection models predict the formation of
a rotational discontinuity at this boundary. In order to establish whether the magnetopause
behaves like a rotational discontinuity we perform the so called Walén test, which combines
in a single relation the conservation of the plasma tangential momentum, of the normal mass
flux and of the tangential electric field. By doing this test, we check whether the plasma flows
at the local Alfvén velocity in a frame of reference (the so-called deHoffmann-Teller frame) in
which the flow is field aligned everywhere. While the Walén test has proven very successful
in establishing whether a discontinuity has rotational character or not, a long standing issue
remains, namely that at the magnetopause the factor of proportionality between the plasma
velocity in the deHoffmann-Teller frame and the Alfvén velocity is usually less than the ideal
value of one required by the theory. This discrepancy could have an explanation in the fact
that the Walén analysis relies on some simplifying assumptions.

One of these assumptions refers to the role of electrons in the analysis, which is usually
neglected due to their relative low mass. At the same time it is difficult to experimentally test
their contribution because the electron measurements are affected by the presence of photo-
electrons, produced by the solar radiation incident on the spacecraft surface, and because their
bulk velocity is much smaller than their thermal velocity. A second simplifying assumption
commonly made is to consider all the ions as being protons, an approximation justified by the
prevalence of protons in the magnetopause environment. As in the electron case, obtaining
reliable measurements for the minor ion species is an experimental challenge for the present
satellite instrumentation. In connection with these issues, we presented two events of magne-
topause crossings, providing evidence that the boundary behaved like a planar, time-stationary
rotational discontinuity. The magnetohydrodynamic treatment was justified in both cases be-
cause the magnetopause thickness was found to be much greater than the ion gyro-radius and
ion inertial length.

In the first of these events, due to the small inter-spacecraft separation distance relative
to the magnetopause thickness, the four-point capability of Cluster allowed us to determine,
via Ampère’s law, the corresponding magnetopause current density profile. According to the
measurements of the ion composition detector, the minor ion species (like He+, He 2+ or O+)
did not seem to play a role and therefore their presence was neglected. In this situation we
have a case of an electron-proton plasma and, according to the charge neutrality assumption,
the density of electrons should be equal to that of protons, the latter being experimentally
measured. The proton flow velocity is also measured and, from the expression of the elec-
tric current density, the electron flow velocity is indirectly obtained. Knowing the electron
density and flow velocity allowed us to asses the contributions from electrons in the Walén
test, concluding that it is of second order. Indeed, the improvement in the Walén factor of
proportionality was only around 8%, from 0.60 to 0.65 in case of Cluster 1 and around 5%,
from 0.81 to 0.85 in case of Cluster 3.

The first reconnection event presented in the thesis is almost ideally suited to study another
important issue related to the reconnection process. This issue refers to the relation ρ(1−α) =
const, with ρ being the plasma density and α the plasma pressure anisotropy factor. The
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relation should hold for a rotational discontinuity, being based on the same conservation laws
as the Walén relation. However, despite the strong evidence that the magnetopause behaves
like a thick, planar and stationary discontinuity for this transition, we have experimentally
proven that the quantity ρ(1−α) is not constant across the discontinuity. In fact, we provided
arguments that this experimental invalidation seems not to be a peculiarity of the transition in
question, but a more general result. An even more baffling aspect adds to this issue: when we
use a variant of the Walén relation that incorporates the ρ(1− α) = const relation (therefore
assuming its validity), we typically obtain better results in the test. In our particular case the
factor of proportionality in the Walén test has improved by around 23 %, to 0.84.

For the second reconnection event, the large content of O+, originating at the ionosphere,
and the appropriate instrument mode allowed us to test whether the presence of a minor ion
species contributes in a significant manner to the outcome of the Walén test. In this event, the
plasma ion spectrometer detected a relative abundance (in number density) of around 1% for
the O+ ions, which are 16 times heavier that the protons. We investigated two magnetopause
transitions belonging to the second reconnection event. In both cases, by using the centre-of-
mass moments and not simply the proton moments in the Walén test, we found an improvement
in the outcome. The factor of proportionality increased by between 12 - 15 %, with one interval
showing an increase of even 22.5 %, to 0.74, and thus become closer to one. In general, the
influence of minor ions is small, but our result shows that in the rare events like the one
we investigated, with large O+ contribution, their influence could be an important factor in
determining the character of the discontinuity.

In addition to the effect of influencing the result of the Walén test, the large content
of O+ particles in the second reconnection event allowed us to make another noteworthy
observation. We noticed a correlation between the change in magnetic field direction and
in the direction of the O+ bulk velocity at the magnetopause, similar with what we expect
to happen for a rotational discontinuity between the plasma centre-of-mass velocity and the
magnetic field. When performing a Walén test by using only O+ quantities, the data clearly
indicate a correlation between the O+ velocity in the (O+ based) HT frame and the (O+

based) Alfvén velocity, although the identification of the HT frame was not as good. No such
relation is prescribed in the general theory of the rotational discontinuity, where all concepts
(deHoffmann-Teller frame, Alfvén velocity etc.) and quantities refer to the centre-of-mass fluid.
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CHAPTER 1

Introduction

1.1 The magnetopause

Due to their low density and taking into account the spatial scales involved, space plasmas are
considered as collisionless. This means that the collisions between the constituent particles are
so infrequent when compared with the variations in the field or in the particle dynamics that
they can be neglected. In general this also means that the magnetic field is ‘frozen’ into the
plasma, because two plasma particles that at one moment were connected by a magnetic field
line will still be connected at any later moment by such a line. Therefore, space plasmas behave
like ideal conductors, i.e. they are impenetrable by outside magnetic fields. When plasmas of
different origins are coming into contact they have the tendency to form cellular structures,
where domains of plasma and magnetic field of different regimes remain isolated from each
another. So is the case of the Earth magnetosphere, where in the first order approximation,
plasma and magnetic field from inside are isolated from the solar-wind regime by a relatively
thin membrane - the magnetopause. This impenetrable layer, which is also the place of an
electric current system to account for the change in the magnetic fields across it, behaves like a
tangential discontinuity, i.e. there is no magnetic field component, nor any plasma flow along
its normal direction.

The concept of magnetopause appeared in the early work of Chapman and Ferraro [1931].
The authors had the intuition of a cavity forming around the Earth (what is now called
magnetosphere), as a consequence of interaction between a stream of neutral ionized gas of
solar origin and the terrestrial magnetic field. They proposed a system of currents to flow on
the surface of this cavity, called afterwards the Chappman-Ferraro current, to account (through
the Lorentz force) for retarding and deflecting the advancing stream.

One of the early clear identifications of the magnetopause (MP) boundary, appeared in the
work of Cahill and Amazeen [1963], reporting on Explorer 12 data. Figure 1.1 (taken from
Cahill and Patel [1967]) shows the magnetic field measured by this satellite on 21 August 1961.
The MP is evident around 11.4 RE, when a sharp change in magnetic field direction occurred,
accompanied by a decrease in magnitude. After the transition, the magnetic fluctuations are
also increased. The measured field magnitude just inside the MP is approximately two times
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Figure 1.1: Identification of the MP by Explorer 12. The magnetic field magnitude (solid dots) and
orientation (given by two angles, indicated with crosses and circles) of the recorded field are shown
as function of radial distance (in Earth radii, RE). These values are compared with the magnitude
and orientation of a model field (continuous lines), resulting from a spherical harmonic analysis of
the ground recorded magnetic data. The MP appears in the satellite data around 11.4 RE, when a
sharp change in magnetic field direction occurred, accompanied by a decrease in magnitude.

greater than the magnitude of the model field, resulting from a spherical harmonic analysis of
the ground recorded magnetic data, due to the compression exerted by the solar wind flow.

Figure 1.2 (an adaptation from Kivelson and Russell [1995]), reflects the present under-
standing of the magnetosphere structure. The solar-wind is coming from the left, with bulk
velocity exceeding the velocity of compressional (fast magnetosonic) waves, and encounters
the obstacle of the terrestrial, dipole-like magnetic field. A bow-shock (not shown) is formed,
upstream of the magnetopause (the surface shown in light blue), where the solar-wind plasma
is slowed down and part of its kinetic energy is converted into heat. The region between the
bow-shock and the magnetopause is called magnetosheath.

The shape of the MP is given by the equilibrium between the total pressure on the two
sides of the boundary. In a simple model, we have the plasma pressure in the magnetosheath
(which in turn is determined by the solar-wind dynamic pressure) and the magnetic pressure
in the magnetosphere. A better approximation would also consider the plasma pressure in the
magnetosphere and would take into account the solar-wind magnetic field as well. A typical
value for the location of the magnetopause sub-solar point is at ∼ 10÷ 11 RE from the Earth
centre, while on the flanks the magnetopause is located at a distance of roughly 15 RE. The
distant tail of the magnetosphere has a circular cross-section with a radius of ∼ 25 ÷ 30 RE

(Stern [1995]).
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Figure 1.2: Three-dimensional model of the magnetoshere. The magnetopause and magnetopause
boundary layer appear in light blue and darker blue, respectively. Different electric current systems
are shown in yellow. Solar wind is coming from left.

The above numbers are averages, based on data collected on-board various missions. As
the solar-wind dynamic parameters (density, velocity) are rapidly changing, the magnetopause
shrinks or expands. It was found that the orientation of the interplanetary magnetic field
(IMF) also controls the shape and location of the MP; a southward oriented IMF moves the
MP sub-solar point Earthward and increases the cross-section of the magnetospheric tail (see
for example Fairfield [1995]).

The measurements taken on-board satellites proved that the MP is far from being a simple
impenetrable layer, isolating the interior of the magnetosphere from the magnetosheath plasma.
Just inside the magnetopause current layer, boundary layers were detected most of the time
with characteristics (plasma moments and velocity distribution function) intermediate between
that of the two adjacent plasma regimes. Depending on the location, they are called the low
latitude boundary layer, LLBL (Eastman et al. [1976]) , plasma mantle or high latitude boundary
layer, HLBL (Rosenbauer et al. [1975]) and high altitude cusp or entry layer, EL (Haerendel and
Paschmann [1975] and Paschmann et al. [1976]). In Figure 1.2 they appear in blue. Not
only inside, but usually also outside the MP, a layer of magnetospheric particles is observed.
This layer, termed magnetosheath boundary layer provides support for magnetospheric plasma
transfer across the MP.

It is generally agreed that the HLBL and the EL are situated on open magnetic field lines
(i.e. having one end on the Earth surface and the other in the solar-wind) and that they are
formed by the magnetosheath plasma entering along the open field lines in the cusp region.
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The cusp is the funnel-shaped indentation in the MP surface, where the magnetic field lines
closing at the dayside or on the nightside separate (see Figure 1.2). LLBL may be partially on
open field lines (especially during southward IMF, when the process of magnetic reconnection
is thought to be active) and partially on closed field lines. All these layers are mapping at low
altitude in a limited region around day-side auroral oval (Vasyliunas [1979]). The LLBL is
also the site of the so-called region-1 current system, connecting the solar-wind and ionosphere,
directed downward in the morning side and upward in the after-noon side.

In general, the characteristic signature of the MP in satellite data is the magnetic field
rotation in the plane of the discontinuity. This rotation identifies the electric current system
flowing in the layer. However, other markers have to be used in cases of transitions with low
magnetic shear, like the sudden increase in the proton temperature or temperature anisotropy
when coming from the magnetosheath to the magnetosphere (Paschmann et al. [1993]). The
drop in plasma density is another indication of entering the magnetosphere but this usually
happens in the boundary layer.

Processes taking place at the magnetopause
The existence of boundary layers indicates that the MP is not impenetrable. In order to explain
the formation of these layers and, more general, the transfer of energy, momentum and mass
between the solar-wind and the magnetosphere, several physical processes were proposed:

- Magnetic reconnection. This is a process that involves a local break-down of the ‘frozen-
field’ situation when a sharp change in magnetic field direction exists across a plasma
boundary. It could be depicted as a phenomenon in which two magnetic field lines from
the adjacent domains get cut at some position and the resulting branches reconnect at
the later moment so that plasma elements from the previously separated regimes are
now linked by the newly connected magnetic field lines (see Figure 1.3 from the next
section). In case of the MP, the interplanetary and terrestrial magnetic fields become
interconnected and thus the MP ceases to act as an impenetrable barrier, with the plasma
being now able to flow across it. Since in our thesis we are dealing with the experimental
identification of this phenomenon, we will treat it in more detail in the next section.

- Cross-field diffusion. This process implies a mechanisms for particle scattering, which
are thus distorted from their trajectories. In case of collisionless plasmas we speak about
‘anomalous’ collisions, caused by the interaction between particles and plasma waves, as
the responsible phenomenon for the scattering. There are many mechanisms proposed,
from current driven instabilities to macroscopic turbulence. From the investigation of
the electric and magnetic field spectra in the LLBL region, the conclusion emerged that
the rate of this mechanism is too slow to account for the thickness of this boundary
(see Treumann et al. [1995]). But nevertheless, the anomalous collision frequency could
locally be high enough for the onset of magnetic reconnection, opening in this way a
simpler way for magnetosheath plasma to enter the LLBL (see Sibeck et al. [1999]).

- Kelvin-Helmholtz instability. The flow of the magnetosheath plasma along the magne-
topause may cause ripples on this boundary in the same way as water is agitated by
a breeze. In some conditions this undulations can grow non-linearly to form rolled-up
vortices that can engulf plasma from both sides of the MP. There are several conditions
that favour such a development, like high density in the solar wind, high velocity shear
across the MP, magnetic field orientation transverse to the magnetosheath flow and low
rotation of the magnetic field in the MP. These requirements are often met at the dawn-
and dusk-flanks of the magnetopause, at times when IMF is predominantly northward
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oriented. Convincing evidence of this phenomenon using Cluster data was reported by
Hasegawa et al. [2004].

- Finite Larmor radius effects. Typically the MP thickness is several times larger than the
ion gyro-radius, computed by using their mean thermal velocity. It is argued that the
particles having more energy, for which the Larmor radius is comparable to or even greater
than the boundary thickness, induce a series of effects at the MP (like curvature drift
or gradient B drift) that can account for the observed plasma presence in the adjacent
boundary layer. There are observations in support of particle transfer across the MP due
to the finite Larmor radius, like for example Marcucci et al. [2004], reporting on O+ exit
in the magnetosheath. However, the present general view is that only a small fraction of
the particles may enter the LLBL through this process (see Hill [1983], Treumann and
Baumjohann [1988]), largely because plasma charge-neutrality has to be preserved.

- Impulsive penetration. According to this mechanism, solar wind plasma-field irregulari-
ties, or plasmoids, impinging on the Earth’s geomagnetic field with an excess momentum
can penetrate into the magnetospheric cavity. At the edge of the plasmoid, in the direc-
tion perpendicular to the magnetic field and plasma velocity, a polarization electric field
is induced which leads to a ~E× ~B drift (see for example Lemaire and Roth [1978]). While
in the laboratory experiments this mechanism has been proved, there is to date no direct
indisputable evidence for its occurrence at the magnetopause. We should add that in
Lundin et al. [2003] the authors reported solar-wind plasma clouds protruding into the
dayside magnetopause, having characteristics implied by the impulsive penetration.

The structure of the magnetopause region
The structure of the MP region has been studied by many authors, either by investigating
individual events considered representative in one way or another, or in a statistical manner.
From the latter, we mention the studies appearing in the work of Berchem and Russell [1982b]
devoted to the dayside MP, and Paschmann et al. [2005a] referring to the flank of the MP. Also,
in connection with the statistical analysis of the MP transitions, we mention the superposed
epoch analysis technique, where average variations of the key plasma and magnetic field pa-
rameters are obtained from a set of transitions sharing the same characteristics. For example,
using this technique, the structure of the low-latitude dayside MP region when the magnetic
shear is low at this interface (i.e. below 30 ◦) was analyzed by Paschmann et al. [1993]. In a
complementary investigation, the same region was analyzed for cases of high magnetic shear
(i.e. above 45 ◦) by Phan and Paschmann [1996]. Below we summarize some of these findings.

At the dayside MP, for low magnetic shear, a gradual decrease in the plasma density was
often observed, simultaneous with an increase in the magnetic field strength and in plasma
anisotropy. The formation of this layer, called ‘plasma depletion layer’ was attributed to the
escape of the more energetic particles, moving along the magnetic field lines away from the
subsolar region. As Phan et al. [1994] showed by a superposed epoch analysis, the feature is
present only for low magnetic shear, the interpretation being that in the case of high magnetic
shear the reconnection process is active and dominates over the formation of the depletion
layer (Russell [1995]).

The width of the current flow region (often taken as the MP thickness as well) is on average
many times the magnetosheath thermal ion gyro radius (10 times according to Berchem and
Russell [1982b] and Paschmann et al. [2005a] and 14 times according to Phan and Paschmann
[1996]), ranging typically between 400 and 1000 km. But there are extreme cases when the MP
thickness, expressed in ion gyro radii, could be as low as around one ion gyro radius or higher
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than 100. So far, despite all efforts, it is not clear what parameters in the solar-wind (IMF
orientation or magnitude, plasma parameters etc) determine the values of the MP thickness.

The study of individual cases shows that the MP is in continuous inward-outward motion,
changing very rapidly its normal velocity. This is a consequence of MP’s very low mass per
unitary cross-section, resulting in big acceleration even in case of a relatively small pressure
imbalance. Typical values for the normal velocity are around tens of km/sec but there are cases
of very rapid crossings, when velocities higher than 300 km/sec were determined (Paschmann
et al. [2005a]). The amplitude of the MP excursion in the radial direction can be several RE.

The electric current density at the magnetopause ranges typically from 20 to 80 nA/m2

(see Paschmann et al. [2005a]). This quantity can be estimated from Ampère’s law when we
know the magnetic jump across the MP and the thickness of this boundary. In general, the
change in direction of the tangential magnetic field component, from the magnetosheath to the
magnetosphere, occurs in a single rotation of less than 180 ◦.

At the mesoscale level (i.e. below the scale of MP thickness), there is much substructure in
the current carrying region, which invalidates the initial picture of a one-dimensional current
layer. The study of this substructure was boosted with the availability of Cluster. In this
respect we mention here the curlometer technique, (see for example Dunlop et al. [2002b]),
allowing a direct estimation of the current density by applying the Ampère’s law to the mag-
netic field measurements recorded at the four satellites. Another powerful tool, based on the
Grad-Shafranov equation, permits the local reconstruction of the current-layer region. Two-
dimensional magnetic field maps are produced, which reveal structures such as magnetic islands
or X-type null points (see for example Sonnerup and Guo [1996] and Hasegawa et al. [2005]).

The thickness of the LLBL was found to be comparable with the width of the current flow
region (Phan and Paschmann [1996]). By studying the same region, Bauer [1997] showed
that often this layer exhibits a steplike profile in the plasma density, with two plateaus. In
such situations, the outer part was identified as situated on open field lines, whereas the inner
part being on closed field lines. According to a study by Eastman et al. [1976], investigating
equatorial and mid-latitude regions, magnetopause crossings without boundary layer are found
to occur in about 10 % of all magnetopause crossings.

Determining the macroscopic parameters of the magnetopause
The motivation for finding the MP orientation and velocity is threefold. First, it is the problem
of studying the large-scale dynamical processes that take place at this interface, like for example
the large amplitude surface waves. For that purpose, only a moderately accurate knowledge of
the MP normal direction and MP normal velocity is sufficient. The second problem consists
in establishing whether the magnetosphere and the magnetosheath regions are magnetically
connected, or in other words, whether the MP behaves like a rotational (having an average
normal magnetic field component 〈Bn〉 6= 0) or tangential (〈Bn〉 = 0) discontinuity. Generally,
even if one is dealing with a rotational discontinuity, the normal component of the magnetic
field at this interface is very small (around 10% of the total magnetic intensity) and therefore in
this problem an accurate knowledge of the normal direction is needed. The same requirement
of accurate normal determination appears when we want to establish whether a plasma flow
exists across the MP.

Third, from the normal velocity and the crossing duration one can easily compute the
MP thickness. This is an important parameter, giving an estimation for the spatial scale
characterizing the processes taking place in that region. For example, by comparing the MP
thickness with the kinetic parameters like the gyro radius and the inertial length, we obtain an
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indication whether the MHD approximation can be used or a kinetic treatment is inevitable in
studying the discontinuity. Also, knowing the MP thickness and the magnetic change at this
boundary we can estimate (via Ampère’s law) the MP current density, which is an important
quantity in studying the plasma instabilities that may occur in that region.

Initially the techniques used in determining the MP orientation were single-spacecraft
methods, relying on some simplifying assumptions for the boundary like planar geometry and
variation of all physical quantities along the normal direction only. Nowadays different single-
spacecraft techniques exist, each based on the conservation of some particular physical quantity
across the discontinuity. A detailed and unified description of these techniques is provided in
Sonnerup et al. [2006].

The first single-spacecraft technique, called minimum variance analysis of the magnetic
field (MVAB), was developed by Sonnerup and Cahill [1967]. It is based on the O · ~B = 0
condition, which with the above mentioned assumptions imply a constant component of the
magnetic field along the MP normal. Consequently, the normal is found by searching for the
direction in space that minimizes the magnetic variance. The MP velocity is not found in the
analysis, but in some cases we can combine MVAB with the so-called deHoffmann-Teller (HT)
analysis (see for example Khrabrov and Sonnerup [1998]). In the latter, we are searching for
the existence of a specific reference frame where the plasma flow becomes aligned with the
magnetic field and thus the motional electric field vanishes. If the identification of such a HT
frame is successful, then the projection of ~VHT (the velocity of HT frame with respect to the
measurement frame) along the MP normal is the normal MP velocity.

Another single-spacecraft method called Minimum Faraday Residue (MFR) was developed
based on the conservation of magnetic flux across the discontinuity (see Khrabrov and Sonnerup
[1998]). In this case the algorithm finds a direction in space and a velocity (assumed constant)
along this direction so that the variation in the tangential component of the electric field (the
so called Faraday residue) is minimized. All the three single-spacecraft methods (i.e. MVAB,
HT and MFR) will be used in our thesis and are presented in details in the Appendices A, F
and G, respectively.

Later, another type of methods emerged, to be used in the case of multi-spacecraft missions.
These are the so-called timing methods, where the differences in the position and time of the
MP encounter by the satellites can be used to infer its orientation and velocity. In general, the
timing methods assume also a planar MP and steady orientation in space for its normal.

The first such technique (called time of arrival method) designed for a four-satellites mis-
sion, was proposed by Russell et al. [1983] in order to infer the orientation of interplanetary
shocks, considering a propagation with constant velocity. Haaland et al. [2004b] introduced
another planar timing technique, assuming a constant thickness for the MP, to determine its
orientation and its normal velocity, when the latter is described by a polynomial time depen-
dence. A detailed description of these two approaches, termed Constant Velocity Approach
(CVA) and Constant Thickness Approach (CTA), can be found in Section B.1.

Another line of approach in the effort to characterize the macroscopic properties (orien-
tation and motion and, in case of non-planarity, the curvature) of a discontinuity when four
points of measurements are available (like in case of Cluster) appear in the work of Mottez and
Chanteur [1994] and Dunlop and Woodward [1998, 1999]. The method relies on combining
the results provided by the single-spacecraft MVAB method applied on each satellite, with
the information about the position and time of the MP encounter by all satellites. The main
assumption in this case is that the individual normals, obtained from a planar technique, are
not too much affected by the local curvature of a non-planar MP and by the motion of such a
discontinuity during data sampling.
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The present contributions to the study of MP geometry and dynamics
In the present thesis we propose a generalization of the planar timing method which assumes
a constant thickness for the discontinuity (i.e. of the CTA method). The new technique is
conceived for determining the crossing parameters (orientation, motion, thickness and curva-
ture) of a 2-D, non-planar MP in a self-consistent way (i.e. all parameters are determined
simultaneously and ‘on equal footing’).

Since a curvature in the MP (like a local bulge or indentation) as well as large amplitude
travelling waves on this surface are phenomena relatively often encountered, the development
of this new technique represents an important step. We shall illustrate our new technique with
a particular MP crossing by Cluster.

1.2 The magnetic reconnection process

As we discussed above, when magnetized space plasmas of different origin come into contact,
they will not mix but form a thin boundary layer inbetween. In the two adjacent regions,
the magnetic fields frozen into the plasma may have different orientations, and therefore an
electric current is also flowing in the separating layer. Under the influence of Maxwell stresses
in the magnetic field, the intensity of this electric current may increase, together with the
accumulated energy in the configuration. Magnetic reconnection is a fundamental process
taking place at the boundary, whereby the energy in the magnetic configuration is converted
into kinetic energy. It can be loosely described as follows: the situation of frozen - field breaks
down locally and plasma elements from the two sides of the layer get connected, resulting in
a change of magnetic topology. Because the newly reconnected field lines are highly bent, the
magnetic tension force accelerates the plasma at high speed, providing in this way the energy
conversion mechanism. A sketch of the different phases of the process is presented in Figure
1.3, adapted from Paschmann [2006].

The phenomenon of magnetic reconnection appears for the first time in the paper by Gio-
vanelli [1946], where the author proposed a theory for solar flares. Initially, because of its
low efficiency, the magnetic reconnection was contested as being an important process in the
case of non-collisional plasmas. It was argued that the rate for conversion of magnetic to ki-
netic energy could not account for the explosive events observed in the solar atmosphere. This
theoretical objection was solved by Petschek [1964] who proposed a model in which the neces-
sary changes in plasma flow and magnetic field were accommodated by a structure of standing
MHD slow-mode compressional waves attached to a small region (the so called diffusion region,
where the ‘frozen-in’ condition breaks-down).

The concept of magnetic reconnection was introduced in the context of magnetospheric
physics by Dungey [1961], at the time when the author advanced an explanation for the
plasma convection inside the magnetosphere. In Figure 1.4 we present a sketch (taken from
Stern [1995]) illustrating Dungey’s scenario: the magnetic field lines 1, embedded in the solar
wind and pointing southward, and 1′, with both ends on the Earth surface, reconnect at the
subsolar point N1, which in this case is a X-type neutral point. The open magnetic lines 2
and 2′ are formed, with one end on the Earth surface and the other in the solar wind, which
are carried tailwards, over the polar caps, by the plasma motion in the magnetosheath. At a
later time they reach the positions 3 and 3′, when the field lines reconnect at a neutral point
N2 situated in the distant tail. Two lines are thus formed: a line completely decoupled from
the Earth, transported further away by the solar-wind and a closed field line. Due to the
magnetic tension, the latter field line will relax by moving sunward and around the Earth (in
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Upper part: In the MHD approximation, the
plasma and the magnetic field are frozen to-
gether. Two particles initialy connected by a
magnetic field line (like A and B, or C and D
at the initial time t1) will stay connected at
any later time. However, when two oppositely
magnetic field lines move towards each other
and touch (at time t2 in the figure), by the pro-
cess of magnetic reconnection they break and
reconnect at the so-called X-point. A change
in the field topology occurs: at a later time
t3 the particles A and C will be on the same
magnetic field line, different from the field line
connecting the particles B and D. Because the
newly reconnected lines are highly bent, the
magnetic tension force accelerates the plasma
at high speed, converting in this way the mag-
netic energy into plasma kinetic energy.

Lower part: A 3-D perspective of the recon-
nection process, taking place along an X-line,
linking many X-points. Plasma flows into the
configuration with relatively low velocity (in-
dicated by the horizontal lines) and out of it
with high-speed (vertical lines). The times t1,
t2, and t3 refer to the same phases of the pro-
cess as in the upper part.

Figure 1.3: The geometry of magnetic reconnection (adapted from Paschmann [2006]).

the third dimension) and reaches again the position indicated by 1′. A plasma flow pattern is
thus established inside the magnetosphere.

The relevance of magnetic field reconnection in the magnetospheric physics is two-fold.
On one hand, the open field lines enable a strong interaction between the solar-wind and the
magnetosphere, stronger than in the case of a ‘closed’ magnetopause. The tailward convection
above the polar cap is one consequence of this interaction. Also, plasma particles from the
magnetosheath and from the magnetosphere may cross the magnetopause by moving along the
open field lines. Then, because in a plasma the electric currents flow easily along the magnetic
lines, the convection electric field associated with the solar-wind maps down to the polar cap
ionosphere, producing an electric current oriented roughly from dawn to dusk. In this way
part of the solar-wind dynamic energy is transported, via field aligned currents, and deposited
in the ionosphere by Joule heating.

On the other hand by converting the magnetic energy into kinetic energy, the reconnection
phenomenon accelerates particles. This aspect has a greater importance for the magnetic
reconnection in the tail, being the primary explanation for the source of energy released during
a magnetic substorm. In both cases, note that, although the reconnection takes place in small
regions (indicated by points N1 and N2 in Figure 1.4) it has global consequences. That aspect
differentiates this physical mechanism from the other candidates, discussed in Section 1.1, for
the mass transport across the MP.
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Figure 1.4: An illustration of Dungey’s view of open magnetosphere. The southward oriented
IMF reconnects with the terrestrial magnetic field at the subsolar point N1 and the open field lines
are carried tailward by the solar-wind. In the tail there is another reconnection point situated at
N2, producing an interplanetary field line and a closed field line. The latter flows sunward, around
the Earth, to arrive again in the subsolar region (figure taken from Stern [1995]).

The Petschek model was derived for the case of symmetrical magnetic and plasma properties
on the two sides of the interface. At the dayside magnetopause, where the magnetic field
could have different intensities and arbitrary orientations in the magnetosheath and in the
magnetosphere and where plasma densities are usually quite different on the two sides, a
modification of wave geometry is needed. The necessary changes were proposed in Levy et al.
[1964], where the authors concluded that the magnetopause should consist of an intermediate
MHD standing wave (a large-amplitude Alfvén wave) followed by a slow-mode expansion fan
(see also Yang and Sonnerup [1976, 1977]; Vasyliunas [1975]). The rotational discontinuity
is necessary in order to provide the needed magnetic field twist. Indeed, with only a system
of slow-mode waves, the magnetic fields in the up-stream and down-stream regions and the
normal to the discontinuity should be in the same plane (coplanarity-theorem). It is precisely
this large-amplitude Alfvén wave or rotational discontinuity that is considered characteristic for
the magnetopause reconnection and the identification of which allows us to conclude whether
such a process is occurring.

Observational evidence
A first class of such evidence consists of observations taken principally on ground (and later
by low orbiting satellites) and therefore usually termed indirect or remote evidence. They refer
to the strong correlation between the orientation of the interplanetary magnetic field and the
geomagnetic activity. During the periods when the IMF is southward oriented it was observed
that substorms are more frequent, the convection in the polar caps exhibits a well defined
two-cell pattern and the field aligned currents are more intense. On the other hand, during
periods when the IMF is northward oriented, the rate of substorms reduces, the convection
becomes more irregular in the polar caps and their dawn-dusk potential drop diminishes. All
these observations are in qualitative agreement with the predictions from Dungey’s model.
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Another effect related to the convection in the polar caps region and explained by the inter-
connection between the terrestrial magnetic field and IMF, refers to the detected asymmetry in
the flow pattern according to the positive or negative orientation of solar-wind magnetic field
GSE By component. The above mentioned interconnection was extensively proved also by the
detection of energetic solar electrons on the polar cap field lines. This type of population is
detected only in the polar cap connected magnetically to the Sun, and not in the one connected
with the far distant heliosphere.

The second class of evidences refers to the in-situ observations of predictions imply by the
reconnection mechanism. Detection of the normal magnetic component Bn at the MP would
provide the most convincing evidence but this is usually difficult, although it was possible
for few events. This is because Bn is much smaller than the tangential magnetic component
and any minute uncertainty in the MP orientation would lead to errors in Bn bigger than its
actual value. The same thing applies to the direct determination of the normal plasma velocity
component Vn. Actually, in the latter case, the situation is even more complicated because
the MP is always in motion, typically with normal velocity higher than Vn, and because the
plasma velocity is usually measured with a lower accuracy.

The first unequivocal in-situ evidence that the process of magnetic reconnection is oper-
ating at the MP was provided by Paschmann et al. [1979] (see also Sonnerup et al. [1981])
using data measured by the ISEE spacecraft. By testing the tangential-stress balance equation
across this discontinuity, the authors showed that, for some selected events, the MP behaved
like a rotational discontinuity, i.e. as predicted by the magnetic reconnection models. Part of
these events were analyzed for the direct topological connection between the magnetosphere
and magnetosheath regions. In this respect strong evidence was provided for magnetospheric
particles leaking out into the magnetosheath along the reconnected field lines (see also Scholer
et al. [1981]). Since then, the tangential-stress balance test, called also the Walén test, estab-
lished itself as the standard procedure for an RD identification at the MP. Thanks to this,
the magnetic reconnection is the only process among the physical mechanisms proposed for
explaining the plasma transfer across the magnetopause for which quantitative observational
tests are well defined.

Another in-situ evidence of reconnection at the MP refers to how the distribution function is
modified when particles streaming along reconnected (open) magnetic field lines, are reflected
or transmitted at that boundary. The basic ideas of what we expect to happen was outlined
by Cowley [1982]. The author analyzed qualitatively the reflection and refraction of individual
particles in this region and predicted the shape of the velocity distribution function on either
side of the MP by considering the typical populations encountered on the reconnected field lines
(i.e the dense, relatively cold magnetosheath population, the high temperature ring current
population and the cold magnetospheric population of ionospheric origin). These types of
distributions, referred to as D-shape distributions, were later experimentally detected (see for
example Fuselier [1995]).

By testing the Walén relation on low-latitude dayside MP crossings, Phan et al. [1996]
found that this boundary behaves like a RD in 61% of the cases when the magnetic shear angle
is large (larger than 45 ◦). It was also found that the orientation of the external magnetic field
need not to be exactly antiparallel with the terrestrial magnetic field ~BT for the occurrence of
reconnection. In this respect, Sonnerup et al. [1981] proposed the idea that, at the point of
reconnection, only an IMF component along the antiparallel direction of ~BT is necessary. It
was also proposed, and later experimentally confirmed, that reconnection may occur during
times of northward orientation for the IMF in the regions tailward of the cusps (Song and
Russell [1992]).
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The above in-situ evidence was based on observations taken at the dayside MP, in the
region of standing waves from the Petschek model, i.e. far from the reconnection point. The
MHD approach is well justified in these region and is successful in catching the aspects related
to the conservation of tangential momentum (acceleration or deceleration of the plasma) or
(through topological consideration) to infer the position of the reconnection site relative to
the measurement location. The effort to understand the microphysics that takes place in the
diffusion region has been steadily increasing, both on the theoretical and on the simulation
front, but there are still some open questions. A detailed experimental investigation of the
processes taking place in the diffusion region would require a higher time resolution than the
present satellite instrumentation can offer, in order to resolve spatial scales down to the electron
inertial lengths. Nevertheles, at the scale of ion-inertial length there are some observations of
this diffusion region based on single or multi-spacecraft measurements, consistent with the
magnetic reconnection models (e.g. Mozer et al. [2002], Vaivads et al. [2004]).

Above we pointed out only some of the observational evidence supporing the magnetic
reconnection process in the magnetosphere environment. Other experimental confirmations
are reported in the literature (see for example the review articles by Stern [1996], Haerendel
[2001] and Scholer [2003]).

The present contributions to the study of magnetic reconnection
In the Walén test we check whether the plasma flows at the local Alfvén velocity in the
deHoffmann-Teller frame (i.e. the frame in which the flow becomes field aligned). The test
proved very successful in establishing whether the MP has rotational character or not, but a
long standing issue remains that the factor of proportionality between the plasma velocity in
the deHoffmann-Teller frame and the Alfvén velocity is less than one, as required in the theory.

When performing a Walén test we rely on a simple one-dimensional, planar model for the
MP. Also, we typically make two assumptions when computing the plasma moments entering
in the analysis, namely we neglect the electrons’ contribution (due to their much lower mass)
and we consider all the ions as being protons (i.e. we neglect the influence of minor ion species,
when present). In this thesis we shall study two MP events that allow us to asses experimentally
the consequences of these simplifying assumptions. The knowledge of these consequences is
important when we have to establish whether the MP behaves like a RD or not in a particular
transition event.

We also quantitatively test a relation linking the evolution of plasma density and of the
so-called plasma pressure anisotropy factor. This relation should hold for a rotational disconti-
nuity, being based on the same conservation laws as the Walén relation. Using high resolution
data and ruling out any other potential explanations, we proved for the first time that this
relation is not experimentally supported.
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The thesis is organized as follows:
Chapter 2 presents the Cluster mission and the instrumentation that provided the data used
in this thesis.

Chapter 3 presents a case of magnetopause crossing by Cluster for which the analysis indi-
cates a 2-D, non-planar geometry. The new timing based method, conceived for investigating
such cases is introduced. For the sake of an easier reading, we put all the computational details
related to the method in Appendix B.

In Chapter 4, the results of applying the new technique are presented and compared with the
results provided by the standard methods. This chapter makes use of Appendix C containing
tables and figures for all the solution we found, of Appendix D investigating the stability of
the solutions and of Appendix E containing the details of comparing the results obtained in
the 2-D case with the results from the planar MVAB method.

Chapter 5 deals with the aspects of reconnection process at the magnetopause discussed
above. The details about the deHoffmann-Teller analysis and about obtaining centre-of-mass
quantities from the measurements provided by the ion spectrometer on-board Cluster are
presented in Appendix F and Appendix H, respectively.

The planar, single-spacecraft techniques of MVAB and MFR appear in Appendix A and
Appendix G, respectively.

Chapter 6 contains the conclusions of the thesis.
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CHAPTER 2

Satellite and instruments

2.1 The Cluster mission

The Cluster mission is one of the two missions constituting the first ‘cornerstone’ of the Eu-
ropean Space Agency’s Horizon 2000 program. Having been proposed in November 1982 by
a group of scientists with strong participation from Max-Planck-Institut für extraterrestrische
Physik (MPE), Garching, the mission was finally approved in 1986. In 1988 the 11 instru-
ments that make up the science payload were selected from the competing proposals made in
1987, with MPE being heavily involved in two of the instruments. Ready for launch in 1995,
the four spaceraft were destroyed when the Ariane 5 rocket exploded on its first test flight in
June 1996. After a complete rebuild of the spaceraft and instruments, the four spaceraft were
successfully launched in July and August 2000 on two Soyuz rockets from Baikonour, and put
into an eccentric polar orbit, with apogee and perigee of about 20 RE and 4 RE, respectively.
This sets the orbital period at around 57 hours. After an extensive commissioning phase of all
instruments, routine science operations began in February 2001. The mission is expected to
continue until at least 2009.

The four Cluster spaceraft carry identical instruments and are flying in close formation.
Four is the minimum number of points needed to make measurements in three dimensions,
necessary to resolve spatial from temporal variations in the measured time-series, a capability
that was missing in all previous missions. For this purpose the four Cluster spacecraft are
arranged in a tetrahedron configuration, with separation distances that have ranged between
100 and 20000 km in the course of the mission. The control of the inter-spacecraft separation is
achieved by periodically (typically every 6 month) activating from ground the spacecraft’s own
propulsion systems, the basic goal being to revisit the key magnetospheric regions and obtain
a picture of the important phenomena at different scales. These regions are predominately
the solar wind and the bow shock, the magnetopause, the polar cusps, the magnetotail and
the auroral zones. In Figure 2.1 we present the Cluster orbit in winter (when the apogee
is situated in the magnetospheric tail) and in summer (when the satellite is able to cross
the outer boundaries of the magnetosphere and reach the solar wind), together with the key
magnetosphere regions encountered.
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Cluster orbit (in red) with the apogee
in the magnetotail. The spacecraft con-
figuration is shown (not at scale), with
C1, C2, C3 and C4 designating the four
satellites. The key regions of the cusp
and plasma sheet are encountered.

Cluster orbit with the apogee in the
solar wind. The key regions of the
cusp, magnetopause, bow-shock and so-
lar wind are encountered.

Figure 2.1: Cluster orbit in winter (upper picture) and in summer (lower), together with the key
magnetosphere regions encountered (credit to http://sci.esa.int/)

Data from the 11 instruments are stored on board and periodically transmitted to the
ground. The data are processed by a network of eight national data centers, of which the
German one is hosted by MPE, Garching. The final data products are kept on-line and made
available to the scientific community.

2.2 The satellite payload

The CIS instrument
The objective of the Cluster Ion Spectrometry (CIS) experiment (Rème et al. [2001]) is to
measure the three - dimensional velocity distribution function of ions. It consists of two
separate sensors: the Hot Ion Analyser (HIA) and the COmposition and DIstribution Function
(CODIF) analyser. In Figure 2.2 we present the schematic of CODIF and its operational
principles. The figure applies also to HIA, the only difference between the two instruments
being that the latter does not provide mass resolution.

The HIA instrument employs a ‘top-hat’, toroidal electrostatic analyser (EA) and a fast
imaging detection system, based on micro-channel plate (MCP) technology. The ions incident
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Upper part: Top view. The instrument axis of
symmetry (out of the paper, at the center) is
perpendicular to the spacecraft spin axis. The
spin provides in this way the azimuthal cover-
age. Trajectories of ions are shown in order to
ilustrate the focusing effect of such an analyser:
after entering through the aperture, a parallel
ion beam will be deflected 90 ◦ (as shown in the
lower part of the figure) and focus at a certain
location on the exit plane.

Lower part: Cross-sectional view. Behind the
electrostatic analyser, which selects the par-
ticles acording to E/Q, the ions are post-
accelerated and enter the time-of-flight section.
Here, they first hit a semi-transparent Car-
bon foil, producing secondary electrons that
are collected and thus provide the start time
signal. The stop signal comes from the MCP at
the end of the ions’ flight path. Knowing E/Q,
the energy gained in the post-accelerating sec-
tion and the time-of-flight allows the determi-
nation of M/Q. Only one particle is analysed
by the sensor at a time.

Figure 2.2: The schematic of the CIS/CODIF instrument and its operational principles (adapted
from Klumpar et al. [2001]).

on the instrument entrance aperture, consisting of two narrow, 180 ◦ fans in polar angle (ele-
vation angle φ in Figure 2.2) are deflected by the EA and instantaneously recorded on the exit
plane by a system of position encoding discrete anodes. Ion energies from 5eV to 32 keV are
sequentially measured by rapidly varying, in logarithmically spaced steps, the voltage across
the hemispherical EA plates. Since EA’s deflection selects particles based on energy/charge
(E/Q), the HIA instrument cannot resolve different ion species that have the same E/Q. Cov-
erage in azimuthal angle is achieved by utilizing the satellite spin. The spin rate of 15 rpm
then sets the time-resolution of the measurements at 4 s. To accommodate the large dynamic
range of ion fluxes that occur in different regions of the magnetosphere, the two 180 ◦ fans
provided by the top-hat analyser have geometric factors that differ by a factor of ∼ 25.

The CODIF instrument differs from HIA by an added time-of-flight section, following the
E/Q selection by a ‘top-hat’ EA. In order to obtain the start-signal needed for the time-of-
flight measurement, a thin, ∼ 3µg/cm2 Carbon foil is inserted into the particle’s path. By
hitting the foil, secondary electrons are produced and collected by a strongly focusing electron
optics. To cross the Carbon foil, the particles need first to be accelerated by a voltage of
about 15 kV after leaving the electrostatic analyser. The stop signal comes from the MCP at
the end of the particle flight path. Knowledge of E/Q, of the post-accelerating voltage and of
the time-of-flight allows the determination of the mass/charge (M/Q). In the magnetospheric
environment, this actually means that CODIF is able to distinguish the presence of major
species, namely H+, He 2+, He+ and O+. As HIA, CODIF also has two largely different (by
a factor of ∼ 100) geometric factors for the two 180 ◦ polar angle sections. The energy range
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for CODIF is from 20 eV to 40 keV. With an additional Retarding Potential Analyser device,
mounted in the aperture system of the sensor, the lower limit of the energy range is extended
to the spacecraft potential.

The two sensors, HIA and CODIF, complement each other in terms of sensitivity, mass reso-
lution, and detection efficiencies. Both instruments involve extensive on-board data processing,
including the computation of the moments of the velocity distribution functions (density, bulk
velocity vector, pressure tensor, and heat flux vector). These moments are computed and
transmitted to the ground every spin period (i.e., about 4 s), which is about the gyration
period of the protons in a magnetic field of 16 nT. In the computation process the on-board
processing software uses a table of efficiency coefficients. For CODIF, the efficiency depends
on the energy and angular sector φ. However, because of limited memory resources, only an
average (over φ) energy dependence is implemented. This results in inaccuracy of the CODIF
on-board moment calculation, particularly in the later time of the mission, when asymmetric
‘aging’ of the angular sectors occur. For the HIA detector the efficiency is much larger, pri-
marily because this sensor has no TOF section, and the on-board moments are not suffering
from this problem.

The transmission to the ground of the complete 3-D distribution function (i.e. at full angu-
lar and energy resolution) is not possible due to the limited telemetry rates allocated to CIS.
For example, in case of HIA it would require the transmission, every 4 seconds, of a matrix hav-
ing 256 energy channels × 16 elevation angles × 32 azimuth angle = 131072 elements,
whereas in case of CODIF, four matrices (one for each ion species) of 128 energy channels
× 8 elevation angles × 32 azimuth angle = 32768 elements each. Therefore reduced dis-
tribution function (typically corresponding to 31 energy channels × 88 angular directions
are computed on-board and transmitted to the ground with a time resolution of multiple spin
periods.

Based on these reduced distribution functions, a set of ground computed moments are
calculated. The efficiency coefficients used in this calculations are obtained after extensive
inter-calibration (between satellites and also by using measurements provided by other exper-
iments). Both the energy and the angular dependencies of the efficiency are considered in
this process and therefore for CODIF the ground moments are usually more reliable than the
on-board moments. In the thesis, both types of moments are being used.

For the CODIF instrument, each event is analyzed by first comparing the time-of-flight
information with a set of thresholds: based on that the on-board software decides about the
particle species. In the presence of large proton fluxes CODIF is affected by a ‘spillover’ effect,
by which the sensor registers false counts in the He+, He 2+ and O+ channels. The amount of
this effect was measured in the pre-flight calibrations and has been quantitatively considered
in the thesis.

Another issue with relevance to our thesis is the instrument saturation in plasma regions
characterized by high proton fluxes (like in the magnetosheath). In case of CODIF, the more
complex electronics sets a threshold for the particles counting rate: above roughly 100kHz
significant dead-time effects occur, resulting in less reliable measurements. This threshold is
much higher in case of HIA, which is thus practically unaffected in this respect.

The sensors were calibrated with particle beams in the laboratory before launch. The
unavoidable degradation of the efficiencies of the channel-plate detectors with time (or accu-
mulated charge) has required continued in-flight calibration.

MPE has provided the analog electronics, the MCP’s, the post-acceleration and MCP’s
high voltage sections for the CODIF instrument, while the main responsibility was with Centre
d’Etude Spatiale des Rayonnements in Toulouse.
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Figure 2.3: The schematic of a magnetic saturation circuit (taken from
http://www.earthsci.unimelb.edu.au).

The FGM instrument
The flux-gate magnetometer FGM (Balogh et al. [1997]), provided by Imperial College London,
with contributions from Technische Universität Braunschweig, measures the DC magnetic field
vector with a tri-axial flux-gate sensor mounted at the end of a 5 m boom that was deployed
after launch. Another sensor half-way down the boom helps identify spurious magnetic fields
generated by unavoidable magnetic materials and currents on the spaceraft. FGM typically
returns 22 samples per second.

Flux-gate magnetometers (also know as Förster-Sonde in German) determine the ambient
magnetic field based on a so-called magnetic saturation circuit. A simplified schematic is pre-
sented in Figure 2.3. The primary coil is wrapped in opposite direction around two bars of
ferromagnetic material. A periodic bipolar current is applied to the primary coil to drive each
ferromagnetic core through an alternating cycle of magnetic saturation (i.e. magnetized - un-
magnetized - inversely magnetized - unmagnetized - magnetized). When no external magnetic
field along the cores direction is present, the induced magnetic fields in the cores have all the
time the same strength but opposite orientation. Consequently, the voltage detected in the
secondary coil would be zero. In the presence of an external field component, the induced field
in one core will reach saturation at a different time from the other core. This difference will
induce a voltage in the secondary coil, proportional to the strength of the external magnetic
field.

In case of Cluster, a ring core configuration instead of the parallel core design is used,
primarily because the latter requires high drive powers. There is one ring core to measure the
field component along each of the three axes. As magnetic fields are small, ranging from a few
nT in the solar wind to tens of nT at the magnetopause, careful calibration before launch and
in flight is necessary. This is particularly important for identifying offsets in the component
along the satellite spin axis, non-orthogonalities of the three sensors, miss-alignments of the
boom, etc. An accuracy of about 0.2 nT has been achieved, helped by comparison with the
electron gyro time measurements obtained with MPE’s Electron Drift Instrument, EDI.
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Figure 2.4: The schematic of the EFW experiment. The spherical probes are placed in the
satellite spin plane on four wires booms, forming a cross with the spacecraft in the center (adapted
from http://cluster.irfu.se/efw/)

The EFW instrument
The Electric Field and Wave instrument, EFW, (Gustafsson et al. [2001]) provided by a group
under the responsibility of Swedish Institute of Space Physics, Uppsala, measures the ambient
electric field using two pairs of spherical probes put at the end of four wire-booms. The booms
were deployed in the spacecraft spin-plane after the spacecraft reached their final orbits. The
voltage differences between the probes is determined and divided by the (effective) probe sepa-
ration distance. Measurements of the spherical probes potential with respect to the spacecraft
are also used as a measure of the ambient plasma density.

The distance from the satellite center to each boom tip is 44 m. Typical magnetospheric
electric fields are of order 1 mV/m, the total voltage difference between two probes extended
in opposite directions is only about 88 mV. Since Cluster carries no axial booms, the electric
field component along the spacecraft spin axis is not measured and the instrument thus returns
only a two-dimensional electric field vector in the spin-plane. Under favourable conditions the
missing component can be inferred under the assumption that ~E · ~B = 0.

In the magnetospheric environment there are two competitive processes that cause the
probes to assume a potential different from the surrounding plasma potential. On one hand,
under the influence of the sunlight, a conducting sphere will become positively charged due to
the emission of photoelectrons. On the other hand, a conducting sphere placed in a plasma
medium will be continuously struck by both electrons and ions. The electrons having a higher
mobility, will hit the probe more often and cause the probe to become negatively charged.
As soon as the above processes affect the probes to the same degrees, the potential difference
between them will not be influenced. On the contrary, the measurement can be adversely
affected from asymmetric photoelectron clouds, non-uniform surface properties of the probes
or wake effects from cold plasma flows.

In the normal telemetry mode, the EFW instrument provides the two electric field compo-
nents in the spin plane at 25 samples/s. The time resolution is increased to 450 samples/s in
the burst telemetry mode.
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Other Cluster instruments
The purpose of the Cluster instruments not used in this thesis are as follows:

ASPOC. When the spacecraft are in sunlight, photoelectrons from solar UV radiation hitting
the spacecraft surfaces are able to leave the spaceraft until the spacecraft is charged sufficiently
positive that no further electrons can leave. The resulting positive spacecraft potentials, which
can reach up to hundreds of Volts, have obvious detrimental effects on the measurement of
low-energy particles. ASPOC (for Active Spacecraft POtential Control) uses positive Indium
ion beams, emitted along the spaceraft spin axis, to counter the effect of the photoelectrons
and reduce spaceraft charging to just a few Volts.

EDI. The Electron Drift Instrument determines the ambient electric fields ~E by emitting
two 1-keV electron beams and measuring the displacement of the beams that results from the
~E × ~B drift. When no electric field were to exist in the frame of the spacecraft, the electrons
would return to their origin after one gyration in the ambient magnetic field. In the presence
of an electric field, however, the electrons only return to the spacecraft when emitted in one
of two specific directions that are determined by the instantaneous magnitude and direction
of ~E. To find those directions, the electron beams are swept in the plane perpendicular to
the magnetic field (provided in real-time by the FGM instrument) until dedicated detectors
indicate that the beams have been detected.

PEACE. This instrument, whose acronym means Plasma Electron And Current Experi-
ment, measures the three-dimensional velocity distribution functions of electrons with energies
selectable in the range between about 1 eV and 27 keV, using two top-hat electrostatic analyz-
ers that include micro-channel plates as detectors. Full energy and angle coverage is obtained in
a similar fashion to that of the ion instruments within CIS. The two PEACE sensors, mounted
on opposite sides of the spacecraft, can either be operated with different energy ranges, or be
combined to double the time resolution. Moments of the distribution functions are computed
on board every spin period, much like on CIS. Three-dimensional distribution functions can
be reduced on board to two-dimensional pitch-angle distributions.

RAPID. This instrument, whose acronym means Research with Adaptive Particle Imaging
Detectors, measures energetic electrons from 20 to 400 keV and ions between about 40 keV and
several MeV, depending on the ion species. To distinguish the different species, the instrument
employs a time-of-flight section, with the start signal coming from an Aluminium covered
Lexan foil, and the stop signal from a solid state detector that also records the particles’
energy. Three sensor heads cover the 180 degrees polar angle range, whereas the azimuth
angle range is covered by utilizing the spaceraft spin, much like for the CIS and PEACE
plasma instruments.

DWP. The Digital Wave Processor controls the operation of the EFW, WHISPER, STAFF
and WBD instruments. It also performs data compressions and includes a particle correlator.

STAFF. This instrument, whose name is taken from Spatio-Temporal Analysis of Field
Fluctuations, is a boom-mounted three-axes search coil magnetometer, measuring magnetic
field waveforms up to 10 Hz or 180 Hz depending on the chosen operational mode. It includes
a digital spectrum analyser that also receives electric field data from the EFW instrument,
and thus is able of computing in real-time cross-spectral matrix from three magnetic and two
electric field components.

WBD. The Wide BanD instrument processes the signals from any one of four electric and
magnetic field antennas, two of the probes of the EFW instrument, the other two from the
STAFF instrument. It provides very high-time resolution measurements of plasma waves in the
Earth’s magnetosphere. The input frequency range can be shifted to any one of four ranges,
starting at 0, 125, 250, or 500 kHz.
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CHAPTER 2. Satellite and instruments

Table 2.1: Cluster instruments and the corresponding Principal Investigators.

Nr. Acronym Instrument description Principal investigator

1 ASPOC Active Spacecraft Potential Control experi-
ment

K. Torkar (Space Research Institute,
Austrian Academy of Sciences, Austria)

2 CIS Cluster Ion Spectrometry experiment H. Rème (Centre d’Etude Spatiale des
Rayonnements, France)

3 EDI Electron Drift Instrument G. Paschmann (Max-Planck-Institut
für extraterrestrische Physik, Germany)

4 FGM Fluxgate Magnetometer A. Balogh (Imperial College, UK)

5 PEACE Plasma Electron And Current Experiment A. Fazakerley (Mullard Space Science
Laboratory, UK)

6 RAPID Research with Adaptive Particle Imaging De-
tectors

P. Daly (Max-Planck-Institut für Aero-
nomie, Germany)

7 DWP Digital Wave Processing experiment H. Alleyne (University of Sheffield, UK)

8 EFW Electric Field and Wave experiment M. André (Swedish Institute of Space
Physics, Sweden)

9 STAFF Spatio-Temporal Analysis of Field Fluctua-
tion experiment

N. Cornilleau (Centre d’Etudes des
Environnements Terrestre et Planétaires,
France)

10 WBD Wide Band Data instrument D. Gurnett (University of Iowa, USA)

11 WHISPER Waves of High frequency and Sounder for
Probing of Electron density by Relaxation
experiment

P. Décréau (Laboratoire de Physique et
de Chimie de l’Environnement, France)

Figure 2.5: Cluster at the Industrieanlagen-Betriebsgesellschaft test facility in München (adapted
from Escoubet et al. [2001]). The numbers indicating the position of instruments correspond to the
left-most column in Table 2.1.
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WHISPER. This instrument, whose acronym means Waves of HIgh frequency and Sounder
for Probing of Electron density by Relaxation, serves two functions. First, it measures the AC
electric fields up to a frequency of 80 kHz, which includes all the characteristic frequencies of
the waves in the plasmas that Cluster encounters, utilizing the voltages recorded on the probes
of the EFW instrument. Second, it periodically puts large voltage pulses on those probes in
order to trigger wave emissions at the plasma frequency, from which the plasma density can
be derived.

The teams responsable for the field and wave experiments on-board Cluster (i.e. DWP,
EFW, STAFF, WBD and WHISPER) are forming the Wave Experiment Consortium, designed
to coordinate their efforts in terms of experimental operation and in utilizing the limited
spacecraft resources.
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CHAPTER 3

A new technique for determining orientation and motion of a

non-planar magnetopause

In this chapter we will present a case of magnetopause (MP) crossing by Cluster for which the
analysis indicates a 2-D, non-planar geometry. Consequently, when determining the macro-
scopic properties of this discontinuity, viz. its orientation, motion and thickness, the existing
single-satellite methods fail to provide the correct answer. The reason is that all these tech-
niques are relying on the planar assumption for the MP. We are proposing a multi-satellite, tim-
ing based method that models the boundary between the magnetospheric and magnetosheath
plasma as a 2-D, non-planar layer of constant thickness. This is a natural improvement of the
standard, multi-satellite, timing technique that assumes a planar layer of constant thickness
for the MP.

The content of the chapter is the following: in the first section, a brief review of the standard
multi-satellite timing technique, build on the planar assumption for the MP, is provided. Then
the newly developed methods, conceived for investigating 2-D, non-planar discontinuities, are
introduced. This first two sections make strong use of Appendix B, where all the details of
computation are presented. Starting with Section 3.3 we introduce the event from 24 June
2003, providing evidence in support of a 2-D, non-planar MP encounter by Cluster. The input
parameters needed in applying the timing analysis are then extracted from the data.

3.1 The timing analysis procedure in the planar case

In a timing analysis, the instants of time when the four Cluster satellites encounter the MP
are used. This information could in principle be obtained from any physical quantity that
displays a significant change across the discontinuity. However, in our study we choose to
use the magnetic field data because of its higher time resolution and smaller measurement
uncertainties compared to other types of data.

The methods used so far in determining the MP orientation, motion and thickness that rely
on timing information alone, assume a planar geometry. More specifically, we have the method
which considers the MP is moving with a constant velocity across the four spacecraft (con-
stant velocity approach or CVA technique), and the method which assumes it has a constant
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~n

~U
O

~R3

~R2

~R4

trailing edge XXXXXXzcentral plane XXXXzleading edge XXXz

Figure 3.1: A sketch of a planar magnetopause moving past the Cluster satellites location. The
first spacecraft detecting the MP is located at O, whereas the other three satellites have the relative
positions indicated by ~R2, ~R3 and ~R4. The central plane, together with the leading and trailing
MP edges are shown. The velocity ~U is oriented along the normal ~n in this model, being a
constant vector in the CVA approach. In the standard implementation of CTA, the distance along
~n travelled by the central plane during each crossing time is constant, whereas in our variant of
CTA the distance between the MP edges is constant.

thickness during the same interval (constant thickness approach or CTA technique). They are
discussed in detail in Haaland et al. [2004b] and, since we will cite this work very often, we
call it hereafter the CTA paper.

The planar methods of CVA and CTA are presented at length in Section B.1. Here we
will only point out the underlaying ideas, using for illustration Figure 3.1, which is identical
to Figure B.1. In this picture, the first satellite to encounter the MP is situated at O, whereas
the other three satellites location are indicated by the relative position vectors ~R2, ~R3 and ~R4.
The orientation of the MP surface is specified by the normal ~n and only the motion along this
direction has a physical significance.

In the CVA method, first introduce by Russell et al. [1983] and called there the time of
arrival method, one uses the central crossing times, i .e. the times when the central MP plane
is detected by each satellite. We chose as origin of space the position of the first satellite
to encounters that plane (O in Figure 3.1). The unitary vector ~n and the normal speed U ,
assumed constant, are the three unknowns that can be determined from a linear system of
equations. These equations express the conditions that the relative positions of the other three
satellites ~R2, ~R3 and ~R4 be situated on the central plane at the right time, i.e. in accordance
with the timing information. Then, from the individual crossing durations we can compute
the MP thickness at each satellite.

In the case of the CTA method, as introduced in the CTA paper, we determine the MP
orientation and its normal velocity, assuming a polynomial time dependence for the latter.
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3.1. The planar timing analysis

This is achieved by imposing, apart from the conditions referring to the central plane, that the
MP travels the same distance during the individual crossings. This makes a total of 7 equations
from which one finds the MP thickness, the unitary vector ~n and 4 polynomial coefficients to
describe the time evolution for the MP normal velocity.

In Section B.1 we proposed a variant of CTA that uses the times when each satellite detects
the MP leading and trailing edges, i.e. not the central plane. The two CTA implementations
do not necessarily give the same results (as will be seen for our test case); only when, for each
individual crossing, the distance travelled by the MP in the first half-time is the same as in
the second half the results will be identical. As will be seen, this way of using the timing
information is proposed for the 2-D, non-planar techniques as well.

Procedure for obtaining the timing information
The times that enter in the timing method are obtained by the following procedure:

First, for each satellite the data interval corresponding to the magnetic field transition
is selected, together with some small adjacent intervals of relatively constant magnetic levels
in the magnetosheath and in the magnetosphere. Then a minimum variance analysis of the
magnetic filed (MVAB) is performed (see Appendix A) and the magnetic data are transformed
into the reference frame associated with the MVAB result (the one with the axes along the
minimum, intermediate and maximum magnetic variance directions, respectively). According
to the MVAB theory, the minimum variance direction is associated with the surface normal if
the MP behaves locally (i.e. at the position and for the crossing duration corresponding to the
satellite in question) as a planar, one-dimensional and time-stationary discontinuity.

For extracting the timing information, the components along the maximum-variance di-
rection are used. After the first step, the data are most probable not in the same coordinate
system because the MVAB analysis will not provide exactly the same direction in space for all
satellites. This is either because the MP is not planar (judging at the scale of inter-spacecraft
separation distance and for the time interval that includes all four crossings), because of the
temporal changes in ~n, or due to the inherently present fluctuations or measurement errors. In
case of a 2-D MP assumption, where indications exist that non-planar effects are responsible
for the different normal orientation, these maximum variance components will be used directly.
On the other hand, in the case of planar assumption we have to proceed consistently and ex-
tract the timing information from the magnetic profiles in the same reference system for all the
four satellites. Therefore we use the maximum-variance components in a coordinate system
associated with an ‘average’ normal, obtained by some average procedure from the individual
normals (for example by using the direction that corresponds to the vectorial sum of the four
normals or by applying the minimum variance algorithm on these four individual normals).

The selected magnetic traces are then fitted assuming a certain time dependence for the
magnetic profile at the MP. In the CTA paper a Harris sheet type profile was employed and we
will use the same dependence when applying the new technique on a test case. More precisely,
the following temporal dependence for the maximum-variance magnetic field component is
used:

B(t) = B0 +
1
2

∆B tanh

[
t− Tc

τ

]
(3.1)

Next a definition of the MP thickness is proposed. To give an example, we refer again to
the CTA paper where for the profile described in equation (3.1) the MP thickness was defined
as corresponding to the time-interval centred on Tc and of length 2τ . This, in turn, corresponds
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to the region where the fitted magnetic component changes by the quantity

∆B
e2 − 1
e2 + 1

i.e. approx. 76% of the total variation ∆B between the asymptotic levels in the chosen
dependence.

In case of the standard planar methods the needed times are the central crossing times Tci

and the half-time crossing durations τi. For the variant of the planar CTA method that we
developed and for the 2-D methods we will use the moments Mi1,2 corresponding to the MP
edges encounter, namely

Mi1 = Tci − τi and Mi2 = Tci + τi, i = 1...4

Arguments for the constant thickness approach
Since the 2-D method to be developed in this chapter relies on the assumption that the MP
has a constant thickness during the entire event and for the scale-length of inter-spacecraft
separation distance, we would like to underline here the arguments in favour of such hypothesis
as opposed to the arguments in favour of a constant velocity approach (from CTA paper):

- Due to its low mass per unitary cross-section, the magnetopause will experience big
acceleration in case of a relatively small pressure imbalance. On the other hand, the
compression in the same condition is relatively small (of the order of a few percent).

- Experimental evidence supports the idea of a MP having rapid changes in the normal
velocity over time-periods comparable with the crossing duration by the Cluster forma-
tion, while the variation of its thickness remains relatively small (Dunlop et al. [2001],
Dunlop et al. [2002a]).

The above arguments by no means exclude the possibility of large variations in the MP
thickness during a crossing event. However, such a behaviour is expected to be caused not
by a pressure imbalance but because of convecting phenomena at the MP surface or because
of some internal processes. Also, the arguments could not be used to draw conclusions about
thickness at points well apart on its surface (case of large inter-spacecraft separation).

Whether the constant thickness assumption is valid or not depends on the particular case.
Nevertheless, when developing this method we have in mind the published experimental results
(see for example Haaland et al. [2004b] and Haaland et al. [2004a]) and several events analyzed
by us, where the planar CTA method proved successful. If the conditions are almost stationary
and their spatial gradients are small enough we have no reason to believe that the MP thickness
differs much from one point to another on its surface. As will be seen, the new technique is
not restricted to cases when the inter-spacecraft separation distance is big (see the discussions
on Section 4.5).

3.2 The timing method for a 2-D, non-planar magnetopause

We now extend the timing technique for determining the MP orientation, motion and thickness
in cases when indications are present that this discontinuity could not be locally modeled as a
simple planar layer but has a two-dimensional shape instead. This is the situation, for example,
when in one MP traversal made by the four Cluster satellites, the minimum variance analysis
of magnetic field data sampled by each spacecraft gives different normals to this discontinuity
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Figure 3.2: Magnetopause cross-sections in the plane normal to the invariant direction at suc-
cessive moments. ~y designates the primary direction, along which the MP velocity is described by
a polynomial time dependence and the layer has a constant thickness. The secondary movement,
allowed in one variant of this model, takes place along ~x. We depict here the situation when

→
nP

(the unit vector along the parabolas axes pointing to exterior) is anti-parallel to ~y. The Cluster
satellites are located at ~Ri, i = 1...4 with ~R1 ≡ 0 . At the initial time Tc1−τ1, the MP leading edge
encounters the first satellite at origin: in the other three configurations shown, the MP trailing
edge is detected by satellites 2 to 4 at Tci + τi, 2 = 1...4. The initial coordinates (w,C) of the
leading edge apex as well as the MP thickness 2d are indicated. Other quantities appearing in this
figure are introduced in the text.

- the reason for that not being the inherently orientation errors resulting when working with
experimental data - and, in addition, when all normals lye approximately in the same plane.
The new method, to be introduced in this section, assumes that the direction perpendicular
to this plane (designated by the unit vector ~l ) is an invariant direction for the MP. In such a
case we have locally modeled the MP either as a parabolic layer of constant thickness or as a
cylindrical layer, whose invariant axis lies along ~l. We allowed for the layer to have either a
simple movement along one direction in the plane perpendicular to ~l, or a motion along two
perpendicular directions in that plane.

In Section B.2 and Section B.3 all the details pertaining to the newly developed method
are presented: here we will only outline their principal characteristics.

The parabolic layer model
In the first attempt to describe the orientation and motion for a 2-D, non-planar MP, we repre-
sent it as a parabolic layer of constant thickness, capable of moving in the plane perpendicular
to the invariant direction ~l. In Figure 3.2, which is a simplified version of Figure B.2 from
Appendix B, we show the MP cross-section perpendicular to ~l (pointing into the paper) at
different successive moments. The layer is allowed to move in the plane of the paper either
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CHAPTER 3. Timing method for a 2-D magnetopause

only along ~y, i.e. parallel to the parabola’s axis of symmetry, according to a polynomial time
dependence for the velocity or it is allowed to have in addition a movement along ~x with
constant velocity. By constant thickness we mean that the distance along ~y between the MP
leading edge and trailing edge is the same (or, equivalently, that the MP trailing surface is
obtained by a parallel displacement along ~y of the MP leading surface).

In this picture, the first satellite to encounter the MP is situated at the reference frame
origin, whereas the location of the other three satellites are indicated by the relative position
vectors ~R2, ~R3 and ~R4. The vector ~np, lying parallel to the axis of symmetry but pointing
to the exterior, is introduced for a simpler characterization of the MP topology, namely its
orientation will tell us finally if the spacecraft encounter a bump or an indentation in the MP.
We chose to represent the situation when it is anti-parallel to ~y and when also a tangential
velocity is present. Whether ~np and ~y are parallel or anti-parallel and whether the tangential
movement is along + ~x or along − ~x, depends on the actual timing information and results
directly from the algorithms to be described.

By proposing a parabolic shape we intent to describe two features of the actual MP: its
nonplanarity and, by allowing for a second degree of freedom, the large scale waves that often
travel along this surface. Indeed, in cases when the solution obtained by applying this method
gives surface normals at each spacecraft level close to ± ~np then the transversally moving
parabolic shape (i.e. along ± ~x) is a good approximation for a travelling sine wave.

Using the procedure described in Section 3.1, with the particularities required when a 2-D
MP is analyzed, we extract from the data the times when each spacecraft encounters the MP
leading and trailing edges (Mi1 = Tci − τi and Mi2 = Tci + τi, i = 1...4). Then, knowing
the relative positions of the satellites, we can impose a set of 8 conditions (corresponding
to 2 conditions for each spacecraft) on the MP shape, thickness, direction of movement and
velocity time dependence. Specifically, the unknown quantities to be found in this model are
(see Figure 3.2; further explanations are given in Section B.2):

B the direction of the primary movement (i.e. along ~y), specified by the angle β with
respect to a reference direction in the plane perpendicular to ~l. As reference direction
we chose the vector ~m = ~R2 ×~l

B the spatial scale of the structure, given by the quadratic coefficient a of the parabola

B the MP half-thickness d

B the initial position of the MP, specified by the coordinates w and C in the plane perpen-
dicular to ~l

B polynomial coefficients for describing the velocity time dependence (the remaining three
unknowns). As is demonstrated in Section B.2, the model forces us to allow for a sec-
ondary movement (i.e. along ~x) and therefore the primary motion will be described by
a constant acceleration.

For this model of parabolic layer we were able to solve algebraically the required system
of conditions. The steps we followed in finding the solution are presented in Section B.2. We
also proved that for each set of timing parameters (each set of values Mi1,2) there is only one
solution with physical significance.

The cylindrical layer model
A shortcoming of the parabolic model is that the layer thickness along the local normal is not
constant; constant is only the distance between the parabolas defining its leading and trailing
edges. As we shall see from the analysis of the test case, this could lead to solutions where the
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3.2. Timing analysis for a 2-D magnetopause

actual thickness varies unreasonably from one satellite to the other or during the crossing time
corresponding to one spacecraft. Therefore we also investigated the cylindrical model where
by definition the layer has the same thickness along its normal.

The treatment is similar to the case of parabolic layer but now C and w will designate the
coordinates of the cylindrical layer axis at initial moment. The other variables with geometrical
meaning are R and d – the radius of the inner circle and the MP half-thickness – and the angle β,
designating the direction of primary movement which in this model is radial. For a cylindrical
layer we are not forced to allocate two degrees of freedom for the MP movement. Therefore
one can cast the remaining three unknowns, describing the velocity time dependence, in two
ways: either all of them for specifying the primary motion (i.e. along ~y) or we can allow for
a movement with constant velocity along the secondary direction (i.e. along ~x) and a linear
velocity dependence for the movement along ~y.

In the cylindrical model we solved the system of timing conditions by using algorithms for
finding a numerical solution. In order to apply the algorithms, we first reduced the number
of equations by expressing some of the unknowns as a function of the others. Specifically,
we arrived at a reduced set of equations having as unknowns the angle β and the parameters
describing the MP velocity. The reason in keeping these variables was that we also have to
provide an initial guess for the solution and these quantities seemed for us more suitable in
this respect. For example the angle β has a limited range of variation (i.e from −π to π) and
we could search for the solutions in a loop that varies the initial estimate for β in this range
in steps of a few degrees. All the details of the calculations are presented in Section B.3.

Another problem encountered refers to the number of solutions with physical significance
satisfying the system of imposed conditions. It is difficult to answer this question in the general
case and therefore when the numerical procedure is carried out one has to start the search from
many initial points, sufficiently close to each other and covering a sufficiently broad range of
values so that no solution is missing. What ‘sufficient’ means depends on the actual timing and
position information. The strategy we followed in finding solutions for the cylindrical model is
presented in Section 4.2.

Optimizing the timing procedure for a 2-D, non-planar discontinuity
The technique presented above relies (apart from the information about the invariant direction
~l) only on the information about the times when the Cluster satellites encounter the MP
edges. As we have seen, the main direction of the MP displacement (what was called primary
direction), which lies in the plane perpendicular to ~l and therefore is fully specified by an
angle in that plane, is an unknown quantity like any other unknowns (for example the half-MP
thickness or the initial MP position) to be determined by the algorithm. In what follows, we
shall refer to this method as plain timing analysis.

Because the direction of the MP movement is fully described by an angle we can im-
pose from outside different values for this parameter, like increasing it stepwise in the range
[−180 ◦, 180 ◦], and solve the timing problem with this condition. For each solution we find, we
are in the position to compute the variance along the instantaneous (surface) normal or tangen-
tial direction for any quantities during the individual crossing time (in Section B.4 we deduced
expressions for various average quantities characterizing the MP movement and orientation for
a satellite traversal).

If a quantity obeys some conservation law at the MP, then its variance will have an extreme
(minimum or maximum) across that boundary. Therefore, we can select that direction of ~y
(i.e. that value for β) for which the global (over the 4 spacecraft) variance is extreme. Here by
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CHAPTER 3. Timing method for a 2-D magnetopause

‘global’ we mean a weighted sum of the individual variances (the details are given in Section
B.5). The advantage of this procedure is twofold: firstly, a better characterization of the MP
motion is achieved, because we can increase by one the degree of polynomial describing it.
Then, the solution found in this way is optimized against the additional criterion employed,
meaning a supplementary support from the physics involved.

We shall refer to this procedure, where the timing information together with results from
other method(s) are used to infer the MP local geometrical and dynamical properties (thickness,
orientation, velocity etc.), as the mixed or combined analysis. In Section B.5 we will use
MVAB technique as the additional method to be combined with the timing analysis. This is
also the way we carry-out the investigations for our test case but in principle any other method
could be used instead in the mixed-analysis (minimum Faraday residue, minimum variance of
the current density etc. See Sonnerup et al. [2006] for a collection of possible methods).

3.3 Presentation of the test case

In this section we introduce the event from 24 June 2003, which constitutes the test case
for the new 2-D, non-planar MP technique developed in the thesis. In Figure 3.3 the Clus-
ter satellites orbit and configuration corresponding to the event are shown. The transition
that will be analyzed occurred around 07:37:00 UT at the magnetopause dawn flank, near
[−7.7,−17.7,−1.4]RE in GSM coordinate system. It is an inbound crossing from the magne-
tosheath plasma regime to the magnetosphere region (better seen on Figure 3.4). In the upper
part of the figure showing the orbit (taken from Cluster Science Data System home page), a
model MP and bow-shock are drawn and the distance between the satellites is scaled by a
factor of 5. The four spacecraft are travelling in pairs, with C1 close to C3 (at approx. 350
km) and C2 close to C4 (at approx. 250 km). The distance between the pairs is around 7400
km.

On the bottom part of that figure two plane projections of this cigar-type configuration
at the time of traversal are shown, both of them with C2 - the first satellite entering the MP
- at the origin of the coordinate system. In the plot showing the projection on the so-called
‘MP plane’ - the plane perpendicular to the direction resulting from averaging the individual
normals obtained from constrained minimum variance analysis of magnetic field (MVAB) - the
~x axis corresponds to the invariant direction (given by ~l, introduced in the previous chapter
and determined later in the analysis). The adjacent projection has the average MVAB normal
direction as ~x axis and the same ~y axes. Because for an inbound transition a satellite is moving
in the opposite direction of the MP normal, we can clearly see that the time-sequence of the
satellites’ crossings is C2, C4, C3 and C1. This sequence is indeed seen in the magnetic field
data presented in Figure 3.6 and introduced later in the text.

In Figure 3.4 various physical quantities characterizing the conditions in the plasma around
the time of the event (indicated with dashed vertical lines) are shown. The displayed measure-
ments were taken by the Cluster3 (panels 1 - 6) and ACE (panels 7 and 8) satellites. From
top to bottom we have:

- magnetic field components in GSE from Cluster FGM experiment

- plasma density, from HIA sensor of the CIS experiment. Both on-board (red) and ground
(green) computed values are presented, demonstrating the agreement between them

- plasma velocity components in GSE calculated on-board from HIA measurements

- panels 4 and 5 present the plasma temperatures perpendicular (magenta) and parallel
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3.3. Test case overview

Figure 3.3: Upper part: Cluster orbit projections on the planes of GSE coordinate system for
the time of event. The distance between the satellites was increased by a factor of 5. Lower part:
Projection of Cluster configuration at the time of transition on the MP plane and on a plane
containing the MP normal. See text for a detailed description.

33



CHAPTER 3. Timing method for a 2-D magnetopause

2003 Jun 24               SC3               07:20 - 08:102003 Jun 24               SC3               07:20 - 08:10

      

-40

-20

0

20

40

M
A

G
 F

IE
LD

 (
nT

)

  X

  Y

  Z

      

0.1

1.0

10.0

H
IA

 D
E

N
S

.

N
 (

cm
-3
)

  HIA OB.

      

-200

0

200

400

H
IA

 O
B

. V

(k
m

 s
-1
)

  X

  Y

  Z

      
100

1000

10000

H
IA

 O
B

. T

(e
V

)

  HIA T
par

      
100

1000

10000

H
IA

 3
D

 T

 (
eV

)

      

      
10

100

1000

10000

H
IA

 E
N

E
R

G
Y

(e
V

)

      
10

100

1000

10000

1.8•103

1.3•107

eV
/c

m
2 -s

-s
r-

eV

      
-10
-5

0

5

10

A
C

E
 M

A
G

 (
nT

)

  X

  Y

  Z

0720

-7.6
-17.7
-1.5
19.4

0730

-7.7
-17.7
-1.4
19.4

0740

-7.7
-17.7
-1.4
19.3

0750

-7.7
-17.7
-1.4
19.3

0800

-7.7
-17.7
-1.4
19.3

0810

-7.8
-17.6
-1.4
19.3

0

1

2

3

S
W

 p
re

s.

(n
P

a)

hhmm
2003 Jun 24 
GSMX
GSMY
GSMZ
DIST

S
un

 O
ct

  1
 1

7:
07

:3
9 

20
06

2003 Jun 24               SC3               07:20 - 08:102003 Jun 24               SC3               07:20 - 08:10

      

-40

-20

0

20

40

M
A

G
 F

IE
LD

 (
nT

)

  X

  Y

  Z

      

0.1

1.0

10.0

H
IA

 D
E

N
S

.

N
 (

cm
-3
)

  HIA OB.

      

-200

0

200

400

H
IA

 O
B

. V

(k
m

 s
-1
)

  X

  Y

  Z

      
100

1000

10000

H
IA

 O
B

. T

(e
V

)

  

  HIA T
perp

      
100

1000

10000

H
IA

 3
D

 T

 (
eV

)

      

      
10

100

1000

10000

H
IA

 E
N

E
R

G
Y

(e
V

)

      
10

100

1000

10000

1.8•103

1.3•107

eV
/c

m
2 -s

-s
r-

eV

      
-10
-5

0

5

10

A
C

E
 M

A
G

 (
nT

)

  X

  Y

  Z

0720

-7.6
-17.7
-1.5
19.4

0730

-7.7
-17.7
-1.4
19.4

0740

-7.7
-17.7
-1.4
19.3

0750

-7.7
-17.7
-1.4
19.3

0800

-7.7
-17.7
-1.4
19.3

0810

-7.8
-17.6
-1.4
19.3

0

1

2

3

S
W

 p
re

s.

(n
P

a)

hhmm
2003 Jun 24 
GSMX
GSMY
GSMZ
DIST

S
un

 O
ct

  1
 1

7:
07

:3
9 

20
06

2003 Jun 24               SC3               07:20 - 08:102003 Jun 24               SC3               07:20 - 08:10

      

-40

-20

0

20

40

M
A

G
 F

IE
LD

 (
nT

)

  X

  Y

  Z

      

0.1

1.0

10.0

H
IA

 D
E

N
S

.

N
 (

cm
-3
)

  
  HIA 3D

      

-200

0

200

400

H
IA

 O
B

. V

(k
m

 s
-1
)

  X

  Y

  Z

      
100

1000

10000

H
IA

 O
B

. T

(e
V

)

  

  HIA T
perp

      
100

1000

10000

H
IA

 3
D

 T

 (
eV

)

      

      
10

100

1000

10000

H
IA

 E
N

E
R

G
Y

(e
V

)

      
10

100

1000

10000

1.8•103

1.3•107

eV
/c

m
2 -s

-s
r-

eV

      
-10
-5

0

5

10

A
C

E
 M

A
G

 (
nT

)

  X

  Y

  Z

0720

-7.6
-17.7
-1.5
19.4

0730

-7.7
-17.7
-1.4
19.4

0740

-7.7
-17.7
-1.4
19.3

0750

-7.7
-17.7
-1.4
19.3

0800

-7.7
-17.7
-1.4
19.3

0810

-7.8
-17.6
-1.4
19.3

0

1

2

3

S
W

 p
re

s.

(n
P

a)

hhmm
2003 Jun 24 
GSMX
GSMY
GSMZ
DIST

S
un

 O
ct

  1
 1

7:
07

:4
0 

20
06

Figure 3.4: Magnetic field and ion measurements around the time of our event (indicated by
the vertical dashed lines). From top to bottom, in the first six panels, we have magnetic field
GSE components, ion density (computed on-board and at ground), components of ion velocity in
GSE, ion parallel and perpendicular temperatures (computed on-board and at ground) and ion
differential energy flux as measured by Cluster 3. The last two panels present the conditions in
the solar wind, i.e. magnetic field GSE components and dynamic pressure, based on (shifted) ACE
measurements. See text for further explanations.
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3.3. Test case overview

(blue) to the magnetic field computed on-board and at ground

- HIA differential energy flux spectrogram for the total energy range of the sensor

- the last two panels show the conditions in the solar wind as seen by ACE satellite, located
at the Lagrange point L1, about 1.5 million km sunward from Earth. The magnetic field
components in GSE (MAG experiment) and solar wind dynamic pressure (calculated
from SWEPAM measurements) are presented. When plotting them, we took into account
the time-delay resulting from solar-wind plasma propagation between ACE and Cluster
positions. This time-delay was first estimated by making use of the x-GSE component
of the solar wind velocity. Then, a more precise correction was established by comparing
the (shifted) ACE magnetic field measurements with the ones from Cluster when the
latter was situated outside the magnetosphere.

During the period when Cluster was close to the magnetosphere’s eastward flank, several
MP transitions occurred between the hot, rarefied magnetospheric plasma environment and
the much cooler, denser plasma with more stable flow, characteristic for the magnetosheath
region. These transitions are clearly identifiable in the magnetic field change associated with
the current system situated at the magnetospheric boundary. From Figure 3.4 it is evident that
at 07:37 UT we have an inbound crossing. The solar wind parameters were relatively stable,
with the interplanetary magnetic field southward oriented apart from some small intervals
when it turned northward (like approx. 15 minutes before our event, when Bz was positive for
a few minutes).

In order to investigate whether the MP behaves like a rotational or tangential discontinuity,
the Walén test has been performed for each satellite where plasma data are available (i.e. we
used HIA measurements for C1 and C3 and CODIF measurements in case of C4). The Walén
test checks whether the plasma flows at the local Alfvén velocity in a coordinate system (the
so-called deHoffmann-Teller frame) in which the flow is field aligned. The general description of
this type of analysis is presented in Sections 5.1 and 5.2. In all cases a good deHoffmann-Teller
(HT) frame was found (correlation coefficient & 0.95) meaning that the necessary condition,
although not a sufficient one, for a rotational discontinuity (RD) identification exists (see
Appendix F for a presentation of HT analysis).

The Walén relation itself is poorly satisfied in case of C3 and C4, with the slope of the
regression line being 0.40 and 0.43, respectively. In case of C1 we were able to identify a
time interval for which apparently the test is successful. Figure 3.5, that shows in the left
part the corresponding results from the HT and Walén analyses, indicates a slope ' 0.83
and correlation coefficient ' 0.91. However, for this satellite one should say that a careful
observation of the lower right graphic indicates that the rotational character of the MP is
not as certain as the mere value of the slope would suggest. In that part of the figure the
plasma velocity components in the deHT frame (on ordinate) are plotted against the local
Alfén velocity components ~Bi/(µ0ρ)1/2, i = 1, 3 (on abscissa). As we can see, the points
corresponding to y and z components (represented in green and red, respectively) do not show
a large spread along the regression line. The same would apply for the x components (in
blue) if one would exclude the point near origin, corresponding to the x component of the
last measurement taken in the chosen interval. This aspect of the plot, showing that there is
no large dynamic variation in the components, means that the change in the velocity vector
synchronous with the magnetic field rotation is not as conclusive. When the interval of analysis
is increased, the values of the slope and of the correlation coefficient drop dramatically, being
totally unacceptable for a RD. A higher time-resolution measurements would have helped us
to establish the type of discontinuity in this case.
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Figure 3.5: Left side: Cluster 1 magnetic field and plasma parameters (ions, from HIA mea-
surements) around the time of MP crossing. The time-interval used to test the Walén relation is
indicated by the vertical dotted lines. Right side: In the upper part, the result from deHoffmann-
Teller analysis is shown. The plot presents the fit between the electric field ~Ec = −~v × ~B (on
ordinate) and the convection electric field ~EHT = −~VHT × ~B associated with a time-stationary
structure moving with the determined HT velocity (on abscissa). Different components are indi-
cated by different colours. The lower part refers to the Walén test itself and shows the fit between
the Alfvén velocity components and the plasma velocity components in the deHT frame. See text
for more explanations.

The analysis presented above assumes an one-dimensional discontinuity for the MP and
uses the proxy ~E = −~v × ~B for the electric field. The average proton gyro-radius for the
analyzed interval, computed by using the perpendicular thermal velocity vT =

√
2kBTperp/mp

is approx. 133 km and the average proton inertial length λp = 1/e
√

mp/µ0ρ is approx. 270
km. These quantities have to be compared with the MP thickness, found later in this chapter
to be around 800 km. As a conclusion, we can say that in this zero-order approximations for
the MP, all satellites encounter a discontinuity for which a relatively good deHT frame was
detected, where some correlation exists between magnetic field and velocity changes in the case
of Cluster1.

In Figure 3.6 the magnetic field components in GSE reference frame and its magnitude as
measured by each spacecraft are presented. Actually, one important criterion in selecting the
test case was a ‘clean’ transition with a regular evolution of the magnetic field at each satellite.
One can see that the asymptotic levels of the magnetic traces are clearly identifiable, the
components on either side of the transition being almost constant for a relatively long period.
This, and the smooth evolution in the transition region ensure a good fit of the measurements,
necessary for a reliable timing analysis.
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3.3. Test case overview

Figure 3.6: Magnetic field as measured by the Cluster satellites during the MP crossing. In
the first four panels the x, y and z GSE components are indicated by blue, green and red lines
respectively. The last panel shows the variations in the magnetic field magnitude, colour coded
according to the mission convention, i.e. black, red, green and blue refers to Cluster1, Cluster2,
Cluster3 and Cluster4 respectively. The minimum and maximum length intervals entering MVAB
nested analysis (vertical dotted lines) together with their common central time (dot-dashed lines)
are indicated for each satellite.
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CHAPTER 3. Timing method for a 2-D magnetopause

3.4 Obtaining the input parameters

The purpose of this section is twofold: to provide evidence that for the transition previously
introduced the MP is behaving like a 2-D, non-planar discontinuity and to extract from the data
the input parameters necessary for the various timing algorithms presented at the beginning
of this chapter. These parameters are the timing information, i.e. the instances when the MP
edges are detected by the four Cluster satellites and, in addition for the non-planar case, the
unit vector ~l, designating the invariant direction for the 2-D magnetopause.

A case of non-planar magnetopause. Finding the unit vector
−→
l

We will show that in our case the normals determined at each satellite by applying a minimum
variance analysis (MVA) on the magnetic field data (also called individual or satellite normals)
are contained approximately in the same plane; the perpendicular direction to this plane is
then the invariant direction, indicated by the unit vector ~l. In determining the individual
normals we followed the procedure presented below:

- we started with data of 0.2 seconds time-resolution and then we ‘boxcar-averaged’ the
measurements by using a boxcar of 1 second width, in the same time resampling the
data to a resolution of 0.4 seconds. In this way we try to eliminate the finer small-scale
structure which is of no interest in our study

- for each satellite a number of eleven symmetric nested intervals were chosen, centred on
the same point approximately around the transition centre. The lengthes of the intervals
are big enough to embrace the whole magnetic field change and a small part from the
asymptotic regime on either side (but not to much, to avoid the effect of magnetic field
fluctuation in these regions on MVAB result). The central times, the minimum and
maximum length intervals are presented in Figure 3.6

- for each of these eleven intervals a constrained (to 〈Bn〉 = 0) minimum variance analysis
was performed (the general description of this method is presented in Appendix A).
In other words, for each of the eleven intervals, containing the magnetic measurements
Bi, i = 1, n, the direction in space perpendicular to the vector 〈 ~B〉 =

∑n
i=1

~Bi and for
which the magnetic variance is minimum was identified. According to the theory of
MVAB, this direction designates the MP normal

- from the eleven normals, an average direction was computed and associated with the
MP normal at the spacecraft level in question. The averaging procedure is described in
Appendix A.

At this point we would like to make a few comments. First, we choose to determine the
individual normals from MVAB on eleven nested intervals in order to minimize the dependence
of the result from the interval of analysis. This effect is relatively small in our case, with the
normals corresponding to each interval being very close to one another. That is a consequence
of the clean and smooth transitions seen on Figure 3.6 which results in case of Cluster 3 in
eleven normals less than 1 degree apart from the (average) individual normal. For the other
satellites the eleven normals are less than 2 degrees apart from the (average) individual normal.

Second, we used the results from constrained MVAB and not from standard, unconstrained
technique, because the latter is often more prone to errors. This is due to the fact that almost
in all situations small-scale magnetic field fluctuations are present that have their undesired
influence on the magnetic variance computation. There are examples in the literature (see for
example Sonnerup et al. [2006]; we will also provide three such cases in this thesis, namely the
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3.4. The input parameters

present one and the ones introduced in Section 5.3 and Section 5.5) emphasizing this conclusion.
Sometimes even for discontinuities having a small perpendicular magnetic component, the error
in estimating their normal is most probable smaller when a constrained (to 〈Bn〉 = 0) MVAB
is being used rather than when no such constraint is imposed (in this respect, see the two
examples from Section 5.3 and Section 5.5 when the magnetopause behaves as a RD). In our
case the decision to use constrained normals gain support also from the Walén tests presented
in Section 3.3. Other arguments are given below.

In general it is advisable to perform both types of analysis and to compare their results
before deciding which are more reliable. Therefore we carry out also a standard (unconstrained)
MVAB on our event in exactly the same manner described above and the results from both
analysis are presented in Table 3.1. For each satellite the eigenvalues and the eigenvectors
components in GSE of the magnetic variance matrix are presented, in case when the constraint
〈 ~B〉 ·~n = 0 was imposed and without this condition. In the latter situation the value of 〈 ~B〉 ·~n
is indicated in the right most column. The normal vectors provided by each technique are
shown in bold face.

Figure 3.7 is a polar plot useful in visualizing the orientation in space of the various normals
obtained in the analysis. The centre of this picture (the magenta square, symbol MVAB) des-
ignates a reference direction in space and we choose for that the average of the four individual
normals provided by the constrained MVAB. Its components in GSE frame are indicated at
the bottom. The vertical line is oriented along the cross product between the average MVAB
normal and ~XGSE (roughly pointing northward) and the horizontal line completes the cartesian
frame. For each satellite, depicted in one particular colour, we plotted three normals: one from
costrained analysis (MVABC1 symbol, represented with an error bar indicating the orientation
uncertainty due to the statistical errors), one from plain analysis (MVABC0 symbol, accom-
panied by an error ellipsis for the same type of errors in orientation) and a normal provided
by a MP model (Roelof and Sibeck [1993] in this case, but the particular model used is not so

Table 3.1: Results from the constrained and unconstrained minimum variance analysis of the
magnetic field, performed on eleven nested intervals. For a detailed description of the procedures
and of the parameters appearing in this table see the text. The normal components in GSE and
the magnetic variance provided by each technique are shown in bold face.

Constrained MVAB Unconstrained MVAB

λ [nT ]2 nx ny nz λ [nT ]2 nx ny nz 〈 ~Bn〉[nT ]

0.00 0.1574 0.5228 −0.8377 2.35 0.3054 −0.7163 −0.6272 −1.42
Cluster1 2.89 0.3327 −0.8270 −0.4535 14.66 0.1712 −0.6067 0.7762

398.33 −0.9298 −0.2074 −0.3041 429.74 −0.9367 −0.3446 −0.0627

0.00 0.0567 0.3347 −0.9403 4.07 0.4673 −0.8509 −0.2400 0.22
Cluster2 4.09 0.4649 −0.8423 −0.2717 13.19 0.0608 −0.2399 0.9689

621.61 −0.8832 −0.4223 −0.2034 635.63 −0.8820 −0.4673 −0.0604

0.00 0.1602 0.5293 −0.8331 2.05 0.3310 −0.7136 −0.6175 −1.18
Cluster3 2.58 0.3573 −0.8179 −0.4510 15.77 0.1744 −0.5968 0.7832

427.32 −0.9201 −0.2254 −0.3201 462.86 −0.9274 −0.3669 −0.0731

0.00 −0.1192 0.2473 −0.9612 4.33 0.4580 −0.8868 −0.0577 1.34
Cluster4 4.64 0.4471 −0.8510 −0.2744 10.79 −0.0010 −0.0654 0.9976

624.44 −0.8865 −0.4627 −0.0091 624.76 −0.8889 −0.4571 −0.0309
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Figure 3.7: Polar plot with the orientation of various normals introduced in the text. The concen-
tric circles designate directions in space situated at 6 ◦, 12 ◦, 18 ◦ and 24 ◦ from the origin. There are
12 individual normals in total, depicted in the mission colour code and referring to unconstrained
normals (MVABC0), constrained normals (MVABC1) and model normals (MODEL). In addition,
the average (MVAB) of the constrained normals, also chosen to be the reference direction, is pre-
sented. Its orientation with respect to the GSM reference frame could be judged by looking at the
bottom right part of the figure. Further explanations are given in the text.

important for our discusion).
By looking at this picture and at Table 3.1 we can draw several conclusions. First, the

constrained normals are very well defined, the ratio λmax/λint being ≥ 135. A rule of thumb
requires a value greater than 15 for this ratio in order to have reliable normals. The same rule
of thumb in the unconstrained analysis requires values for λint/λmin greater than 10 and this
is not obeyed in our case (the values are 6.2, 3.2, 7.7 and 2.5 for Cluster 1, Cluster 2, Cluster 3,
and Cluster 4 respectively). Therefore this latter normals are not qualified as reliable normals,
the variance along the minimum and intermediate directions being too close to one another so
that a clear distinction between them is not possible.

Then, in the same Figure 3.7 one can observe another fact that raises suspicions about the
unconstrained results: the normals corresponding to satellites Cluster 2 and Cluster 4 are 11
degrees apart, which is strange considering the small separation distance between them and
their regular and smooth magnetic field traces.

It is also interesting to observe the following detail: each unconstrained normal lies very
close to the plane containing the corresponding 〈 ~B〉 =

∑n
i=1

~Bi vector and the constrained
normal. This is easily seen considering that in accordance with the imposed constraint on
MVAB, the error bars belonging to the constrained normals are perpendicular to the vectors
〈 ~B〉 (these error bars were drawn larger in the figure just to illustrate the present argument).
The situation is consistent with the interpretation that small-scale surface waves are present
on the MP. They induce normal (to the MP) variations which spoil the variance computation
along that direction, explaining the bad outcome from the unconstrained MVAB. Indeed, these
latter normals point approx. 12 degrees apart from the constrained ones (with the exception
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Figure 3.8: A zoom of the previous figure, when only the constrained (to 〈Bn〉 = 0) normals
are kept. The invariant direction obtained during the analysis is indicated by the unit vector ~l.
The lower left corner shows the tangential components of the magnetic field and velocity flow, as
measured by Cluster 1, in the two regions adjacent to the MP interval: in the magnetosphere (red)
and in the magnetosheath (black).

of Cluster 2 when the two normals are only 2 degrees apart) and the error ellipses are oriented
with the major axis approximately in the 〈 ~B〉 direction. The interpretation offers also an
explanation why the costrained alternative performed better in our case: in the MP case
the magnetic field vector lies almost entirely in the discontinuity plane, the perpendicular
component, if present, being very small compared to the tangential one. So much the more
the vector

∑n
i=1

~Bi will be in the same plane when small oscillations along the normal are
present because their net effect will cancel when added. Therefore the constraint to search for
a normal such that ~n ·

∑n
i=1

~Bi = 0 is meaningfull.
The model normals were plotted to show what the difference in the individual MP orienta-

tion would be when this difference arises only from the curvature of the model MP at the scale
of the interspacecraft separation distance. These normals are grouped in pairs, as expected,
and are 3.3 ◦ apart. Based on that we can evaluate the local radius of curvature for a model
MP and this turns out to be around 19.3 RE.

Figure 3.8 is a zoom of the previous plot where only the constrained normals are shown.
Here the error bars show their actual size. Between the normals detected by Cluster 1 and
Cluster 2 the difference in orientation is about 13 ◦. Considering the fact that the pair of
satellites Cluster 2 – Cluster 4 are well separated from the pair Cluster 1 – Cluster 3 and
that the constrained MVAB normals are very reliable, we interpret the results in the figure
as the effect of Cluster encountering a 2-D, non-planar MP. With the dashed line we show
the closest (in a least square sense) plane situated between the individual normals. We shall
refer to this plane as the plane of the normals later in the text. All four MVAB normals lie
within 0.7 ◦ from it. The invariant direction which enters as input parameter in the 2-D timing
technique is perpendicular to that plane and indicated by the unit vector ~l. Quantitatively,
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Constrained variance analysis for Cluster1
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Figure 3.9: Evolution for the tip of the magnetic vector (the hodograph) in case of Cluster 1
transition. The projections on the planes determined by the minimum magnetic variance, maximum
magnetic variance and 〈Bn〉 = 0 directions are presented. The time interval corresponds to the
largest interval from the nested analysis with the initial moment indicated by the green point.

the direction of the dashed line was computed by performing a variance analysis on the four
individual normals, selecting the maximum variance direction. Then, the unit vector ~l along
the invariant direction turned out to have the components [−0.7478, −0.5317, 0.3976 ] in the
GSE reference frame.

The lower left corner in Figure 3.8 depicts the tangential components of the magnetic field
and velocity flow in the adjacent regions of the magnetosphere (in red) and the magnetosheath
(in black), as measured by Cluster 1. Each of the vectors are averages over 5 data points,
corresponding to the time interval [07:36:31 – 07:36:47] for the magnetosheath and [07:37:36 –
07:37:52] for the magnetosphere. The angle between the two flow directions is ∼ 172 ◦ and the
magnetic shear ∼ 150 ◦. We will come back to this point in Section 4.4, when discussing the
possible nature of this 2-D, non-planar MP feature. Now we only make an observation about
our interpretation that small-scale fluctuations spoiled the unconstrained MVAB results. As
we poited out when discussing Figure 3.7, each unconstrained MVAB normal (and the major
axis of the ellipse that indicates its errors in orientation) lies roughly in the plane perpendicular
to the error bar belonging to the corresponding constrained MVAB normal. From the lower
left corner in Figure 3.8 we can see that surface oscillations along the same direction would be
the most favourable from energetic point of view, being close to the perpendicular direction of
the magnetic field (and therefore not requiring bending of the magnetic field lines).

In Figure 3.9 we show the hodograph of the magnetic vector for Cluster 1 and for the
largest of the eleven nested analysis intervals. This type of picture is useful in visualizing how
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the tip of ~B has moved during the transition. In the upper-right panel, which depicts the
magnetic field change in the MP plane, the exterior normal points into the paper. Therefore
during the transition a left-hand rotation occurs (i.e. opposite to the rotation associated with
the MP normal) and this rotation is performed on the shorter path from the direction in the
magnetosheath (green point) to the one in the magnetosphere. That is the typical behaviour
we expect at the MP, reported previously in the literature (see for example Sonnerup and
Cahill [1968] and Berchem and Russell [1982a]).

Obtaining the timing information
The procedure we adopted for determining the timing information was already described in
Section 3.1. We resume it here and illustrate the results obtained for our test case:

- for each satellite the magnetic field data was transformed into the local MP reference
frame, having the axis along the eigenvectors of the corresponding variance matrix (and
shown in Table 3.1 in the columns referring to the constrained analysis). The three new
magnetic field components will be then along the maximum variance direction, along
the minimum variance direction and along the direction of 〈 ~B〉. Note that after this
transformation the measurements from the 4 spacecraft are no longer represented in the
same reference frame.

- the maximum variance component for each satellite was fitted with a hyperbolic tangent
function

B(t) = Bm − 1
2

∆B tanh
[
t− Tc

τ

]
(3.2)

in order to determine the crossing times that characterize (in the global sense) that
particular transition. The four parameters have the following meaning: Bm is the zero
level of the tanh function, ∆B is the total magnetic jump between the asymptotic levels,
Tc represents the central moment and τ describes the profile width.

- we define the magnetopause as being the region where the fit changes from

Bm − 1
2

∆B tanh(−1) = Bm +
1
2

∆B
e2 − 1
e2 + 1

(3.3)

level to

Bm − 1
2

∆B tanh(1) = Bm − 1
2

∆B
e2 − 1
e2 + 1

(3.4)

level. This corresponds to a fraction change of approx. 0.762 of the difference between
the asymptotic levels ∆B.

- according to the proposed magnetopause definition, the leading edge encounter took place
at Tc − τ and the trailing edge encounter at Tc + τ

In Figure 3.10 the upper part presents Cluster 1 magnetic field components in the reference
frame related to the MVAB normal. The vertical grey stripes mark the time span of the eleven
nested intervals used in MVAB. By fitting the maximum variance component, the parameters
Tc (indicated with the vertical dashed segment) and τ (the half-distance between the vertical
dashed lines) were determined. The horizontal dashed lines represents the magnetic field levels
associated with the MP boundaries. In the bottom part of that figure, the maximum variance
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Figure 3.10: Upper part: Cluster 1 magnetic field components along the directions of
minimum magnetic variance (in red), maximum magnetic variance (in blue) and 〈Bn〉 = 0 (in
green) are presented. The timing information is obtained by fitting the points corresponding
to the maximum variance component (blue crosses) with a hyperbolic tangent function.
Lower part: The (colour coded) maximum variance components together with their fits are
shown for all four Cluster satellites. The timing information appears in the legend box.
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components for all satellites, together with their corresponding fits are shown. The timing
information determined by this analysis is provided in the insert.

The problem of setting the magnetic levels for the magnetopause borders will be addressed
in the next chapter (see Section 4.3), when the various solutions obtained will be discussed and
a comparison with the results obtained from the planar method will be presented. In addition,
in the Appendix D we included also a study on how stable the 2-D MP solutions are with
respect to the convention we adopt for the MP extent. Note that we choose the same levels for
the MP boundaries and the same fitting function (hyperbolic tangent) as in the CTA paper. In
principal, the fitting profile depends on the particular case under investigation. Our choice was
not made assuming a model for the MP structure (despite the similarities between the magnetic
traces shown in Figure 3.6 and that from a Harris type current structure). Nevertheless, this
function provided also good results in other cases where the timing analysis was applied.

Implicitly, by using such a symmetric profile, we assume that, for the crossing duration,
the MP has a symmetrical structure and its normal velocity is also symmetrical with respect
to the central crossing time. This could be considered as a sort of zero-order approximation:
strictly speaking the fitting profile should take into account the MP normal velocity, albeit
this quantity is found a posteriori. One can imagine a possible development of the technique
that takes into account this aspect by resorting to an iterative procedure for finding the timing
information.
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CHAPTER 4

Results for the 24 June 2003 magnetopause crossing: comparison

of different methods

We will now present the results obtained when the planar and the 2-D, non-planar, timing
techniques introduced in the previous chapter, are applied on the MP crossing made by Cluster
on 24 June 2003. The outcome from the planar method will bring us once more to the
conclusion that the non-planar aspect is playing a major role in this event. Afterwards, a
comparison with the results provided by the planar, single-spacecraft methods (like minimum
variance analysis of the magnetic field, minimum Faraday residue analysis and deHoffmann-
Teller analysis) is carried-out. Several other issues will be addressed, among them the validity
range and stability of the solutions and the nature of the 2-D, non-planar feature detected at
the MP.

4.1 Results from the planar timing technique

In this section we will carry out the well-established timing analysis based on the planar
assumption and, likewise, some variants of it developed by us, only for showing the poor
results they provide and for later comparisons with the new 2-D method.

In the planar model, where a single normal direction characterizes the event, the timing
information should be obtained from data represented in the same reference frame. That
is the reason why the fits similar to those presented in Figure 3.10 were performed on the
magnetic field components along the direction obtained by averaging the individual maximum
variance eigenvectors. In our particular case this aspect has practically no significant influence
on the result (we could equally well have used the timing information from the preceding
section to obtain the same conclusions) but we decided to stay fully consistent with the planar
assumption.

Figure 4.1 is a polar plot where normals from the planar timing analysis are shown. CTA
designates the constant thickness assumption normal and CVA the constant velocity assump-
tion normal. The constrained (to 〈 ~B〉 ·~n = 0) individual normals MVABC1, and their averaged
direction MVAB (which, like in Figure 3.8, is the reference direction of the plot) are shown. As
described in Section 3.1 (see also Section B.1), one can put the encounter conditions directly
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CHAPTER 4. Application on a 2-D magnetopause event

on the MP edges (and not on its centre as in CTA paper) and then one obtains a slightly
different normal (CTAE symbol in the polar plot).

Evaluating the outcome, one can see that the known planar techniques produce results that
are not consistent with the MVAB method: the standard CTA and CVA normals are more then
32 ◦ away from the average MVAB direction and the CTAE normal, although it brings some
improvement, results in a direction still more than 25 ◦ away. This does not seem acceptable
considering the regular magnetic profiles seen by all satellites and the good quality of the fits,
resulting in a trustworthy timing information. Together with the argument presented in the
preceding section, namely that the constrained MVA normals are very reliable, the present
unsuccessful result adds confidence to the assumption that, indeed, in our case we have a 2-D,
non-planar MP. Further arguments, in the same line, will be given below.

One could ask the following question: why not assume a planar MP having a constant
thickness, with the normal contained in the plane perpendicular to the invariant direction?
This assumption would be simpler than the cylindrical or parabolic MP and, anyway, our
new technique considers from the beginning that the MP normals are perpendicular to ~l. We
followed this line of reasoning and conducted a similar analysis to the one presented at the end
of Section 3.1 but imposing in addition the condition that ~nplanar · ~l = 0 . The unknowns in
this case are:

- the angle of the normal (which is also the direction of MP movement) with respect to
some reference direction in the plane perpendicular to ~l. This unknown corresponds to
the angle β in the 2-D analysis.

- the MP half-thickness.

- the initial MP position along ~n. If we choose as origin of time the moment when the first
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Figure 4.1: Polar plot similar to the one from Figure 3.8 but for a greater range in directions and
with the timing normals obtained by assuming a planar MP added. The three timing normals cor-
respond to the constant velocity approach (CVA), and to the two implementation for the constant
thickness approach (CTA and CTAE). See the text for more explanations.
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4.1. Planar timing results

satellite meets the leading MP edge, this quantity becomes 0.

- A0, · · ·A4, five polynomial coefficients describing the MP normal velocity.

Solving one linear system of equations, similar to the equations (B.9), we obtain the solution
shown in Figure 4.2. The evolution in time (~x axis) of the MP displacement along the normal
(~y axis) is represented. The four horizontal continuous lines designate the satellites positions
along the normal direction found in the analysis. Vertical dashed lines represent the moments
Tci − τi and Tci + τi and we see that indeed the MP movement obeys the timing conditions
(leading and trailing margins are at the intersection of the vertical dashed lines with the
continuous horizontal lines). But one can observe that, for example, after the second satellite
(i.e. Cluster 4) exits the MP, the solution we obtained implies a return of this satellite (and of
Cluster 2 as well) to the MP interior. Therefore artificial transitions, not seen in the data, are
introduced in order to accommodate the assumptions we made (planar discontinuity having
the normal perpendicular to ~l) with the timing information. We can count no less than 9 such
artificial transitions (4 implying the leading edge and 5 for the trailing edge); also, after the
end of our event (Tc4 + τ4) there is a return into the magnetosheath. This behaviour makes
the solution unacceptable.

In the lower part of the figure, with magenta, the evolution of the MP normal velocity is
represented (with the scale on the right ~y axis). We observe that indeed the solution implies a
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Figure 4.2: The displacement of a constant thickness MP along its normal direction (on ordinate)
as a function of time (on abscissa) is presented in the case of a planar assumption. The MP
boundary is shown in grey and the displacements of its margins (used in the timing conditions)
are indicated by black lines. In the lower part, with magenta, the normal velocity variation is
represented. The individual constrained MVAB normals are also shown. For a detailed description
of the figure see the text.
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CHAPTER 4. Application on a 2-D magnetopause event

change of sign in velocity after Tc2 +τ2 and after Tc4 +τ4, leading to the occurrence of artificial
transitions. The individual nested MVAB normals are also shown: their angle with respect to
the ~y axis, therefore with respect to the normal found in the present analysis, are 15.5 ◦, 14.8 ◦,
3.4 ◦ and 2.6 ◦ for Cluster 2, Cluster 4, Cluster 3 and Cluster 1 respectively.

The central times, represented by short vertical segments labelled Tci are also indicated
in the figure. We see that at these moments the position of the MP centre is not where
the satellites are located, this being a consequence of the fact that the timing condition was
imposed on MP edges. Conducting a similar analysis but working with the MP centre (as in
CTA paper) one obtains essentially the same results.

In order to save the planar assumption one could argue that, perhaps, neither the constant
thickness approach nor the constant velocity approach are valid for this event but, instead,
there is a variable normal velocity and the MP has different thickness at different points on
its surface. We investigated this possibility too, by imposing different orientations for the
(planar) MP, around the direction of MVAB normal (central normal in Figure 4.2). Then,
the central crossing moments and the relative positions of the satellites allow us to determine
the evolution of the MP normal velocity. In the mathematical form, let S1, S2 and S3 be
the distances travelled by the MP on the (imposed) normal direction after the first satellite
encounters the MP central plane. Then, using the notations from Appendix B we have:

S2 = A0t2 + A1t
2
2/2 + A2t

3
2/3

S3 = A0t3 + A1t
2
3/2 + A2t

3
3/3 (4.1)

S4 = A0t4 + A1t
2
4/2 + A2t

3
4/3

where A0, A1 and A2 are the polynomial coefficients describing the time-dependence of the
normal velocity U(t) = A0t+A1t

2 +A2t
3 and ti represents the central crossing moment for the

satellite i, with t1 as origin of time. The system of equations (4.1) can readily be solved and, by
using the crossing durations 2τi we can compute afterwards the MP thickness at each satellite
location (note that by taking this path we made no assumptions about the MP thickness or
normal velocity).

By proceeding in this way, when imposing for example the average MVAB direction as
normal for the MP we obtain a MP thickness of approx. 999 km, 930 km, 254 km and 437 km
at Cluster 2, Cluster 4, Cluster 3 and Cluster 1 position, respectively. Considering that the
inter-spacecraft separation between Cluster 3 and Cluster 1 in the plane tangential to the MP
is only 202 km and that the two satellites cross the discontinuity practically simultaneously,
the variation in the MP thickness between their locations (i.e. 183 km) seems unreasonably
large. A similar behaviour was noticed for other directions close to the average MVAB normal.

One more observation related to Figure 4.1: because the technique we employed in this
section relies only on the satellites position and on the timing data, but not directly on the
measurements (like MVAB for example), a 2-D MP will not produce, in general, normals in
the plane perpendicular to ~l. In other words, the situation is as follows: when the MVAB
technique (that assumes a planar discontinuity) is applied on a 2-D MP, the orientation of
the normal will be corrupted by the non-planar effects but still, the information about the
2-D symmetry contained in the magnetic measurements is reflected in the outcome, i.e. the
obtained normal will lie in the plane perpendicular to the invariant direction. When extracting
the timing data from the magnetic profile by the procedure described in the preceding chapter,
the information about the symmetry is lost. Then, when performing a timing analysis and
trying to accommodate a planar model with the spacecraft relative positions and with the
timing data corresponding to a 2-D MP one will obtain, in general, normals not perpendicular
to the invariant direction.
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In conclusion to this section, we can say that the planar assumption produced unphysical
results, which strengthen the argument that the 2-D, non-planar aspect is playing a major role
in this event.

4.2 Solutions from the 2-D timing technique

For the case of 24 June 2003 event, we applied the various implementations of the timing
method introduced in Chapter 3 and designed for a 2-D, non-planar MP. A comprehensive
presentation of these solution is provided in Appendix C. There, for each solution a table
with the values of several parameters characterizing the MP geometry, orientation and motion,
and parameters usefull in comparing the planar and 2-D, non-planar method can be found.
Also, an associated figure to visualize the corresponding MP configuration and movement is
presented. A detailed description of the tables and figures can be found at the beginning of
that appendix (pages 163 to 165).

In what follows, for simplicity, we will use a certain nomenclature to name a particular
solution appearing in this study. Each name will indicate the model adopted for the MP
(‘Prbl’ for parabolic and ‘Cyl’ for cylindrical), the number of degrees of freedom allowed for
the MP movement in the plane perpendicular to the invariant direction (‘1deg’ or ‘2deg’)
and the implementation of the method (‘TA’ for the plain timing analysis and ‘OpTA’ for the
optimized method, combining timing analysis and MVAB techniques). In case of the cylindrical
model, when we allowed for 2 degrees of freedom for the MP, we found two solutions in the
case of combined timing-MVAB technique. We will designate these two solutions by the suffix
‘solA’ and ‘solB’ respectively.

The following is a list of all solutions, with the locations in Appendix C where their corre-
sponding detailed presentation can be found:

Prbl 2deg TA Table A and Figure A pages 166 and 167
Prbl 1deg OpTA Table B and Figure B pages 168 and 169
Prbl 2deg OpTA Table C and Figure C pages 170 and 171
Cyl 1deg TA Table D and Figure D pages 172 and 173
Cyl 2deg TA Table E and Figure E pages 174 and 175
Cyl 1deg OpTA Table F and Figure F pages 176 and 177
Cyl 2deg OpTA solA Table G and Figure G pages 178 and 179
Cyl 2deg OpTA solB Table H and Figure H pages 180 and 181

Finding solutions in the cylindrical model
In the case of the parabolic model, the process of finding a solution is straightforward because
there is an analytic expression for it. This is not the case for the cylindrical model where we
have to resort to numerical algorithms and where the important question is whether we found
all possible solutions. We based our search on the following considerations:

- it is sufficient to look for solutions having β (the angle of the principal direction) in the
range [0, 180] because for each solution described by β, V,Ai there is another one with
the parameters −β,−V,−Ai.

- in case of combined timing - MVAB method, if we find one solution for a particular
inclination of the primary direction, we can easily trace it to other inclinations. This is
done by changing the angle β in steps sufficiently small, using as initial guess for the new
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CHAPTER 4. Application on a 2-D magnetopause event

solution the results obtained in the previous calculation. That is one procedure we used
to find solutions for the optimized timing technique, where the starting point was the
result from the plain timing method.

- for some chosen directions β ∈ [0, 180] we search carefully (i.e. many initial starting
points, covering a large range, for V and, say A0, A1, A2) for a possible solution of the
optimized problem. Then we traced its evolutions to see whether there is one inclination
for which A2 = 0: this would satisfy the plain timing analysis problem. In this way, for
example, we found that the solution Cyl 2deg OpTA solB has no correspondence in the
plain timing analysis because A2 remains always negative.

Stability of the solutions
In Appendix D we present a study about the stability of one solution obtained in the 2-D, non-
planar case, when the magnetic levels used to set the timing conditions are changed. We recall
that in Section 3.4 the timing information was determined as the times when each satellite en-
counters certain magnetic levels, namely the ones encompassing a fraction of tanh(1) ≈ 76.2%
of the total MP magnetic jump. In order to see how much the results depend on this choice,
we took the Cyl 2deg OpTA solA solution and studied how the MP macroscopic parameters
(orientation, velocity, geometry) change when we used other magnetic levels for setting the
timing conditions. That particular solution involves one of the highest dynamical behaviours
for the MP. Indeed, it implies a small radius of curvature, high variations in instantaneous
normal velocity (see in this respect Figure 4.5, to be introduced later in text) and relative high
variations in the orientation of the instantaneous geometrical normal (parameter ∆~nGEO in the
tables from Appendix C). Therefore one can presume that the characteristics of this solution
depend more on the timing information than in other cases.

The stability of the results was tested by using other three choices when determining
the timing information, namely when the satellites detect the magnetic levels encompassing
tanh(1.1) ≈ 80.0%, tanh(1.2) ≈ 83.4% and tanh(1.3) ≈ 86.2% of the MP total magnetic
jump. We found that, as far as the geometrical parameters are concerned, the solution is very
stable. For example, the direction of the primary MP movement changed by only 1.5 degrees
and the values of the angles ^ (~n ave

GEO, ~nMV AB) (between the average geometrical normal and the
normal from the planar nested MVAB) and ∆~nGEO (indicating the variation of the geometrical
normal during one transition) vary approximately within the same range.

The dynamical parameters have a somewhat larger variation, with the average normal
velocity varying by ≈ 3.2%, ≈ 6.8% and ≈ 10.3% when the timing information was set at
tanh(1.1), tanh(1.3) and tanh(1.3) MP magnetic extension, respectively. A similar behaviour
is noticed for the MP thickness. We believe that this has to do with the relative large variation
in the normal velocity at each spacecraft (see in Figure 4.5, the evolution of the blue line),
which is in conflict with our initial use of a symmetrical profile to fit the magnetic traces.
Indeed, we carry-out a similar investigation for a solution implying less variation in the normal
velocity namely the solution Cyl 2deg OpTA solB. In Figure 4.5 that solution appears in yellow
trace. In this case, the analysis indicates that the variations in the average normal velocity are
only ≈ 1.0%, ≈ 2.2% and ≈ 3.6% respectively.

4.3 Comparison with planar, single spacecraft techniques

In this section we shall compare the results obtained in the various implementations of the
timing-technique designed for a 2-D, non-planar MP, with the results provided by the planar,
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single-spacecraft methods (like minimum variance analysis of the magnetic field, minimum
Faraday residue analysis and deHoffmann-Teller analysis).

There are two common problems that make such a comparison difficult. In the first place,
the planar methods and the 2-D method rely on different data intervals, with the latter tech-
nique using only the smaller central intervals [ Tci− τi, Tci + τi ]. And, in the second place, the
single-spacecraft methods offer per definition parameters of the crossings (normals, velocities
etc) not correlated over the four satellites whereas the 2-D method is a multi-spacecraft tech-
nique, providing in each moment parameters linked through the MP geometry and dynamics.
In the next subsections we will discuss these aspects in detail.

4.3.1 Comparison with minimum variance analysis of the magnetic field

As mentioned in Section 3.2 we developed a criterion to optimize the results obtained in the
plain timing analysis for the problem of a 2-D, non-planar MP (see also Section B.5). For this
purpose we define a global (i.e. over the four Cluster satellites) normal magnetic variance as a
weighted sum of the individual variances along the instantaneous (i.e. geometrical) normals.
Then, by imposing different orientations for the direction of principal MP movement in the
plane perpendicular to ~l, we solve the timing problem and select at the end that solution for
which the global normal magnetic variance is minimum.

This criterion appears to us natural and well-grounded and offers the possibility to compare
different solutions describing the movement and configuration of a 2-D MP. When it comes
to the problem of comparing the results obtained in the planar assumption with the ones
from the non-planar method it is difficult to decide which of the two approaches performs
better from the point of view of magnetic variance analysis. At the heart of this difficulty
lies the different data interval used by each method: planar MVAB requires an interval large
enough to encompass the whole magnetic field rotation whereas in our method we use only
the central interval, between Bm + (1/2) ∆B tanh(−1) and Bm + (1/2)∆B tanh(1), according
to our convention for extracting the timing information. In this respect, compare for example
in the upper part of Figure 3.10 the intervals between the vertical grey stripes (marking the
extent of the eleven nested intervals used in the planar MVAB) with the interval between the
vertical magenta dashed lines (used for establishing the timing information).

Where to set the magnetic levels used in extracting the timing information in the 2-D, non-
planar case, is a trade-off between the following considerations. On one hand, the solutions
to be found for the MP movement and geometry are valid, strictly speaking, only for the
transition intervals [Tci − τi, Tci + τi]. Therefore we would like to have values for τi as large as
possible to embrace the whole field transition seen at the magnetopause. A large interval would
also reduce the influence of possible local variations in the MP structure (like, for example,
magnetic islands or noise) and would provide a better comparison of the 2-D geometric normals
with the individual (planar) MVAB normals, determined by using greater intervals.

On the other hand, as we know, the MP is in general not moving uniformly during the
crossing interval: often relatively big changes in the normal velocity take place, sometimes
even a reverse motion, and this behaviour is very hard or even impossible to be noticed in
the data when the spacecraft is closer to the adjacent asymptotic regimes. Also, in following
the procedure for extracting the timing information, we actually make an assumption about
the normal velocity variation and magnetic profile of the MP. For example by using a Harris
type dependence as fitting function we make the approximation that the net effect of the
MP movement and structure is a symmetric magnetic trace (as pointed out in Section 3.4,
the magnetic profile used to extract the timing information should be consistent with the
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normal velocity variation, but this is not know at the beginning). Therefore, considering
the last arguments, it is more advisable to use small central intervals, corresponding to the
region where the magnetic field gradient is high. There the possible irregularities in the MP
movement are easily seen and from the quality of the fit one can establish whether our model
for the magnetic profile takes them correctly into account.

Coming back to the point of comparing the two techniques (planar and 2-D) we stress
that extending the 2-D solutions beyond the intervals used in the timing conditions should
be done with care. There is no reason to believe that the MP will keep its dynamic regime
for a long time outside these central interval. On the other hand, using for comparison the
results obtained from planar MVAB when this technique is applied on the central intervals
[Tci − τi, T ci + τi] involves the risk of a big influence from the local internal irregularities.

For analysing this issue, we have chosen all the solutions obtained from the optimized
timing-MVAB method in the 2-D problem and, by using different central intervals of increas-
ing width, we studied how the corresponding normal magnetic variance and normal magnetic
component 〈Bn〉 compare with the similar quantities obtained from the single-spacecraft, pla-
nar MVAB technique. More precisely, for the above mentioned time-intervals, we computed
the global and the individual (i.e. for each satellite) quantities of normal magnetic variance
and 〈Bn〉 using the following normals:

- the instantaneous, geometrical normals implied by the 2-D, non-planar MP. Clearly, the
direction of these normals are changing in time, according to the MP movement. Because
in the analysis we used also time intervals different than [Tci − τi, Tci + τi], we have to
extend the validity range of the 2-D solutions.

- the normals that appear in Table 3.1, i.e. provided by the (constrained to 〈Bn〉 = 0)
MVAB on the eleven nested intervals. The direction of these normals are fixed in space.

- the normals obtained when, for each satellite and for the time-interval in question, a
constrained MVAB is performed. By ‘constrained’ we meant here perpendicular to the
invariant direction ~l. As a consequence, in this case the direction of the normals is
changing with the interval of analysis according to the planar MVAB theory. We will
refer to these normals as the planar, interval-specific MVAB normals.

The results obtained in this study are presented in Appendix E, Figures E.1, E.2 and E.3.
At that location, a detailed comparison between the planar and Cyl 2deg OpTA solA solutions
is provided. Specifically, in this case we found that:

- for all satellites and for most of the intervals with a half-width smaller than 2τi, the
average normal magnetic component 〈Bn〉 computed with the 2-D, instantaneous normals
are smaller than the similar quantities obtained from the planar, interval-specific MVAB
normals. This is an indication that no undesired and non-realistic offset in the values of
〈Bn〉 are introduced by the timing problem for the particular solution we discuss.

- for intervals having the half-width υi < τi + 5 seconds the 2-D, instantaneous normals
offer a smaller global variance than the planar, interval-specific normals, which are the
best possible planar MVAB normals for each interval.

Considering the above arguments, one can definitely endorse the assertion that, for the
specified intervals, the Cyl 2deg OpTA solA MP solution performs better than the planar one
from MVAB point of view. A similar behaviour was seen for the Prbl 2deg OpTA solution but
for the other 2-D solutions the global magnetic variance based on the instantaneous, geometrical
normals started to raise monotonically when the interval of analysis increases.

Nevertheless, when comparing one particular 2-D solution and the MVAB planar results, it
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4.3. Comparison with MVAB

is not necessary to adopt a too strict criterion, namely that the global magnetic variance based
on the 2-D, instantaneous normal to be smaller than the similar quantity based on the planar,
interval-specific MVAB normals. As mentioned at the beginning of this section, the individual
planar, interval-specific MVAB normals are decoupled, whereas in the 2-D method they are
linked in each moment through the chosen geometry and the resulting dynamics, giving a more
realistic description of the MP.

Another interesting aspect revealed by the study refers to Cluster 2. For this spacecraft
and for the central interval [Tc2 − τ2, Tc2 + τ2], used in determining the timing information,
we found out that the magnetic local, internal irregularities (magnetic islands, noise etc.) are
playing an important role, making the comparison of the 2-D and planar, interval-dependent
MVAB results irrelevant. This is the reason why, in Table 4.4 from Section 4.4, and in tables
A to H from Appendix C, when we make a comparison of the 2-D, non-planar solution with
the results from the planar MVAB method, we compared the global magnetic variance using
data from all satellites (black numbers) and data only from Cluster 1, Cluster 3 and Cluster 4
(the blue numbers).

On the other hand, in case of Cluster 3 and Cluster 1 for the intervals having τi as half-
width, we found that basically for all the central intervals participating in the analysis the
planar, interval-specific MVAB normals lie in the angular range of evolution for the 2-D,
instantaneous normals. That is exactly what one would expect from the results of a planar
MVAB technique applied on an ideal 2-D discontinuity (see Dunlop and Woodward [1998]).
This result is remarkable considering the fact that the 2-D solution which we currently analyse
is practically the same as one obtained from the plain timing analysis (solution Cyl 2deg TA,
from pages 174 and 175).

In Table 4.4 from Section 4.4 we present a comparison between the results obtained from
three single-spacecraft planar techniques and from the various solutions provided by the 2-
D method. The planar techniques, appearing in the upper part of the table, are MVAB,
Minimum Faraday residue (MFR) and deHoffmann-Teller (HT) analysis. The results related
to this subsection are shown in the leftmost column, concerned with the global normal magnetic
variance. In the planar case, we present the value of this quantity as resulted from the MVAB
nested technique and the value obtained when the planar, interval-specific MVAB normals
corresponding to [Tci − τi, Tci + τi] intervals were used. In the lower part of the table, for each
2-D MP solution we showed the global magnetic variance computed along the instantaneous,
geometrical normals. Two sets of numbers are displayed: the black ones are based on data
provided by all 4 satellites, whereas the smaller, blue numbers are based on data provided only
by Cluster 1, Cluster 3 and Cluster 4.

In Table A to H from Appendix C, under the ‘MVAB results’ section we give a more detailed
comparison. On one hand, we provide also the individual values of the normal magnetic
variance and of the average normal magnetic component. On the other hand, we strive to
take into account the small 3-D effects present in this event, responsible for the fact that the
individual, nested MVAB normals are not exactly contained in one plane (see Figure 3.8).
It turned-out that this aspect is not important in the comparison (see Section 4.4 and the
description of the tables from Appendix C).

In Section 4.4 we will comment different solutions provided by the 2-D, non-planar method
and we will compare the results provided by the planar and non-planar techniques. On that
occasion, two solutions turned out to be unsatisfactory, namely Prbl 2deg TA and Cyl 1deg TA.
They appear on gray background in Table 4.4.

55



CHAPTER 4. Application on a 2-D magnetopause event

4.3.2 Comparison with minimum Faraday residue method

The results from the timing technique introduced in Chapter 3 could be compared with the
results from another single-spacecraft method, relying on a planar assumption for the MP,
called Minimum Faraday Residue (MFR) and presented in Appendix G. It infers the normal
direction and the velocity along that normal (considered constant) based on the conservation
of the magnetic flux across a discontinuity.

For this method we need, apart from magnetic field data, the electric field information as
well. In many cases one could use the plasma velocity measurements ~v and the electric field
approximation ~E = −~v× ~B with good results (see for example Khrabrov and Sonnerup [1998],
Haaland et al. [2004a], Sonnerup et al. [2006]). However, in our particular case, due to the 4
second time-resolution of the CIS plasma instrument on-board Cluster, one would obtain only
few points of data contained in the central intervals used for setting the timing conditions.

Unfortunately, in our test case the use of high resolution measurements provided by the
electric field experiment EFW on-board Cluster entails significant problems, besides the prob-
lem of sunward field offsets (see the paragraph presenting this instrument in Section 2.2).
Under these circumstances, to be addressed below, we could not fully incorporate this tech-
nique in our analysis and therefore we choose it for comparison only. Indeed, without these
problems we could have combined the timing analysis with the MFR analysis in the same way
as we have done with MVAB technique. In the words of Section B.5, the optimum orientation
of the primary direction (the value of angle β) would then be one for which the corresponding
solution offers a minimum (global) Faraday residue. Also, as another possibility, a set of re-
liable electric field data could have been used simultaneously with the magnetic field data by
adding the variances provided by MFR and MVAB techniques and using the minimum of this
quantity to identify the optimum solution (see the last paragraph of Section B.5).

Determining the electric field vector
As was described in Section 2.2, the EFW experiment provides only the projection of the
electric field vector on the spacecraft equatorial plane (spin plane). This is done by measuring
the potential difference between two pairs of probes disposed along perpendicular directions
in that plane. But for Cluster 1 ad Cluster 3 satellites, one probe (the probe number 1) is not
working and therefore the measurements provided by the remaining functional pair of probes
(probes 3 and 4) are not sufficient for obtaining the electric field vector in the spin plane with
high time resolution. In principle one can use for this the additional information provided by
the potential difference between probe 1 and one probe from the remaining pair (say probe 3).
But there is an asymmetric contamination with photoelectrons for different booms and probes
which raises the level of uncertainties.

Another problem refers to the procedure used for inferring the third (i.e. out of the plane
of measurements) electric field component. This relies on the assumption ~E · ~B = 0 from which
the needed component is obtained by applying the formula

Ez = −ExBx + EyBy

Bz
(4.2)

in the so-called ISR2 reference frame (a fix, i.e. despun, reference frame with the xy plane,
containing the electric field sensors, that slightly differs from the GSE xy plane). In our case
it turned out that, for a significant part of the MP region, the magnetic field vector is close
to this plane (Bz small) which results in high errors for Ez. As a rule of thumb, an angle of
minimum 15 ◦ between ~B and the spin plane is considered appropriate for applying formula
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4.3. Comparison with MFR

Cluster 3 electric and magnetic field in ISR2 reference system

−20
−10

0
10
20

E
x 

 [m
v/

m
]

−20
−10

0
10
20

E
y 

 [m
v/

m
]

−20
−10

0
10
20

E
z 

 [m
v/

m
]

−10
0

10
20

ph
i a

ng
le

 

 [d
eg

.]

50
0736

00
0737

10 20 30
−30
−20

−10

0

10

20
30

B
xy

z 
 

 [n
T]

   x

   y
   z

2003 Jun 24 

S
at

 D
ec

  2
 1

9:
22

:2
7 

20
06

−20
−10

0
10
20

−20
−10

0
10
20

−20
−10

0
10
20

−10
0

10
20

ph
i a

ng
le

 

 [d
eg

.]

50
0736

00
0737

10 20 30
−30
−20

−10

0

10

20
30

B
xy

z 
 

 [n
T]

   x

   y
   z

2003 Jun 24 

S
at

 D
ec

  2
 1

9:
22

:2
7 

20
06

Time [sec.]

Figure 4.3: From top to bottom we have: the measured Ex (in blue) and Ey (in green) electric
field components, the computed Ez (in red) component, obtained by applying formula (4.2), the
angle φ of ~B with the spin, equatorial plane and the magnetic field components. All the quantities
refer to Cluster 3 satellite and are presented in the ISR2 reference frame. We showed in cyan the
electric field values for the times when φ ≥ 10 ◦. The vertical dashed lines indicate the central
crossing region entering in the timing analysis.

(4.2). However, when we compute the electric field third component in case of Cluster 1 and
Cluster 3 we decided to lower this limit to only 10 ◦ in order to obtain more data points within
the crossing intervals1. For this threshold the values of Ez are still reasonable on both satellites.

For illustrating this procedure, we present in Figure 4.3 the Cluster 3 electric and magnetic
field measurements in ISR2 reference frame. The displayed time interval corresponds to the
largest interval from the nested MVAB analysis and the vertical dashed lines indicate the
central crossing region. In the first two panels the primary data is shown, i.e. the measured
Ex, respectively Ey electric field component. The third panel contains the Ez component
obtained by applying formula (4.2). From the forth panel, representing the angle of ~B with
the equatorial (spin) plane (φ angle in degrees, only in the range [−16, 22]), one can see
that, for a significant part of the crossing, it has a relatively small value. Consequently, the
corresponding points in the third panel are more spread and take unreasonable high values.

1Electric field data for Cluster 2 and Cluster 4 was provided directly as full 3-D vector in GSE (0.04 sec. time
resolution) by Bjørn Lybekk and Arne Dahlback from University of Oslo. For Cluster 1 and Cluster 3, which
needed special treatment due to the lack of measurements from probe 1, the data was provided by Per-Arne
Lindqvist and Tomas Karlsson from Alfvén Laboratory, Stockholm as x and y components in ISR2 reference
system (0.2 sec. time resolution). Therefore, in this case, the procedure for finding the third component was
applied by ourselves.
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CHAPTER 4. Application on a 2-D magnetopause event

Table 4.1: Results from constrained Minimum Faraday Residue technique. The columns appear-
ing in this table are for the eigenvalues, for the three GSE components of the eigenvectors resulting
in the analysis, for the MP normal velocity and for the angle between the predicted normals (shown
in bold faces) and the plane perpendicular to the invariant direction.

λ · 106 [mV/m]2 nx ny nz un [km/s] Ω [deg.]

0.0 0.0669 0.4928 −0.8675
Cluster1 4.188 0.3610 −0.8226 −0.4394 167.05 −0.42

11.803 −0.9302 −0.2838 −0.2329

0.0 −0.0397 0.1493 −0.9880
Cluster2 1.278 0.5725 −0.8070 −0.1449 138.77 −3.25

15.011 −0.8189 −0.5714 −0.0534

0.0 −0.1100 0.4701 −0.8757
Cluster3 2.282 0.4171 −0.7779 −0.4700 56.09 −4.89

4.494 −0.9022 −0.4169 −0.1105

0.0 −0.1401 0.0292 −0.9897
Cluster4 6.185 0.5813 −0.8068 −0.1061 182.22 −2.75

17.637 −0.8016 −0.5901 0.0960

In the first three panels we overplotted in cyan the same data points when φ ≥ 10 ◦; these are
considered as valid points, from which we selected the points taking part in the MFR analysis.

Results from the planar MFR technique
In Figure 4.4 we show the GSE electric field components for all satellites and a polar plot
with the normals obtained from the MFR method. In the upper part the plotted time range
for each spacecraft has the same extension as the largest time interval from nested MVAB
analysis. The central regions, used for setting the timing conditions, are indicated by vertical
continuous lines. In applying the MFR analysis we used the symmetrical (with respect to the
central crossing times) intervals between the vertical dotted lines. We computed each normal
by imposing the constraint that the average normal magnetic component 〈Bn〉 is zero for the
interval of analysis. In order to minimize the influence of small-scale fluctuations we ‘boxcar-
averaged’ the measurements by using a boxcar window of 2 seconds width, in the same time
resampling the data to a resolution of 0.5 seconds.

In the polar plot at the lower part of the figure, the origin is the same reference direction as
in Figure 3.7 and Figure 3.8, namely the direction obtained by averaging the normals provided
by the constrained (to 〈Bn〉 = 0) nested MVAB analysis. These normals are also shown for
comparison and the invariant direction ~l is indicated by the magenta arrow. The MFR normals
are shown as crosses, together with their corresponding error bars, calculated by taking into
account the statistical fluctuations.

Without the constraint 〈Bn〉 = 0, the resulting MFR normals (not shown) are more scat-
tered and, with the exception of Cluster 2, none of them fit in the range we choose for the polar
plot. Also, they are oriented well out of the plane perpendicular to the invariant direction ~l,
the angle being 27.8 ◦ for Cluster 1, 10.7 ◦ for Cluster 2, 22.7 ◦ for Cluster 3 and 21.2 ◦ for
Cluster 4
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Polar plot with normals from constrained MFR analysis

Figure 4.4: Upper part: Cluster 1 – 4 electric field components in the GSE for the moments
when the data are considered valid to take part in a MFR analysis. The significance of the plotted
interval range and of the vertical lines is explained in the text. Lower part: Polar plot with the
normals obtained from the nested, constrained MVAB analysis described in Section 3.4 and with
the normals obtained from the constrained MFR analysis.
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CHAPTER 4. Application on a 2-D magnetopause event

By looking at Table 4.1, where the parameters from constrained MFR technique are pre-
sented, we can make the following observations:

- the normals provided by this technique (appearing in bold faces) are not so well defined,
except, perhaps, in the case of Cluster 2 where the ratio between the maximum and
intermediate variance λmax/λinterm is around 11.7. For the other satellites this quantity
is 2.82 (Cluster 1), 1.97 (Cluster 3) and 2.85 (Cluster 4). One possible explanation,
apart from the already discussed sources of errors, could be that, due to the lack of data
points, our intervals of analysis do not embrace the whole MP transition. Indeed, in
case of Cluster 2 approx. 93.7% of the magnetic field rotation takes place during the
interval chosen for the MFR analysis (the largest) whereas for Cluster 3 only 76.2% (the
smallest).

- the values obtained for the normal velocity (parameter u in the table) are much higher
when compared with the average normal velocities obtained from the timing analysis (see
Table A to Table H from Appendix C), except in the case of Cluster 3. Also, for Cluster
2 and Cluster 4 (but not so much for Cluster 1 and Cluster 3) the angles between the
corresponding MFR normals and nested MVAB normals are relatively big (≈ 10 ◦ and
≈ 13 ◦). We will discuss these issues further down.

Because of these reasons we decided to use the MFR normals for comparison only (i.e. we
did not optimize the timing technique against the MFR method, as we did for MVAB case),
illustrating how such a comparison could be done. And yet, it is remarkable that, despite
all mentioned sources of errors, the constrained MFR normals lye very close to the plane
perpendicular to the invariant direction ~l (see parameter Ω in the table). This supports our
initial assumption about a 2-D MP in this case and indicates that such a comparison is valuable.
Note that, as in the case of the MVAB method, for an ideal 2-D MP the normals provided by
the MFR technique will lie in the plane perpendicular to ~l, although their orientation will be
influenced by the non-planar effects.

Faraday residues in the planar and 2-D, non-planar method
We would like to give an indication of how sensitive the MFR technique is when applied to a
2-D, non-planar structure. We refer to the expression (G.3), presented in Appendix G for the
quantity to be minimized (from Khrabrov and Sonnerup [1998])

IF =
〈
|δ ~E

′
⊥ |2
〉

+ u2
n

〈
(~n · δ ~B)2

〉
where ~E

′
= ~E + un(~n× ~B) (4.3)

Here 〈 〉 designates the average of a given quantity over the data set corresponding to the
transition and the symbol δ denotes the variation of a given quantity from its mean value.
~E

′
= ~E +un(~n× ~B) is the electric field as measured in the frame of reference moving with the

layer (at a velocity un~n with respect to the point of observation) and the symbol ⊥ indicates
the transversal component.

From this expression we see that in the MFR method the parameters un and ~n are found by
minimizing the variance of ( ~E +un~n× ~B)⊥ plus u2

n times the variance of Bn. Commonly at the
MP (and in our case in particular) ~E has the largest component in the normal direction and
~B is much larger in the tangential plane. Therefore this method is very sensitive to the planar
character of the MP: even small 2-D, non-planar effects may be sufficient to destroy the ability
to find accurate values for the normal direction and the velocity along this normal. From this
perspective we think that the MFR normals obtained in our case are reasonable good. As for
the high un values in Table 4.1 (when comparing with the average normal velocities provided

60



4.3. Comparison with HT

by the timing analysis) we have no particular explanation, except, probably, the drop in the
magnitude of ~B observed at the central part of each transition (see Figure 3.6). A more detailed
investigation, like using simulated data to study how the (planar) MFR method performs on a
2-D discontinuity, as done by Dunlop and Woodward [1998] for the case of MVAB technique,
would be useful.

In order to compare the results from the MFR method and the timing technique introduced
in Chapter 3, for each satellite we computed in the first place the Faraday residue on the central
crossing intervals based on the parameters ~n and un from Table 4.1 (note that these parameters
are obtained from larger intervals, indicated by vertical dotted lines in Figure 4.4). For this
we used the formula (4.3). Then, we calculated similar quantities based on the instantaneous
normals ~nGEO and normal velocities uGEO provided by the timing technique. More precisely
we used the formula

IF =
〈
|δ ~E

′
⊥ |2
〉

+ u2
GEO

〈
(~nGEO · δ ~B)2

〉
where ~E

′
= ~E + uGEO(~nGEO × ~B)

We took this line of action because we wanted to compare the same time-intervals and, as
discussed in Subsection 4.3.1, the solutions from the timing analysis are valid, strictly speaking,
only for the central crossing intervals. Global quantities were computed by summing the
Faraday residues from all four spacecraft using weighting coefficients defined in a similar way
as for the MVAB technique:

wi = Tr−1
c,i (λ)

/
k=4∑
k=1

Tr−1
c,k(λ) (4.4)

where Trc,i is the trace from the constrained MFR analysis performed with satellite i data, on
the corresponding central crossing interval.

The result of the comparison appears in the middle column of Table 4.4 and in each table
from Appendix C, under the ‘MFR results’ section. In all the places, two set of numbers are
displayed: the black ones are based on data provided by all 4 satellites, whereas the smaller,
red numbers are based on data provided only by Cluster 3 and Cluster 1. As will be explained
in Section 4.4, Cluster 2 and Cluster 4 provide a somehow contradictory MFR results and
therefore we prefer to have this additional way of comparison.

4.3.3 Comparison with deHoffmann-Teller analysis

The deHoffmann-Teller (HT) technique is presented in Appendix F. It is used to determine
a moving reference system in which the electric field vanishes, or nearly vanishes in the con-
text of experimental data. More precisely, starting from the set of measured values for the
magnetic field and electric field, the method searches for the necessary velocity ~VHT of such a
frame that transforms away the electric field. The existence of a HT frame implies that the
measurements are compatible with the steady movement, relative to the instrument frame, of
a quasi stationary structure with no internal electric field.

In our test case we were able to identify ‘good’ HT frames (i.e. with correlation coefficients
& 0.95) associated to the crossing intervals for all four Cluster satellites. Table 4.2 presents
the results obtained from this analysis, and the meaning of the parameters appearing in it
(explained also in Appendix F). We used plasma measurements in case of Cluster 1, Cluster
3 (HIA sensor) and Cluster 4 (CODIF sensor) together with the approximation ~E = −~v × ~B
for the electric field. When using directly the electric field measurements provided by the
EFW instrument, the method did not provide reasonably good HT frames for these satellites,
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Normal velocity variation for combined timing - MVAB techinque
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Figure 4.5: Time dependence of the MP normal velocities according to the different implemen-
tations (represented in different colours as indicated in the legend box) of the timing – MVAB
technique. For each satellite the time range corresponds to the central crossing interval.

Table 4.2: Results from the deHoffmann-Teller analysis. For each satellite the following param-
eters are shown: the interval of analysis, the number of data samples, the central interval used to
set the timing conditions, the correlation coefficient and the slope of the fit between the electric
field ~Ec = −~v× ~B and the convection electric field ~EHT = −~VHT × ~B (like in Figure 3.5), the ratio
between the convection electric field in the starting reference frame and in the deHoffmann-Teller
frame and the three components of VHT velocity in GSE.

HT interval samples central int. correl. slope D/D0 VHT [km/s]

Cluster2 [28.50−41.38] 24 [28.50−41.38] 0.944 1.030 0.109 [231.7 57.9 −102.0]

Cluster4 [27.44−47.33] 5 [30.42−44.96] 0.990 0.997 0.019 [199.9 177.2 −202.7]

Cluster3 [58.88−78.90] 5 [60.60−78.72] 0.990 1.000 0.020 [77.2 151.4 −181.4]

Cluster1 [65.77−81.87] 4 [63.46−82.04] 0.955 0.981 0.088 [250.8 155.6 −149.5]
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the correlation coefficients corresponding to the central crossing intervals being 0.71, 0.43 and
0.86 in case of Cluster 1, Cluster 3 and Cluster 4 respectively. But fortunately, in case of
Cluster 2, where no plasma data are available, the identification proved successful, with the
corresponding correlation coefficient of 0.944 (see column 5 of Table 4.2). The time intervals
for the analysis (appearing in column 2) was chosen as close as possible to the central crossing
intervals used for the timing conditions (appearing in column 4).

In evaluating the results of HT analysis, the projection of ~VHT along the discontinuity
normal (which is not found in the HT analysis but inferred in a different way) is compared with
the normal velocity provided by other method. We will do so by computing the projection of
~VHT along the normals provided by the nested MVAB analysis 〈~n〉

MV AB
(i.e. the ones shown in

Table 3.1) and along the average geometrical normals resulting from different implementations
of our timing technique. These values are to be compared with the normal velocities predicted
by the timing analysis in that particular case.

The result of the comparison appears in tables A to H from Appendix C, under the
‘deHoffmann-Teller results’ section and will be discussed in Section 4.4. Also, a synthesis of
the information contained in these tables, comparing the projection of ~VHT along the 〈~n〉

MV AB

normals with the normal velocities from the 2-D solutions can be found in the four rightmost
columns of Table 4.4 from Section 4.4.

When making the comparison one has to consider the following aspects: in the implemen-
tation we used for finding a HT frame, we assumed a constant velocity for it both in direction
and magnitude. In general for a 2-D, non-planar MP having 2 degrees of freedom the first
condition is not obeyed. As for the second part, this is also in general not the case. To see this
more clearly, we present in Figure 4.5 how the normal velocity varies according to the solutions
found in the various combined timing - MVAB implementations.

4.4 Comments and discussions

Discussions of the solutions
In Table 4.3, compiled from the tables A to H in Appendix C, for each solution found with
the 2-D, non-planar method we present the global parameters referring to the MP orientation,
radius of curvature, normal velocity and thickness. From left to right we have:

- the angle between ~next and 〈~n〉
MV AB

. The first unit vector is along the average (over the
4 satellites) direction of the individual average (over the crossing duration) geometrical
normals. It points towards the exterior of the boundary (in the geometrical sense).
〈~n〉

MV AB
represents the average of MVAB normals obtained in the nested analysis. We

recall that 〈~n〉MV AB was also chosen as reference direction in the polar plots 3.7, 4.1 and
4.4.

- in the third, fourth and fifth columns we show the global radius of curvature, normal
velocity and thickness, respectively. By global we mean the geometrical mean (radius of
curvature) or the arithmetical mean (normal velocity and thickness) of the corresponding
individual quantities detected by each Cluster satellite.

- the sixth column presents the angle between the MP primary direction of motion (along
~y axes in all figures from A to H) and 〈~n〉

MV AB

- in the last column, useful for the discussions at the end of this subsection, we show how
different the normals obtained from 2-D method and the normals from the planar MVAB
technique corresponding to the crossing intervals are. More precisely, we computed for
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each satellite the angle between the average geometrical normal ~n ave
GEO and the constrained

(i.e. perpendicular to ~l) planar normal ~n central
MV AB, ⊥~l

obtained when MVAB is applied on
the central points of the transition. We took the absolute values of these quantities and
show in the last column, for each 2-D solution, the arithmetical mean of these values
considering all four satellites (black numbers) or only Cluster 1, Cluster 3 and Cluster 4
(blue numbers).

When comparing different solutions obtained in our analysis, we have to drop right away
the one provided by the parabolic model, with the plain timing analysis (i.e. Prbl 2deg TA, see
pages 166 and 167). The distance between the MP leading and trailing edges, although fixed
in the model along the the primary direction, varies during the crossings along the normal
direction at each satellite location. Therefore the differences between the MP thickness at the
beginning and at the end of transition seems to us artificial, resulting in a relative variation
(parameter δTi from equation (B.76)) up to 71% for Cluster 2 and 72% for Cluster 4. In the
same time, the values for the average normal magnetic field (2.85 nT for Cluster 2 and 3.54 nT
for Cluster 4) and magnetic variance (for example 13.409 nT 2 in case of Cluster 2) are very
high as well. Besides, based on this test-case and on another event not presented in the thesis,
we found that this particular implementation of the 2-D, non-planar timing analysis gives
unstable results: small changes in the satellites relative positions or in the timing information
lead to big variations in the parameters of the solution.

By proposing a parabolic shape for the MP, the underlying idea was to model travelling
waves on this boundary. Therefore we hoped for a solution with the primary direction (along ~y
in Figure A) close to the average of MP normals (indicated by ~next): when the angle between
the two directions is less than 30 ◦ a wave form is well approximated (within 0.5% relative error)
by a parabolic curve. It turned out that, although mathematically valid, the above mentioned
solution do not fulfil this expectation. The satellites transitions take place far away from the

Table 4.3: Characteristics of the 2-D, non-planar MP, as obtained from the various implemen-
tation of the method. Global values of orientation, curvature, normal velocity and thickness are
presented in the second to fifth columns. In the sixth column we show the angle between the di-
rection of MP primary motion and the average direction of MVAB normals obtained in the nested
analysis. The last column show how different are the normals obtained from 2-D method and the
normals from the planar MVAB technique corresponding to the crossing intervals. The meaning of
the background colours attached to each solution is explained in the last paragraph of this section.

^
`
~next, 〈~n〉MV AB

´
radius velocity thickness ^

`
~y, 〈~n〉

MV AB

´
^

`
~n ave

GEO , ~n central
MV AB,⊥~l

´
[deg] [RE] [km/s] [km] [deg] [deg]

Prbl 2deg TA 172.1 -784.7 50.58 704.5 −88.8 18..9 15.8

Prbl 1deg OpTA 9.0 2.87 52.04 809.8 −3.9 4..6 2.1

Prbl 2deg OpTA 7.1 1.81 49.74 764.9 16.8 3..1 1.0

Cyl 1deg TA 11.0 4.82 55.19 861.1 −122.9 6..4 3.7

Cyl 2deg TA 3.9 1.85 47.45 740.3 −105.3 2..9 2.4

Cyl 1deg OpTA 9.8 2.09 52.84 824.4 −37.1 5..2 3.2

Cyl 2deg OpTA solA 3.9 1.85 47.45 740.3 −105.2 2..9 2.4

Cyl 2deg OpTA solB 6.7 2.39 48.40 755.1 −95.0 3..0 1.6
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parabola’s peak, where its branches form almost a plane surface; consequently, the radius of
curvature, expressed in Earth radii takes very large value. Despite its unrealistic behaviour, we
decided to present this case for comparison: one can see below that the optimization through
magnetic variance analysis brings significant improvements.

Indeed, the other two solutions corresponding to the parabolic MP provided by the com-
bined timing-MVAB technique (i.e Prbl 1deg OpTA and Prbl 2deg OpTA), look much better
from this respect. For example the implementation which allows for MP displacements only in
one direction gives a solution in which this direction of movement is very close (namely 3.9 ◦)
to the averaged (over the four spacecraft) nested MVAB normal 〈~n〉

MV AB
. Taking into account

that we have for this event an in-bound transition (see Figure 3.4) the result implies a local,
stationary bulge (i.e. not moving along the MP surface but with this boundary as a whole)
having approximately 2.9 RE as radius of curvature. Actually in all implementations, with the
exception of the one we dropped from the beginning, we obtained positive values for the radius
of curvature, implying a convex shape for the MP. The different scale-length (i.e. local radius
of curvature) provided by different solutions have to be compared with the radius of curvature
of a model MP at the position of the event, computed in Section 3.4 to be around 19.3 RE.

The Prbl 2deg OpTA solution (pages 170 and 171) has its principal direction 16.8 ◦ from
〈~n〉

MV AB
. It implies a smaller average radius of curvature (1.81 RE) which was somehow

expected because now also a secondary movement, perpendicular to the primary direction and
with constant velocity, is present. The MP thickness varies during the crossing intervals up to
9% in case of the trailing spacecraft (Cluster 1) and only 2% for the leading one (Cluster 2).
We stress again that this variation is not due to a compression or expansion of the boundary
surface but is a perception effect of a moving MP relative to the (allmost) fixed satellites.

The Prbl 2deg OpTA solution, as well as the cylindrical solutions Cyl 2deg TA (pages 174
and 175) and Cyl 2deg OpTA solA (pages 178 and 179), imply a return to the MP of the first
pair of satellites (Cluster 2 and Cluster 4) at the end of the event, i.e. around the time when
the second pair of satellites (Cluster 3 and Cluster 1) finish their transitions. This return is
not seen in the data and therefore means a disagreement with the physical situation.

This aspect could be reconciled if we limit in an appropriate way their range of validity.
In general, a limitation in the validity of any solution found in this chapter is obvious: all of
them describe the MP boundary only locally. Also, we expect that, for a solution involving a
smaller radius of curvature the range of validity to be smaller as well. In Figure C, presenting
the MP configuration in the Prbl 2deg OpTA implementation, we draw only a portion of the
MP layer that extends to the left (positive ~x direction) from the parabola’s peak. Judging from
the satellites transitions alone, the MP layer could extend infinitely to the left but we showed
only a portion of 8000 km of it. As for the right margin we have to cut the layer around
the parabola’s peak (where the local radius of curvature is only 1.24 RE) in order to avoid
the mentioned ‘artificial’ transitions. Therefore, the solution obtained in this implementation
demands a change in the MP geometry, to the right from this point. Another possibility
would be to consider the MP as a steady-state structure only for a limited spatial-temporal
neighbourhood around the individual transitions and therefore to argue that after the first pair
of satellites crossed the layer, it changed its shape.

As just mentioned, a similar limitation in the validity range is necessary for the solutions
Cyl 2deg TA and Cyl 2deg OpTA solA. In the corresponding figures describing the MP configu-
ration and movement, we have drawn the MP as a cylindrical sector that has an upper angular
limit of approx. 29 ◦ from the ~x axis.

The fact that in the two parabolic cases the primary directions are close to 〈~n〉
MV AB

makes
them interesting because in this case we can ascribe naturally a physical interpretation to
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the parameters A0, A1, ... and V (see the discussion at the end of Section B.4). The first
parameters represent the initial normal velocity, normal acceleration and so on, that globally
characterize the MP movement, whereas V is the tangential (to the MP) velocity. Near all the
solutions in the cylindrical case the primary direction ~y makes a larger angle with 〈~n〉

MV AB
,

sometimes close to 90 ◦. In these situations the notions ‘MP tangential movement’ and ‘MP
normal movement’ are linked with the primary direction and secondary direction respectively
(the reverse situation from what we had in mind when introducing the techniques).

We illustrate this aspect in Figure 4.6, which presents a sequence of 12 MP positions,
corresponding to the solution Cyl 2deg OpTA solB from pages 180 and 181. In this case the
angle between the principal direction (along ~y) and the direction of averaged nested MVAB
normals 〈~n〉

MV AB
is 95 ◦. Therefore the ‘normal’ MP movement is due to the constant velocity

along the secondary direction whereas the ‘tangential’ velocity is described by A0, A1 and A2.
The markers on the MP helps in tracing this tangential movement: first there is a relatively fast
displacement in the upward direction (as seen from the central marker on the MP) in the figure
followed by an almost still period (panels 4 to 7) and then a small recoil (starting with panel
8). This back-and-forth movement is also encountered in the other two solutions corresponding
to the cylindrical model with 2 degree of freedom (i.e. Cyl 2deg TA and Cyl 2deg OpTA solA).

A similar situation occurred in the case of Cyl 1deg TA implementation (pages 172 and
173), but here the solution deserve a special attention. In this case we have no displacement
along ~x (oriented relatively close to the MP normal direction) and the crossings are produced
by a tangential (to the MP) movement of a wave-like structure. It is therefore no surprise that
after approx. 9 seconds from the end of the event the solution implies a return of the satellites
to the magnetosheath, beginning with Cluster1. That solution has also a systematically higher
value for the normal magnetic field variance when compared with other 2-D solutions or with
the planar analysis (see Table 4.3 for the global value of this quantity and tables A to H
for the individual ones). We therefore conclude that our event is not well described by this
implementation.

Actually, in case of a cylindrical MP, only the solution Cyl 1deg OpTA (presented on pages
176 and 177), which is the optimized version of the solution we just dropped as inadequate,
seems to be oriented according to the situation we had in mind when the model was proposed.
This is similar to what happened in the parabolic case (discussed at the beginning of this
subsection) where the optimization lead to a change in orientation. The decrease in the global
magnetic variance from 4.191 to 3.220 is associated with a change of ∼ 86 ◦ in the orientation of
the primary MP motion, with the new direction closer to the average nested MVAB normals.

We would like to add some additional observations at the end of this subsection
- the parameters A0, A1, ... and V take reasonable values in all the implementations we

considered valid (see tables A to H from Appendix C).

- the transition parameters obtained in each case (orientation, normal velocity, thickness
and radius of curvature) are not very different. For example, the global MP orientation,
as expressed by ~next, change within approx. 6 ◦ across different implementations. In
the same time, the global values of the normal velocities vary from 47.45 to 52.84, i.e.
approx. 10%. Of course, the same applies to the global values of MP thickness because
the crossing durations are the same. In case of radius of curvature, the variation is
between 1.85 and 2.87 RE, i.e. approx. 45%.

- the average geometrical normals and the constrained (i.e. perpendicular to ~l) planar
MVAB normals corresponding to the central intervals (rightmost column in Table 4.3)
are remarkably close to one another. Neglecting the Cluster 2 situation, for the reason
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Figure 4.6: MP positions at successive, equally spaced moments for the solution presented on
pages 180 and 181. The first and the last panel correspond to the moment when the leading satellite
(Cluster 2) enters the boundary and, respectively, to the moment when the trailing satellite (Cluster
1) leaves it. In order to follow easier the MP displacement we showed some markers on its body.
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discussed in Subsection 4.3.1 and in Appendix E, we obtained agreement within few
degrees (i.e. less than 5 ◦ for the individual crossings and less then 3.5 ◦ in terms of
global averages).

Comparison with the planar methods
In discussing how the planar MVAB method and the 2-D solutions compare from the magnetic
variance point of view, we will often make use of the results and concepts from Appendix E.
There, such type of study was given for the Cyl 2deg OpTA solA solution, the conclusion being
that in this case the normals from the 2-D solution provide better results than the best possible
planar normals (i.e what we called there the planar, interval-specific MVAB normals). Looking
at Figure E.2 from the same appendix, one can make a similar statement for the solution
Prbl 2deg OpTA (presented in the panels on the right). Indeed, for the central intervals and
the adjacent larger ones, the average normal magnetic field components computed by using the
2-D, instantaneous normals have roughly the same values or lower than the same quantities
computed with planar, interval-specific MVAB normals. In the same time, the global normal
variance curve for the 2-D solution (with magenta, in the right lower panel) is below the similar
curve corresponding to the planar, interval-specific MVAB normals (with orange) for the same
intervals.

It is interesting to compare these results with the ones from the left column of the same
figure, corresponding to the Prbl 1deg OpTA solution. In the last case, like in other solutions
where the boundary moves only in one direction, essentially the geometry alone influences the
evolution of various curves. When we allow for a second degree of freedom we see the combined
effect of geometry and dynamics. One would like to stress again that the magenta curves in
the last panels designate global magnetic variances corresponding to normals coupled in each
moment by the chosen geometry and from one moment to another by the MP dynamics. In
contrast, the orange curves refer the same quantity computed with individual normals, resulting
from the planar, interval-specific MVAB analysis and therefore decoupled from one another or
from one moment to another. In this case, the fact that the orange curve is below the magenta
curve does not mean that the 2-D solution ‘performs’ poorer than in the planar assumption.

Table 4.4 presents the MP global parameters obtained in the 2-D and in the planar methods.
It was introduced in Subsections 4.3.1, 4.3.2 and 4.3.3. By looking at the leftmost column we
note that, with the exceptions of the two solutions already excluded, the global magnetic
variance along the 2-D, instantaneous normals provides better results than the planar, nested
MVAB analysis. The two variances are computed on different data intervals, but making a
comparison between the two is reasonable because this quantity is an arithmetical mean. When
the comparison is done with the variance along the planar, interval-specific MVAB normals,
based on measurements from [Tci − τi, Tci + τi], one still can say that the 2-D solutions offer
similar or even lower values. This is better seen by looking on the blue numbers, obtained
when the Cluster 3 data were not considered. The reason for this exclusion was discussed in
Appendix E. We will resume this discussion below from a slightly different perspective.

In Figures A to H (see Appendix C) we showed for each satellite the geometrical normals
corresponding to the MP leading edge (gray arrow) and trailing edge (black arrow) encounter,
together with the normal obtained from the nested MVAB method (green arrow). In this
way we can visualize the results obtained in the planar and 2-D, non-planar technique. As a
general behaviour, we notice that in all solutions the geometrical normals referring to satellites
3 and 1 have a systematic preference for larger angles (negative values, in the approximate
range [−17,−11] for the quantity ^

(
~n ave

GEO , ~n nested
MV AB

)
⊥~l

appearing in the Tables A to H). One
could think that this is an offset induced by the chosen 2-D geometry but actually this is not
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Table 4.4: Comparison between the single-spacecraft planar methods and the solutions provided
by the 2-D method. Upper part: Results from the MVAB, MFR and HT techniques are shown.
From left to right we have: the global magnetic variance along two set of planar normals, i.e. those
provided by the MVAB nested technique and by applying the planar MVAB on the central intervals
(see the description from Subsection 4.3.1), the global Faraday residue along the MFR normals
(see Subsection 4.3.2) and the individual deHoffmann-Teller velocity along the normals provided
by the MVAB nested technique (see Subsection 4.3.2). Lower part: For each solution obtained
from the 2-D, non-planar method, we present the global magnetic variance along the instantaneous
normals ~nGEO (left column), the global Faraday residue using the instantaneous normals and
normal velocities uGEO(middle column) and the average normal velocity corresponding to each
satellite (the group of 4 columns at the right). The meaning of the background colours attached
to each solution is explained in the last paragraph of this section.

Planar methods

mag. variance [nT ]2 Faraday residue [mV/m]2 ~VHT · ~n nested
MV AB [km/s]

~n nested
MV AB ~n central

MV AB, ⊥~l
~nMF R and uMF R C2 C4 C3 C1

3..587 3.448 2..724 2.697 2..649 2.847 86.64 −5.78 −14.44 22.56

2-D, non-planar method

mag. variance [nT ]2 Faraday residue [mV/m]2 normal velocity [km/s]

~nGEO ~nGEO and uGEO C2 C4 C3 C1

Prbl 2deg TA 7..505 5.811 2..077 3.737 86.79 75.73 20.86 18.96

Prbl 1deg OpTA 3..276 2.758 1..706 2.672 64.02 56.84 44.63 42.68

Prbl 2deg OpTA 2..764 2.518 1..762 2.751 65.44 58.00 38.51 37.00

Cyl 1deg TA 4..191 3.527 1..687 2.617 66.82 59.26 48.32 46.35

Cyl 2deg TA 2..497 2.261 1..783 2.867 57.45 50.95 41.54 39.85

Cyl 1deg OpTA 3..220 2.852 1..684 2.581 63.97 56.73 42.26 44.38

Cyl 2deg OpTA solA 2..497 2.260 1..784 2.868 57.44 50.94 41.54 39.85

Cyl 2deg OpTA solB 3..014 2.712 1..714 2.708 58.60 51.97 42.37 40.65

the case. As shown in Appendix E, it has to do with the fact that the planar, nested MVAB
normals and the geometrical normals correspond to different data sets, i.e. for the latter only
the central transition points were used.

In Figure G presenting the Cyl 2deg OpTA solA solution, we plotted with orange arrows
the normals ~n central

MV AB, ⊥~l
obtained from the constrained (i.e. perpendicular to ~l ) planar MVAB

normals corresponding to the central intervals. We have done this only for that particular
solution in order to avoid unnecessary overload of the figures and because the angles between
green and orange arrows will be the same in all implementations. As one can notice, for
Cluster 3 and 1 the directions of ~n central

MV AB, ⊥~l
lye inside the openings formed by the leading

and trailing normals. That is exactly what one would expect from a planar analysis on an
ideal 2-D, non-planar MP (see Dunlop and Woodward [1998] section 11.5.2). This fact is
remarkable, also, when we take into account that practically the same solution was obtained
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from the plain timing analysis (i.e. the solution Cyl 2deg TA presented on pages 174 and 175)
or, more general, that all plain timing-analysis suggest such an ‘offset’. In the Tables A to G,
as well as in Table 4.3, we presented also the quantity ^ (~n ave

GEO , ~n central
MV AB, ⊥~l

), which is the angle
between the mean geometrical normal and the normal from constrained (i.e. perpendicular to
~l ) MVAB, performed on the central intervals. Now there is no sign of an ‘offset’ in orientation,
except perhaps in the case of Cluster 2 (seen only in Tables A to H). The deeper analysis from
Appendix E suggests that in this case the internal MP structure starts to play an important
role in the MVAB technique when we limit the points to the central ones (the approximation
of an ideal 2-D MP fails).

We consider the magnetic variance that takes into account also the small 3-D effects present
in this event, responsible for the fact that the individual, nested MVAB normals are not exactly
contained in one plane (see Figure 3.8). For this we constructed individual normals having
at any moment the same inclination with respect to the plane perpendicular to the invariant
direction as the nested planar MVAB normals and the projection on that plane along the
instantaneous 2-D geometrical normals. In general, this brings a slight improvement in the
global magnetic variance (see in the Tables A to H the line entitled ‘variance using ~nGEO, 3D’)
but this is mainly due to Cluster 2, for which this behaviour is systematic. This fact allows
us to speculate that, perhaps, the internal structure having a noticeable effect on the MVAB
results for Cluster 2, is of 3-D nature.

In the middle column from Table 4.4 we compare the global Faraday residue in the planar
method (upper section) and the global Faraday residue implied by each 2-D, non-planar solu-
tion. In all cases the intervals of comparison are the central crossing ones, i.e [Tci− τi, Tci + τi].
In the planar case, we used the normals ~nMFR and the normal velocities ~vMFR obtained in Sub-
section 4.3.2 and shown in Table 4.1, whereas in the 2-D section we used the 2-D, instantaneous
normals ~nGEO and normal velocities ~vGEO.

In Tables A to H from Appendix C, under the section ‘MFR results’ we present a more
detailed comparison. On the one hand we show the individual, i.e. referring to each satellite,
not just the global Faraday residues. Then, because the ~nMFR normals and the normal velocities
~vMFR are not exactly in the plane perpendicular to the invariant direction, and therefore some
3-D effects might play a role in the comparison, we decided to present the Faraday residues
computed in four ways. The two lines on the gray background show this quantity calculated
as described above, i.e. when presenting the Table 4.4. For the other two lines we used the
projection on the plane perpendicular to the invariant direction of ~nMFR and ~vMFR (first line)
and the vectors ~nGEO, 3D and ~vGEO, 3D (second line). The last group of vectors are artificial,
constructed as follows: for each satellite, ~nGEO, 3D and ~vGEO, 3D have the same orientation with
respect to the plane perpendicular to the invariant direction as the corresponding ~nMFR, and
the projection on that plane is given by ~nGEO and ~vGEO respectively.

Due to the limited accuracy of the electric field data for this event (see the discussion in
Subsection 4.3.2) we have to take with cautions the results obtained in the MFR analysis. For
example, if one looks at the leading pair of satellites (Cluster 2 and 4), they give somehow
contradictory results, despite being relatively close to one another: the planar MFR analysis
yields big differences in the Faraday residues (0.464 [mV/m]2 as compared to 4.206 [mV/m]2).
At the same time the Faraday residue obtained from the instantaneous normals and normal
velocities are in general smaller for Cluster 4 that in case of Cluster 2. This is the reason why,
in all tables, we indicated in addition the global Faraday residues based only on the trailing
pair of satellites (smaller numbers, appearing in red).

By looking at the global Faraday residues presented in Table 4.4, one notices that the
black numbers, based on all four satellites, are systematically lower for the 2-D solutions than
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in the planar case, the reduction being around 34% (we are not considering, as mentioned
above, the Prbl 2deg TA and Cyl 1deg TA solutions). A more conservative comparison, by
using the red numbers, indicates that the Faraday residues in the 2-D case are smaller or
slightly bigger (below 1%) than in the planar case. On the other hand, the same observation
made when investigating the magnetic variance also applies here, namely that the individual
normals resulting from the planar MFR technique are decoupled from one another whereas
~nGEO and ~vGEO quantities are linked in each moment by the chosen geometry and from one
moment to another by the dynamics of the MP. All these aspect taken into account allows us
to conclude that the solutions obtained in the various implementations of the 2-D, non-planar
method, perform better than the planar technique from the Faraday residue perspective.

From Table A to H, by looking at the global Faraday residues based on the projection of
~nMFR and ~vMFR on the plane perpendicular to the invariant direction, and on the same quantity
based on ~nGEO, 3D and ~vGEO, 3D, one notices that the 3-D effects do not play an important role
in the analysis. The values we obtained with this modified vectors are approximately the same
(in the range of a few percent) as the ones obtained from the corresponding starting vectors.

In the last four columns of Table 4.4 we compare, for each spacecraft, the deHoffmann -
Teller velocity (VHT ) projected on the normal obtained in the planar, nested MVAB analysis,
~n nested

MV AB , with the average normal velocity prescribed by the 2-D, non-planar MP solutions.
Also, under the ‘deHoffmann-Teller results’ section from Table A to H, we show, in addition
the deHoffmann - Teller velocities (VHT ) projected on the average geometrical normals ~n ave

GEO

provided by the 2-D method.
One notices immediately that the planar method gives (in case of Cluster 4 and Cluster

3) negative values for the MP velocity, which is inconsistent with an inbound crossing. The
situation improves a little when the ~n ave

GEO normals are used, with the normal MP velocity
becoming positive for Cluster 3 but still remaining negative or taking small positive values
for Cluster 4. At the end of Subsection 4.3.3 we gave a possible explanation why the normal
components of VHT are so different from the average normal velocities obtained in the 2-D
method, namely that the former assumes a constant velocity vector for the MP. On top of
that, for Cluster 4 we used CODIF measurements for the plasma velocity because the HIA
sensor,providing more accurate plasma moments in the MP region, is not available for that
satellite.

Considering the fact that, for the event we analyse, the various implementations of the
2-D timing technique ascribe values for the MP normal velocity not very different from one
another, one may think at this method as providing a diagnostic tool for the performance of
the HT analysis. Therefore, when looking at Table 4.2 from Subsection 4.3.3, presenting the
HT results, it is surprising to note the discrepancy between the high correlation coefficient
in case of the Cluster 4 transition - i.e. 0.99, indicating a good identification of HT frame -
and the very poor predictions of MP normal velocity based on VHT . Also, in the same table
one can see that for Cluster 2 the electric field residues in the HT frame are relatively high
(D/D0 = 0.109) but still, the predictions for the MP normal velocity are rather better than in
case of Cluster 4 and Cluster 3, where reliable HT frames were identified (D/D0 = 0.019 and
D/D0 = 0.020, respectively).

The nature of the 2-D MP feature
In Figure 3.8 from section Section 3.4 we plotted the tangential components of the magnetic
field and velocity flow in the magnetosphere (in red) and magnetosheath (in black), as measured
by Cluster 1. The angle between the two flow directions is around 172 ◦ and the magnetic shear
around 150 ◦. The large flow shear across the MP (around 350 km/sec.) makes us consider
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the Kelvin - Helmholtz mechanism as possible explanation for the 2-D feature encountered by
Cluster in this event. The vector ~k (shown in green), perpendicular to the invariant direction,
would then correspond to the wave vector. It is noticeable that the wave vector has an ori-
entation in between the direction perpendicular on Bsheath and the direction of Vsheath. With
these two direction it makes an angle of around 19 ◦ and 22 ◦, respectively. This is consistent
with the interpretation that we have a wave driven by the magnetosheath flow, propagating on
the MP surface almost perpendicular to the magnetic field, which, from energy considerations,
is the most favoured direction.

If this is the case then one could easily estimate the wavelength and the periodicity of such
a structure. The most appropriate way to model the physical situation would be that of a the
parabolic MP having 2 degrees of freedom (i.e. Prbl 2deg OpTA) which gave us (see Table C)
a radius of curvature at the parabola’s nose of approx. 1.24 RE and a MP tangential velocity
of approx. 78 km/sec. This leads to a wavelength of ∼ 7.8 RE and a period of ∼ 10.5 minutes.
Of course, as we discussed at the beginning of this section, we found that the corresponding
solution is not valid on both sides of the parabola’s peak but we can still estimate quantities
involved.

Using the parameters from the magnetosheath and magnetosphere, we checked on the
Kelvin - Helmholtz instability criterion, deduced in the case of a planar interface between two
incompressible fluids having no viscosity:

ρ1ρ2

ρ1 + ρ2

[
~k ·
(

~Vsheath − ~Vsphere

)]2
>

1
µ0

[
(~k · ~Bsheath)2 + (~k · ~Bsphere)

]2
(see Chandrasekhar [1961]) and we found that for all directions ~k in the plane perpendicular
to the invariant direction, this is not satisfied. The stabilizing factor due to the magnetic
tension (right part) is always greater by at least one order of magnitude than the left term
which accounts for the driving, instability force. Therefore, although one could interpret the
2-D feature as a large amplitude wave produced by the velocity shear across the MP, the data
suggest that this wave will not grow into the nonlinear regime.

What is the best 2-D solution?
In this paragraph we draw some final conclusions about the various 2-D MP solutions, corre-
sponding to the event from 24 June 2003. As shown, two solutions (namely Prbl 1deg TA and
Cyl 1deg TA) were dropped because they do not represent realistically the evolution of the MP
in this test case. In Table 4.3 and Table 4.4 they appear on a gray background. The remaining
six solutions may be classified in three groups, as follow:

- the global parameters corresponding to the solutions Prbl 2deg OpTA, Cyl 2deg TA and
Cyl 2deg OpTA solA (represented in Figures C, E and G, respectively), suggest that they
belong to the same family, describing a MP having two degrees of freedom in the parabolic
or cylindrical geometry. In terms of radius of curvature, velocity and thickness the
variations are only around 2% across different implementations. These are also the
solutions for which the global normal magnetic variance was minimum and for which we
need to limit their range of validity in order to avoid an artificial return in the MP of
the first pairs of satellites. The last two solutions are practically identical, meaning that
the plain timing analysis performed very well in this implementation (the optimization
procedure brought practically no modifications). In Table 4.3 and Table 4.4 they appear
on a violet background.
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- the solutions Prbl 1deg OpTA and Cyl 1deg OpTA, presented in the Figures B and F of
Appendix C are similar but obtained with the assumption of a parabolic or cylindrical
MP, respectively. They imply a unidirectional displacement for the MP and the resulting
global crossing parameters are very similar (i.e. 1.5% relative variation for the velocity
and thickness and 35% for the radius of curvature). If we consider only Cluster 4, Cluster
3 and Cluster 1 and look at the differences between the average geometrical normals and
the planar MVAB normals corresponding to central intervals (last column in Table 4.3)
and at the global normal magnetic variance (first column in Table 4.4), we may conclude
that the parabolic model provides slightly better results. In Table 4.3 and Table 4.4 they
appear on a green background.

- the solution Cyl 2deg OpTA solB presented in Figure H has no correspondence in the
parabolic model. It implies a back and forth tangential MP movement whereas the
movement along the ‘normal’ (i.e radial) direction is with constant velocity. In terms of
global magnetic variance, it implies a lower value than the second group of solutions. In
Table 4.3 and Table 4.4 it appears on a blue background.

4.5 Relation between the current work and previous approaches

In this section we would like to show the relation of the present work with respect to the
previous efforts along the same line.

The first timing technique (called time of arrival method) using 4 satellites was proposed
by Russell et al. [1983] in order to infer the orientation of an interplanetary shock, assuming
a propagation with constant velocity. The method, which according to our terminology is a
plain timing technique, appears in Haaland et al. [2004b] under the name of Constant Velocity
Approach. In the same paper the Constant Thickness Approach was introduced and applied
to a magnetopause crossing; both of them are planar methods and are described in Section
B.1.

The present timing-techniques are natural generalizations of the planar timing method
which assumes a constant thickness for the discontinuity. For describing the shape of a 2-D
MP we proposed two simple, constant thickness geometries (i.e parabolic and cylindrical) and
a polynomial time dependence in the velocity. We allowed for one or two degrees of freedom
in the displacement of the discontinuity. This assumptions led us to a set of 8 conditions for
motion, corresponding to the encounter of spacecraft positions by the MP’s edges, and, by
solving them, we found the individual crossing parameters at each satellite level.

There is another line of approach in the effort to characterize the macroscopic surface prop-
erties (orientation and planarity or, in case of non-planarity, the curvature) of a discontinuity
and its motion when 4 points of measurements are available, like in case of Cluster (Mot-
tez and Chanteur [1994]; Dunlop and Woodward [1998, 1999]). This relies on combining the
information obtained by each spacecraft separately (via MVA of the magnetic field) with the
information obtained from the differences across satellites, i.e. the time differences in detecting
the discontinuity and the relative positions of the satellites at these moments. In the above
papers, the authors assumed that, for a non-planar structure, the boundary in question is
thin (when compared with radius of curvature) so that the individual normals, obtained with
MVAB, are not too much affected by the local curvature of the field or by the discontinuity
motion during data sampling.

Mottez and Chanteur [1994] described a method to analyze the local geometry of a 3-D
surface crossed by a group of 4 satellites, when its geometry is regular at a scale of the inter-
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spacecraft separation distance (and therefore characterized at each point by the same two
principal radii of curvature) and the velocity of the structure convecting past the spacecraft is
constant. Dunlop and Woodward [1998] showed that the latter condition could be relaxed by
allowing an acceleration.

In the work of Dunlop and Woodward [1998, 1999] (termed discontinuity analysis) the
authors presented in a detailed manner the problem of combining the results from the planar,
single - spacecraft method of MVAB across a number of satellites (up to 4) in order to infer the
motion and shape of a non-planar discontinuity. In a 2-D situation, they consider the cylindrical
shape and presented the procedure of finding the radius of curvature and the parameters of
motion (in terms of velocity and acceleration vectors in the plane perpendicular to the invariant
direction). In that respect, the differences in the central crossing times, relative positions of
the satellites and the differences between individual normals detected by each satellites were
used.

The authors used simulated data to show how the calculation of the normal, using pla-
nar MVAB method, is influenced, in case of a curved boundary, by various effects like data
interval length and spacecraft trajectory. The study indicated that for trajectories implying
big variations, during the traversal, in the local radial direction and for large data intervals
participating to MVAB the influences are greater. If one wants to limit these effects, the
analyzed discontinuity should be characterized by a large radius of curvature (relative to the
thickness) and only points from a thin interval around its centre should be used for the MVAB.
The latter condition, as we discussed in our case, could be problematic in a real event as the
measurements in that region may be affected by the internal structure of the discontinuity, by
noise, waves etc.

At this point we note that our method is not affected by this type of problems. For a 2-D
MP, the MVAB method applied to each satellite will not fail to indicate the plane containing
all individual normals and we used only this information later on. Therefore, we are not so
strict in imposing the small curvature condition for the boundary. For other considerations,
discussed in Subsection 4.3.1 we do use points from central intervals only, embracing ∼ 76%
of the total magnetic change.

Dunlop and Woodward [1998] pointed out the need to find a method that determines
self-consistently the parameters characterizing the curvature of a discontinuity and its non-
constant motion. In this respect they formulated the general problem and proposed a criterion
for optimization that involves magnetic variation along the instantaneous, local normal (their
equation from page 299). This is actually what we have implemented in our combined timing
- MVAB method with the help of equation (B.87), used in the optimization procedure (see
Section B.5). We recall here in brief how we arrived at that point.

One of the necessary parameters in describing the MP movement is the direction of displace-
ment. Because in a 2-D case this is completely specified by an angle in the plane perpendicular
to the invariant direction, we proposed to solve the 8 motional conditions when imposing from
the beginning different orientations for the MP movement and to select that solution which
satisfies the criterion of minimum magnetic variance along the instantaneous MP normal. As
pointed out in Section B.5, we can base the optimization not only on the variance of the
normal magnetic component but on any other quantity that obeys a conservation law across
the discontinuity. We can also combine different quantities and use them simultaneously by
summing up their variance (with appropriated weighting factors) following the same procedure
developed by Sonnerup et al. [2006] in case of the planar assumption.

The important assumption we adopted for the MP, namely that it has a constant thickness,
resulted in a significant simplification of the task to infer its curvature and motion. In the paper
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by Haaland et al. [2004b], where the planar constant thickness approach was introduced, the
authors brought arguments in favour of this assumption as opposed to the constant velocity
assumption (see the discussion in Section 3.1).

Clearly, not all MP events will comply with this approximation, especially when the crossing
points are well separated along the surface. Nevertheless, we think that this study can be
applied on an event basis and could be used as a starting point for further development.
One potential development would be to relax the constant thickness condition. For example,
if the Cluster formation is such that the satellites are making the transitions in pairs (like
in our example, where the distance between Cluster 2 and 4 is around 250 km), we can
consider to introduce a new parameter, allowing for a linear increase in the MP thickness in
the plane perpendicular to the invariant direction. Then one can perform the timing analysis
for different values of this parameter and select the one for which the global magnetic variance
takes the minimum value. Now the optimization procedure is performed with respect to the
new parameter and not with respect to the angle specifying the (primary) direction of MP
movement.
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CHAPTER 5

Observation of magnetic reconnection at the magnetopause

In order to establish from the satellite measurements whether the MP behaves like a rotational
discontinuity we perform the so called Walén test. The test compares the plasma velocity
in the deHoffmann-Teller (HT) frame (a system of reference where the plasma flow becomes
field aligned) with the local Alfvén velocity. We expect a good agreement between the two
quantities in case of a RD.

The Walén test proved very successful in establishing whether a discontinuity has a ro-
tational character or not but a long standing issue remains that, for a RD, the factor of
proportionality between the plasma velocity and the Alfvén velocity is less than the ideal value
of one required by the theory. This aspect could have an explanation in the fact that the Walén
analysis relies on some simplifying assumptions when testing the RD model (to be discussed
in Section 5.2).

It is the purpose of this chapter to experimentally investigate two such assumptions. One
of these, to be address in Section 5.4, refers to the electrons’ role in the analysis, which is
usually neglected. A second assumption is to consider all the ions as being protons, therefore
neglecting the influence of minor ion species, an approximation justified by the protons relative
abundance in the MP environment. This issue will be analyzed on Section 5.6.

A puzzling aspect of RD identification at the MP concerns the experimental proof of the re-
lation ρ(1−α) = const., with ρ being the plasma density and α the plasma pressure anisotropy
factor (see the next section). This relation should hold for such a discontinuity and could be
incorporated in the Walén test. Typically, from the latter variant of the test one obtains better
results than in the situation when ρ(1−α) = const. is not considered. However, in general the
equation is not supported by experimental evidence, as will be shown (Section 5.4).

In the last section, we will present some experimental observation referring to the Oxygen
ions, existing in a relatively high abundance in one of the event analyzed in this chapter.

5.1 Jump relations for a rotational discontinuity

In this section we will present the main features of the RD model, deducing the relations
between the plasma properties on either side of it. The intention is to illustrate in this way
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the basis of an RD identification in experimental data. The analysis is made in the following
circumstances (Hudson [1970]):

- We will not consider the detailed structure of the discontinuity, but the implications
of various conservation laws across it (the Rankine-Hugoniot relations, linking plasma
parameters of the adjacent asymptotic regimes).

- We treat the plasma as a singe fluid, i.e. we make no distinction between different ion
species and electrons, working only with the centre-of-mass quantities.

- We assume that the discontinuity surface is planar, with all the parameters varying only
along the normal direction. In addition, we assume time-stationarity.

- In the asymptotic regions, we assume that the only electric field arises from the plasma
moving across the magnetic field.

- The plasma is considered anisotropic, therefore being characterized by a parallel and a
perpendicular (to the magnetic field) temperatures.

An one-dimensional RD is defined by the conditions

Bn 6= 0, ρvn 6= 0 and ~v1 = ~VA1, ~v2 = ~VA2 (5.1)

Here the subscripts 1 and 2 refer to the conditions in the asymptotic regions on the sides of
the discontinuity. ~v1,2 designate the plasma bulk velocities in the deHoffmann-Teller frame
(to be introduced later in the text) and ~VA1,2 refer to the Alfvén velocities, considered as
vectors of magnitude VA1,2 oriented along the local magnetic field direction. Bn and ρVn are
the magnetic field component and the mass flux along the normal direction. As opposed to a
tangential discontinuity (TD), which is a boundary that does not connect the adjacent plasma
regimes (no magnetic flux or mass flux along the normal direction) and for which the velocity,
density or the magnetic field can change in any way across it, for a RD we do have such a
coupling in both physical quantities.

We will now show how the relations (5.1) appear (Hudson [1970]; Sonnerup et al. [1981];
Paschmann et al. [1986]). From the Faraday equation ∇ × ~E = −∂ ~B/∂t applied to a 1-D,
time-stationary discontinuity we obtain that the tangential component of the electric field is
constant

~Et = −(~v × ~B)t = const. (5.2)

In the same conditions, the equation ∇ · ~B = 0 gives us

Bn = const. (5.3)

Writing the MHD momentum equation for an anisotropic plasma in the form of a conservation
law (see for example Landau and Lifshitz [1960] §51 and Clemmow and Dougherty [1969]
§11.3.2)

∂(ρvi)
∂t

= −∂Πik

∂xk
(5.4)

with

Πik = ρvivk +
(

p⊥ +
B2

2µ0

)
δik −BiBk

(
1
µ0
−

p‖ − p⊥

B2

)
(5.5)
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(i, j, k indicating the components in a cartesian reference system) and applying this to our
model (variation only along normal direction and ∂/∂t ≡ 0) we obtain the conservation of the
tangential momentum

G~vt −
Bn

µ0

~Bt(1− α) = const. (5.6)

and the conservation of the normal momentum

Gvn +
(

p⊥ +
B2

2µ0

)
− B2

n

µ0
(1− α) = const. (5.7)

where α ≡ (p‖ − p⊥)µ0/B2 is the plasma pressure anisotropy factor, with p‖ and p⊥ being the
plasma pressure parallel and perpendicular to ~B.

The conservation of the normal mass flux

G = ρvn = const. (5.8)

together with the equation (5.2) leads us to

Bn(~v2t − ~v1t) = G( ~B2t/ρ2 − ~B1t/ρ1) (5.9)

where subscripts 1 and 2 designate plasma parameters in the two asymptotic states. From
here and when Bn 6= 0 (as we assumed), we find an expression for ~v2t−~v1t. This we introduce
in the relation

G(~v2t − ~v1t) =
Bn

µ0
[ ~B2t(1− α2)− ~B1t(1− α1)] (5.10)

which is another way to write the equation (5.6). We arrive at the result

vn1,2 = ±(1− α1,2)1/2Bn

(µ0ρ1,2)1/2
(5.11)

saying that the normal bulk velocity on either side of the discontinuity is equal to the lo-
cal Alfvén velocity corrected for the pressure anisotropy, based on the normal magnetic field
component. In addition, by changing the reference frame to a suitable one, moving along the
discontinuity (the so called deHoffmann-Teller frame), we will obtain the same type of relation
between the tangential components of the plasma bulk velocity and magnetic field on both
sides of the layer (i.e. the relation (5.1)). Therefore we can write

~v1,2 = ±

√
1− α1,2

µ0ρ1,2

~B1,2 (5.12)

The above relation, identical with (5.1), represents the so called Walén relation. The variant
with + corresponds to the situation when vn and Bn have the same sign whereas the one with −
applies in the opposite case. In the magnetopause context, the density in plasmasheath being
higher then in the magnetosphere, vn has allways a negative value (opposing the exterior normal
vector). From here and from the topology of the magnetic field lines inside the magnetospheric
cavity, we can draw conclusions about where the reconnection point is situated relative to the
point of observation. For example, in case of a day-side reconnection, the + situation appears
when the satellite collected data north of the reconnection location (when Bn is also negative).
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From equation (5.11) and taking into account (5.3) and (5.8) we arrive directly at

ρ1(1− α1) = ρ2(1− α2) (5.13)

that should be verified for an RD. Also, the conservation of normal momentum leads to

p⊥ +
B2

2µ0
= const. (5.14)

expressing the normal pressure balance (we recall here that at the MP, the magnetic field vector
is almost tangent to the surface, Bn being relatively small, around 1/10th of its magnitude).

The deHoffmann-Teller (HT) reference system, particularly useful in theoretical analysis
and data interpretation pertaining to a discontinuity like the magnetopause, was introduced
in the context of MHD theory of shock waves [deHoffmann and Teller , 1950]. Because when
speaking about the velocity of a planar discontinuity, only its normal component has a physical
significance, the authors made the observation that in a properly chosen reference system,
moving along the discontinuity with constant speed, the jump conditions across the shocks
simplify. In such a frame the magnetic field and plasma bulk velocity vectors have the same
orientation on either sides of it or, equivalently, since then ~E = − ~V × ~B = 0 we can say
that the convection electric field in the adjacent asymptotic regimes vanishes in that particular
reference frame.

Such a definition allows the existence of a HT frame not only in the RD case: Paschmann
[1985] has shown that it exists, in general, for a TD as well. Actually, with the exception of
few particular cases (like the case for a TD when the magnetic fields on the sides are parallel
and the velocities perpendicular to these fields are different) all one-dimensional discontinuities
posses such a frame (see Khrabrov and Sonnerup [1998]). We will see in the next section how
this concept is changed when it comes to experimental identification of RD in satellite data.

5.2 Practical issues in the identification of a rotational
discontinuity

For determining whether or not the MP behaves like a RD, usually we do not check the Walén
relation using measurements taken only in the asymptotic regions. The reason for that is our
inability to establish from the data, with a precision sufficiently high to rule-out ambiguity,
the two sets of parameters defining such states. In the real events there are allways present
fluctuations in the plasma and field parameters.

Connected to this issue, it is worth mentioning that the MHD treatment of the region
situated away from the reconnection site (i.e away from the diffusion region, where the data
samples are collected) predicts a complex structure of the reconnection layer that includes not
only standing Alfvén (intermediate) waves. For example, according to Biernat et al. [1989],
who used an MHD isotropic plasma model in order to match the asymmetric parameter values
in the magnetosheath and magnetosphere, we need a standing nested pair of Alfvén waves
(providing the needed magnetic field rotation) and slow-mode waves (responsible for matching
the field intensities) surrounding a contact discontinuity (taking care of asymmetries in plasma
parameters). Probably this description of plasma behaviour is too simple but nevertheles we
expect a slow-mode expansion fan region, earthward of the rotational discontinuity; the RD
remain the dominant magnetic feature of the MP at the high density side which is usually the
magnetosheath side (see Sonnerup et al. [1995])

80



5.2. Testing the existence of a RD

In the papers from Paschmann et al. [1979] and Sonnerup et al. [1981], providing the first
in-situ evidence for reconnection at the MP, the Walén relation (5.12) was tested between a
reference point in the magnetosheath and points within the MP structure, as well as on its
magnetospheric side (see also Paschmann et al. [1986]). This form of checking the tangential-
stress balance equation - which established itself as the standard procedure in RD identification
- relies on the assumption that the discontinuity is sufficiently thick when compared with the
local ion inertial length and ion gyro-radius. In this respect, the authors provided experimental
proofs for their analyzed events. Note that by proceeding in this way one actually overchecked
the tangential stress balance equation, ruling-out a fortuitous success of the test.

In order to see the underlying arguments for the assumption made in the preceding para-
graph we consider the generalized Ohm’s law for a two-component, collisionless plasma (see
Rossi and Olbert [1970], Chap. 12)

~E + ~v × ~B =
me

ne2

[
∂ ~J

∂t
+∇ · ( ~J ~V + ~V ~J)

]
− 1

ne
∇ ·P e +

1
ne

~J × ~B (5.15)

where e stands for the elementary charge, me for the electron mass, ~J for the electric current
density and P e for the electron pressure tensor. In obtaining the above relation, the only
approximations made were that the electron’s mass is much less than the ion’s mass (mi � me)
and that the thermal energies of the electrons and ions do not differ by a large factor.

Vasyliunas [1975] compared the order of magnitude of the various terms in (5.15) for
typical values of the physical quantities appearing there. He concluded that the first term on
the right, taking into account the inertial effects, has a characteristic scale length of electron
inertial length (or skin depth) λe =

√
me/µ0ne2 whereas the scale length for the second and

last term in RHS, expressing the effects of pressure gradient and of the Hall effect is the ion
inertial length λi =

√
mi/µ0ne2. For the first event to be presented in this chapter, the ion

gyro-radius ρi ' 49 km and the ion inertial length λi ' 82 km, values much greater then the
typical values of ' 1 km for λe at the MP. Therefore one can safely neglect the first term on
the RHS of (5.15). When the discontinuity characteristic length (i.e. its thickness) is much
greater than ρi and λi, the contribution from the other two terms can be neglected as well,
allowing to test the Walén relation by using points from inside the RD.

As for the deHoffmann-Teller analysis, the procedure is performed in a consistent manner,
namely by using also the measurements inside the structure when searching for the existence of
HT frame1. In this way the chance of wrongly attributing a rotational character to a tangential
discontinuity decreases even more. Indeed, if only data points from the asymptotic states would
be allowed to participate in the test, then, in general, also for a tangential discontinuity the
result will be successful. For a TD Paschmann [1985] has shown that, with the exception of
the situation when the magnetic field in the asymptotic regimes are aligned and the velocities
transverse to these fields are different, it is possible to find a reference frame in which the electric
field outside the layer vanishes. Nevertheless, in this case an intrinsic electric field component
along the normal will, in general, remain in the interior of the layer because the required
rotation of the magnetic field and velocity vectors, needed to accommodate the plasma regimes
on the sides (both having only a tangential component in this situation) are independent.

On the contrary, in the case of a RD, we expect that by transforming in the HT frame
also the electric field in the interior of the structure will be resolved. According to Paschmann

1The exact treatment of the data is presented in Appendix F. There, a procedure will be indicated (Khrabrov
and Sonnerup [1998]) that seeks a reference frame in which the electric field becomes as small as possible - in
the mean square sense - for the given set of measurements
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[1985], the needed transformation consists in removing firstly the electric field associated with
motion of the layer normal to itself, followed by the velocity transformation ~V0 = ~Et× ~Bn/B 2

n

where ~Et and ~Bn are the tangential electric field component and the normal magnetic field
component. Note that, due to the conservation relations referring to ~Et and ~Bn, ~V0 has the
same value everywhere for a one-dimensional, time-stationary discontinuity. By applying this
transformations the tangential component of the electric field inside and outside the disconti-
nuity vanishes and in MHD approximation a RD has no internal electric field along the normal
direction (because in this model there is no electric field component along ~B). As pointed
by Khrabrov and Sonnerup [1998], such an intrinsic normal electric field comes exclusively
from the ∇ · P e term of equation (5.15) which could be neglected when the discontinuity is
sufficiently thick.

Nevertheless, it should be stressed that a good identification of HT frame is only a sufficient
condition for the existence of a RD, even when points from inside the discontinuity were used
in the analysis. There are cases of TDs that pass this test but for which the Walén relation is
not satisfied.

Another important experimental aspect in RD identification refers to the plasma moments
used in the HT and Walén tests. In Section 5.1 all the plasma quantities (density, velocity,
temperature and pressure) refer to the centre of mass (COM) moments. The contributions
from each ion species and from electrons are in this way properly weighted. But in practice,
it is difficult to obtain reliable moments for electrons and for minor ion species (in case these
are present) and therefore, in the usual case, we work with the proton moments.

In principle, trustworthy electron moments would have two important advantages as in-
dicated in Scudder et al. [1999]. In that paper, the authors formulated the Walén relation
based only on electrons (and magnetic field) quantities and provided arguments that testing
for a RD with the new relation is more appropriate because these particles better follow the
magnetic field lines as compared with the ions. In this way one can apply the test using points
from inside the structure, even when the discontinuity’s thickness is not large compared with
λi and ρi, and therefore the last two terms in equation (5.15) become important. The second
benefit of an electron based Walén relation relies on the fact that they are the only negative
particles, and therefore the problem of separating between different species disappears. In case
of positive ions when, in principle, we have to asses the contributions from each ion species
in the tangential-stress balance equation, such a separation is always a problem as will be
discussed later on.

However, obtaining reliable electron moments from measurements taken on-board satellites
is a challenge because there is always a population of photoelectrons present, created by the
solar radiation incident on the spacecraft surface, and whose influence on the detectors corrupts
the signal from ‘true’, ambient electrons. In addition, in the MP region the electrons are highly
subsonic, i.e. their thermal velocity greatly exceeds the bulk velocity, making the experimental
determination of the latter difficult (see Paschmann et al. [1998]). In the paper from Scudder
et al. [1999], presenting results of RD identification at the magnetopause by using electron data
from the Polar, Hydra instrument, the authors reported a procedure to clean the influence
of photoelectrons on their detector. No such study was reported, to our knowledge, with
the Cluster, PEACE electron detector even though the mission was equipped with an active
spacecraft potential control device (ASPOC) which limits the role of photoelectons in the
measurements.

In the MP region we expect, besides protons, the presence of some minor ion species,
particularly He 2+ particles of magnetosheath origin and He+ and O+ ions of ionospheric origin,
whose contributions in the Walén relation have to be taken into account properly. Ideally, one
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Ways of doing the Walén test

1

2
Magnetosheath

Magnetopause

Magnetosphere

ρ, α, ~V , ~B

ρ, α, ~V , ~B

The jump conditions from Section 5.1 strictly
apply between points 1 and 2 situated in the
asymptotic regimes on either side of the rota-
tional discontinuity.

2

1

Magnetosheath

Magnetopause

Magnetosphere

ρ, α, ~V , ~B

ρ, α, ~V , ~B

When testing the Walén relation at the MP we
use points situated within the current-caring
layer as well, considering that relations similar
to the jump conditions exists between any two
such points (approximation of thick disconti-
nuity).

2

1

Magnetosheath

Magnetopause

Magnetosphere

ρ, α, ~V , ~B

ρ(1 − α) = const

α, ~V , ~B

Some variant of the test incorporates the re-
lation ρ(1− α) = const in the Walén test. In
this case we chose as reference a point in the
magnetosheath for which ρ2 and α2 are known
and replace ρ1 by ρ2(1−α2)/(1−α1). There-
fore in this case only the pressure anisotropy
factor corresponding to state 1 is used.

Figure 5.1: Variants of the Walén test. In the above pictures we sketch a satellite trajectory
as it crosses a planar MP behaving like a rotational discontinuity. The dots along the trajectory
indicate the points where plasma as well as magnetic field measurements are taken. In the right
column the three possible ways of performing a Walén test is described.

would need precise measurements, and with enough time resolution, of their moments in terms
of density, velocity and temperatures, but that proves to be a difficult goal to achieve. For
example, in case of Cluster mission, the CODIF sensor, (the ion mass spectrometer, part of the
CIS experiment) is often saturated in the magnetosheath region, an effect difficult to be assessed
with enough accuracy. Another issue that should be considered with CODIF is the spillover
effect, by which the sensor registers false counts in the He+, He 2+ and O+ channels produced
in the presence of large proton fluxes. Therefore one prefers to work with the measurements
provided by HIA sensor, the part of the CIS experiment than does not separate between
different ion species and, consequently, where in the computation of the moments all particles
are considered as protons. For this detector, the saturation is not an issue and the plasma
moments are in general computed based on measurements acquired with higher spatial, energy
and temporal resolution than for CODIF.

In the papers of Paschmann et al. [1979] and Sonnerup et al. [1981], reporting about the first
direct evidence of magnetic reconnection at the MP, a certain percentage of He 2+ particles was
assumed (typical values or values based on fortuitous simultaneous measurements in the solar
wind, provided by another satellite) in order to take their influence into account. In Paschmann
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et al. [1986] another manner for assessing the contribution of He 2+ was proposed, relying on
the equation (5.13), namely that the quantity ρ(1 − α) is constant for a RD. The authors
used measurements from an energy/charge plasma instrument unable to resolve different ion
species and showed that, for some typical plasma parameters at the MP and when a minor
population of heavier ions is present, the errors in assessing the plasma pressure anisotropy
factor α from this type of instrument are smaller than the errors in density. Consequently,
when performing the Walén test, they proceed in the following manner: first, a reference
point in the magnetosheath is chosen for which the quantities, say α2 and ρ2 are known (or,
alternatively, the used average values on certain number of data points from that region).
Then, for the points inside the discontinuity, the values of α provided by the instrument are
considered whereas for the density the values ρ2(1− α2)/(1− α) are used.

The three ways of performing the Walén test at the MP, described in this section, are shown
in Figure 5.1

It is worth mentioning that the background of the practical aspects presented in this sec-
tion is the goal to experimentally verify the Walén relation (5.12). While the required vectorial
parallelism of (5.12) is confirmed with high accuracy, the recovery of the proportionality con-
stant was less satisfactory, the observed values being typically around 60% ÷ 80% of the one
theoretically predicted (see for example Sonnerup et al. [1981], Phan and Paschmann [1996]
and Phan et al. [1996]). In the line to explain this discrepancy, one would also like to mention
the work from Sonnerup et al. [1990], where the interpretation was proposed that a possible
acceleration of the discontinuity is the responsible cause. Therefore an improvement of the HT
technique was introduced which allows for an accelerating movement of this reference frame
(see Appendix F).

Related to the success of a RD identification in the experimental data, an important aspect
to be considered is that the Walén test is based on the one-dimensional model (i.e. the physical
quantities vary only along the normal direction). In the real situation, we compare the change in
plasma velocity with the magnetic field change, all measurements being taken along the satellite
trajectory. But the plasma sampled on the earthward side of the discontinuity crossed the MP
far away from the satellite location, closer to the diffusion region, and did not experienced the
MP magnetic structure at the point of observation (see Sonnerup et al. [1981]).

5.3 Overview on the 14 March 2002 event

General conditions.
In Figure 5.2 the Cluster satellites orbit and configuration corresponding to the first event to be
discussed in this chapter are shown. The transition occurred around 01:06:00 on 14th of March
2002 at the dayside MP, near [7.9, −3.0, 8.0]RE in GSM coordinate system. It is an inbound
crossing from the magnetosheath plasma regime to the magnetosphere region (better seen on
Figure 5.3, to be presented later in the text). In the upper part of the figure showing the orbit
(taken from Cluster Science Data System home page), a model MP and bow-shock are drawn
and the distance between the satellites is scaled by a factor of 175. The four spacecraft are in
a tetrahedral configuration, the separation distance being around 100 km.

On the bottom part of that figure two plane projections of the Cluster configuration at
the time of traversal are shown, both of them with C3 - the first satellite entering the MP -
at the origin of the coordinate system. In the plot showing the projection on the MP plane
- the plane perpendicular to the direction obtained by averaging the individual normals from
constrained MVAB method - the ~x axis corresponds to the direction along which the magnetic
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5.3. Overview on the 14.03.2002 event

Figure 5.2: Upper part: Cluster orbit projections on the planes of the GSE coordinate system for
the time of event. The distance between the satellites was increased by a factor of 175 in the plot.
Lower part: Projection of Cluster configuration at the time of transition on the MP plane and on
a plane containing the MP normal. See text for a detailed explanation.
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Figure 5.3: Magnetic field and ion measurements around the time of our event (indicated by
the vertical dashed lines). From top to bottom, in the first six panels, we have magnetic field
GSE components, ion density (computed on-board and at ground), components of ion velocity in
GSE, ion parallel and perpendicular temperatures (computed on-board and at ground) and ion
differential energy flux as measured by Cluster 3. The last two panels present the conditions in
the solar wind, i.e. magnetic field GSE components and dynamic pressure, based on (shifted) ACE
measurements. See text for further explanations.
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5.3. Overview on the 14.03.2002 event

field exhibits the maximum variance whereas the ~y axis indicates the magnetic intermediate -
variance direction. The adjacent projection has the average MVAB normal direction as ~x axis
and the same ~y axis. Because for a inbound transition a satellite is moving in the direction
opposite to the MP normal, we can clearly observe that the time-sequence of the satellites’
crossings is C3, C4, C2 and C1. This sequence is indeed obtained from the timing analysis
(see the upper part of Figure 5.6, introduced later in the text).

In Figure 5.3, we present the same physical quantities as in Figure 3.4 namely GSE mag-
netic field components, HIA plasma moments (density, GSE velocity components, parallel
and perpendicular temperatures), HIA differential energy flux and the parameters of the so-
lar wind. The time interval for our event is indicated with dashed vertical lines. Again, the
displayed measurements were taken by Cluster 3 (panels 1 - 6) and ACE (panels 7 and 8)
satellites. When plotting ACE measurements, we took the time-delay into account resulting
from solar-wind plasma propagation. A retardation of around 51 minutes, needed for the solar
wind to reach the [10, 0, 0]RE point in GSE coordinates was estimated by using the Weimer
method (Weimer et al. [2002]; Haaland et al. [2006]). More precisely, the solar wind phase
front orientation was computed using the constrained MVA of the interplanetary magnetic
field (IMF) data and then the solar wind velocity along that direction was considered2. A less
precise method, that takes only the x GSE component of the solar-wind into account produced
a similar result (i.e. 53 minutes), leading practically to the same conclusions.

In Figure 5.4 the first four panels present the magnetic field components in the GSE refer-
ence frame. For each satellite one can identify a ‘clean’ MP transition by the smooth rotation
of the magnetic field vector between the roughly constant levels of magnetosheath (to the left)
and magnetosphere (to the right). Owing to that behaviour, this event qualifies for a reliable
investigation with the timing method. The significance of the vertical lines is related to the
computation of the MP normal by the MVAB method and will be explained below.

Because the separation distance between the satellites was only 100 km, and taking into
account that the computed MP thickness for this event is around 1060 km (as will be shown
later in this sections), the conditions for applying the curlometer technique are fulfilled.3 We
show in the last two panels the current density obtained from this method (the three compo-
nents in GSE reference frame) and a comparison between the magnitude of ∇× ~B (in violet)
and of ∇ · ~B (in yellow). Since ∇ · ~B should be ideally zero, this comparison is an indicator of
the errors in assessing the current density by the curlometer method, the rule of thumb being
that the values of |∇ · ~B| should be smaller than those corresponding to |∇ × ~B|. As one can
see, this criterion is fullfiled when all the spacecraft are inside the MP structure (time interval
between the vertical dotted lines in the last two panels) with the exception of a single point,
where |∇× ~B| ' 0. In establishing the positions of these vertical lines, we used the information
from the timing analysis (upper part of Figure 5.6): the first line indicates the time when the
trailing satellite (Cluster 1) reaches the MP leading edge whereas the second line indicates the
time when the leading spacecraft (Cluster 3) exits the MP interior.

2We thank Dr. Stein Haaland for applying the Weimar method for this event
3The curlometer technique (see for example Dunlop et al. [2002b] and the references therein) makes use of

the Cluster 3-D multi-point capability. It refers to the direct estimation, via Ampère’s law, ∇ × ~B = ~J , of
the electric current density ~J by using the magnetic field measurements ~B taken simultaneously at the four
satellites. Linear spatial variation between the points of measurements, meaning the constancy of ~J over the
satellite configuration, is assumed. Therefore, the method is applicable when the inter-spacecraft separation
distance is much less than the scale length of the current density variation. Another assumption made is
time-stationarity. In practice, an indication of the linearity of the spatial magnetic variation is obtained by
checking the ∇ · ~B = 0 relation, but there are other effects that may cause non-zero values for this quantity
(like non-stationarity, error measurements or big distortions from the spacecraft tetrahedronal configuration).
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CHAPTER 5. Magnetic reconnection at the magnetopause

Figure 5.4: First four panels: Magnetic field as measured by the Cluster satellites during the
MP crossing. The x, y and z GSE components are shown in blue, green and red lines respectively.
The minimum and maximum length intervals entering the MVAB nested analysis (vertical dotted
lines) together with their common central time (dot-dashed lines) are indicated for each satellite.
Last two panels: Current density components in GSE, obtained from the curlometer technique and
a comparison between the absolute values of ∇× ~B (violet trace) and of ∇ · ~B (yellow trace). The
time interval when all four satellites are inside the MP structure is indicated.
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5.3. Overview on the 14.03.2002 event

Product 28: energy vs. TOF
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Figure 5.5: The distribution of events registered by the product P28 during a 100 minutes period
that includes the analyzed transition, according to the TOF channel (on the abscissa) and energy
channel (on the ordinate). The white vertical lines indicate the thresholds used by the on-board
software to discriminate the particles according to their species. The Oxygen ions are seen at higher
energies; see the text for more explanations.

Due to the already mentioned spill-over effect (see Section 5.2), when assessing the presence
of minor ion species at the MP it is advisable not to fully rely on the plasma moments provided
by CODIF. Still, one can qualitatively evaluate the presence of minor ions by using the so-
called P28 data product provided by the instrument. This product is collected with a poor
time resolution and poor statistic (an average of around 10 counts per second) but has the
advantage of transmitting to the ground the full information on time-of-flight (TOF), energy
and direction for each registered event.

In Figure 5.5 we present a 2D histogram of the number of events recorded on-board Cluster
3 with the P28 product, according to the TOF channel (on the abscissa) and energy channel
(on the ordinate). The plot corresponds to a time interval of 100 minutes that includes the
analyzed MP transition. During this period the satellite spends about the same amount of
time inside and outside the magnetosphere. The over-plotted vertical parabolic white lines des-
ignate regions in the TOF - energy plane assigned by the instrument to different ion species.
Consequently, we have, starting from the low TOF channels, the areas corresponding to pro-
tons, He 2+, He+ and O+ particles (the zone between He+ and O+ is not associated with any
type of particles).

In interpreting Figure 5.5 we have to consider that protons are suppressed by a factor
of 10 in the P28 product in order to improve on the statistics of minor ions. Therefore, in
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CHAPTER 5. Magnetic reconnection at the magnetopause

reality, the number of counts in the proton area is 10 times higher. The manifestation of the
spillover effect is visible by the relative high numbers of counts, adjacent to the H+ region.
Therefore, most of the events in the He 2+ band are not caused by Alphas but by protons that
give a false signal in that region. We notice the presence of a ‘genuine’ (i.e. not produced
by the spillover effect) O+ population. This population is faint and we do not think it has a
significant influence on the Walén relation. Later on in this chapter we will consider another
event with a considerably higher O+ presence (see Figure 5.14) for which this type of influence
is examined. A comparison between the two events is facilitated by the number of O+ counts
in the highest 25 elementary energy channels (approximately between 8.5 keV and 40 keV;
above the horizontal white line indicated in the plot) that roughly contains this population in
both events.

Inferring the magnetopause thickness.
In determining the individual MP normals we used the magnetic variance analysis and followed
a similar procedure presented in Section B.4:

- we started with data of 0.2 seconds time-resolution and then we averaged the measure-
ments by using a boxcar window of 1.6 second width, in the same time resampling the
data to a resolution of 0.8 seconds, with the intention to eliminate the finer small-scale
structure which is of no interest in our study.

- for each satellite a number of thirteen symmetric nested intervals were chosen, centred
on the same point approximately around the transition centre. These central times, the
minimum and maximum length intervals are indicated for each satellite by the vertical
lines in the first four panels of Figure 5.4.

- for each of these thirteen intervals a constrained (to 〈Bn〉 = 0) minimum variance analysis
was performed (see Appendix A for a method description) and the directions in space
identified in this way were associated with the MP normal for the satellite in question
and for that particular data interval.

- from the thirteen normals, an average direction was computed and associated with the
individual MP normal for that specific spacecraft. By using the nested intervals, we
minimize the dependence of the result from the interval of analysis.

We carry out also a plain (unconstrained) MVAB on our event in exactly the same manner
and the results from both analysis are presented in Table 5.1. For each satellite the eigenvalues
and the components of the eigenvectors in the GSE reference frame of the magnetic variance
matrix are presented in case when the constraint 〈 ~B〉 · ~n = 0 was imposed and without this
condition. In the latter situation the value of 〈 ~B〉 · ~n is indicated in the rightmost column.
The normal vectors provided by each technique appears in bold face. One can notice that
the constrained normals are very well defined, the ratio λmax/λint being ≥ 21 whereas in case
of the unconstrained analysis the ration λint/λmin is around 3, which makes these normals
unreliable. Another argument to reject the unconstrained normals takes into account the high
normal magnetic component which they imply (between 22.8 and 25.3 nT), values that are
unreasonable large. This is another example when the plain MVAB method gives erroneous
results (see the discussion from Section B.4).

In the upper part of Figure 5.6 the procedure of extracting the timing information from
the magnetic field data is illustrated. We follow the same steps as in Section B.4, the only
difference being that now the MP was considered as planar. This assumption is supported by
the orientation of the individual constrained MVAB normals, represented with coloured squares
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5.4. Analysis of the 14.03.2003 event

Table 5.1: Results from the constrained and unconstrained minimum variance analysis of the
magnetic field, performed on the thirteen nested intervals. For a detailed descriptions of the
procedures and of the parameters appearing in this table see the text. The normal components in
GSE and the magnetic variance provided by each technique is shown with bold faces.

Constrained MVAB Unconstrained MVAB

λ [nT ]2 nx ny nz λ [nT ]2 nx ny nz 〈 ~B〉 [nT ]

0.00 0.7871 −0.5262 −0.3219 1.93 0.5792 −0.6593 0.4784 −24.3
Cluster1 3.55 0.2353 −0.2261 0.9452 5.51 −0.2768 0.3926 0.8766

74.65 −0.5701 −0.8197 −0.0542 80.73 −0.7664 −0.6406 −0.0445

0.00 0.7746 −0.5418 −0.3261 1.86 0.5808 −0.6403 0.5021 −23.5
Cluster2 3.87 0.2545 −0.2049 0.9451 6.45 −0.2708 0.4294 0.8611

82.61 −0.5789 −0.8151 −0.0209 89.03 −0.7672 −0.6365 0.0765

0.00 0.7616 −0.5550 −0.3344 2.01 0.5972 −0.6723 0.4361 −25.3
Cluster3 4.04 0.2871 −0.1736 0.9420 5.91 −0.1765 0.4202 0.8894

93.72 −0.5809 −0.8135 0.0270 102.72 −0.7821 −0.6089 0.1326

0.00 0.7799 −0.5357 −0.3236 1.96 0.5630 −0.6379 0.5252 −22.8
Cluster4 3.38 0.2537 −0.2020 0.9459 5.40 −0.2722 0.4568 0.8468

78.91 −0.5720 −0.8199 −0.0217 86.54 −0.7802 −0.6198 0.0837

and MVABC1 symbols in the polar plot (the bottom part of the same figure). One notices
that these normals are contained in a cone having approximately 2 ◦ half-width and with the
axis oriented along the average (over the four satellites) MP normal direction (magenta square,
symbol MVAB).

The magnetic profiles used in extracting the timing information correspond to an average
(over the four satellites) maximum variance direction. The magnetic levels in the magne-
tosheath and in the magnetosphere are approximately the same for all satellites, as it should
be for a planar discontinuity. Therefore, when fitting the data, we impose common values of
the asymptotic levels for all four traces. We also excluded a few points on the magnetosheath
side of the discontinuity from the fitting process, representing some local, smaller scale irreg-
ularities. Like in Section B.4, a hyperbolic tangent profile has been assumed for the magnetic
variation at the MP and the same convention about the MP extent was adopted (i.e. a fraction
of tanh(1) ≈ 76% of the total magnetic jump - between the horizontal dashed magenta lines).

The timing normals (symbols CTA and CVA refer to the constant thickness approach
and, respectively, constant velocity approach; see Section B.1 for a short presentation of these
techniques) are also close to MVAB direction (approximately 4 ◦). The result implies an inde-
pendent confirmation of the MP planarity for this event. The average MP thickness obtained
from CVA was around 1200 km, whereas the CTA technique gives a value of 915 km for this
parameter. If we consider the average direction obtained from the two timing procedures
(vectorial sum of the CTA and CVA normals) we obtain a MP thickness of around 1060 km.

5.4 Analysis of the event from 14 March 2002

In case of the transition presented in Section 5.3, there is convincing evidence that the MP
behaves like a rotational discontinuity. In Figure 5.7 we show the evolution of various physical
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Figure 5.6: Upper part: The magnetic maximum variance components together with their fits
are shown for all four Cluster satellites according to the mission colour code. Note that the traces
are displaced for a better visualization. The magnetic levels corresponding to the MP boundaries
are indicated by horizontal dashed lines. Timing information appears in the legend box. Lower
part: Polar plot with the normals obtained from the constrained MVAB of the magnetic field and
by using the planar timing techniques of CVA and CTA. In the lower right corner the orientation
of GSM unit vectors in the MP reference frame is shown.
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5.4. Analysis of the 14.03.2003 event

parameters, as measured by Cluster 3, around the time of the MP encounter. Starting from
top to bottom we have:

- HIA differential energy flux - time spectrogram for the whole energy range of the sensor

- magnetic field components in GSE, with Bx in blue, By in green and Bz in red

- plasma bulk velocity components in GSE, with the same colour code. All the moments
in this plot are calculated on-board from HIA measurements

- the magnitude of the plasma bulk velocity

- plasma pressure perpendicular to ~B (in red), magnetic pressure B2/2µ0 (in black) and
their sum (in cyan)

- plasma parallel (in green) and perpendicular (in red) temperatures

- plasma pressure anisotropy factor α ≡ µ0(p‖− p⊥)/B2 computed in two ways: by diago-
nalization of the plasma pressure tensor (in black) and by directly using the information
about the orientation of ~B (in blue)

- the quantity N(1−α), which for a rotational discontinuity should be constant if we neglect
the electrons contribution. In this panel there are actually two traces, corresponding to
the two different ways of computing α, but they indicate practically the same evolution.

- plasma ion density (in black) and electron density from WHISPER instrument (in green).
For the ions density we indicated the central time of the measurements taken with the
HIA detector.

In Figure 5.8 we show the results from deHoffmann-Teller and Walén tests corresponding
to the time interval indicated by the black dotted vertical lines. The interval is located on
the magnetosheath side of the transition and starts around the time when the change in the
plasma velocity is noticed (better seen in the panel presenting its magnitude). In the left plot,
we present the fit between the measured convection electric field ~Ec = −~V × ~B (on ordinate)
and the convection electric field ~EHT = −~VHT × ~B associated with a time-stationary structure
moving with the determined HT velocity (on abscissa). Different components are indicated by
different colours. The slope of the fit line (1.01), the correlation coefficient (0.99) and the ratio
D/D0 between the electric field intensities in the starting and HT frames (0.01) demonstrate a
very good identification of the HT frame. The right plot, with the outcome of the Walén test,
shows the fit between the plasma velocity components in the HT frame (on ordinate) and the
local Alfvén velocity components ~Bi/(µ0ρ)1/2, i = 1, 3 (on abscissa). The correlation coefficient
of -0.99 is close to the ideal values of ±1 whereas the value of the slope (-0.68) is different from
the values predicted for a model RD (i.e. ±1) but well convincing for a successful Walén test
at the MP (see e.g. Paschmann et al. [2005a]). Notice also the relative large dynamic range
in the x and z components (blue and red points) and the fact that all points lye close to the
regression line, findings in support of a RD.

The negative values obtained when testing the tangential stress balance indicate that the
normal components of the magnetic field Bn and bulk velocity Vn have different signs. Because
Vn is oriented opposite to the MP normal (the magnetosheath plasma density being higher than
the plasma density inside the magnetosphere) it means that Bn is positive (i.e pointing along
the MP normal). Considering the topology of the magnetic field lines inside the magnetosphere
for its northern hemisphere, we conclude that the measurements were made southward to the
reconnection line. This is a typical case of tailward of the cusp reconnection, favoured by the
northward orientation of IMF Bz component. Due to the precise computation of the time
necessary for the plasma conditions measured by ACE to propagate at the magnetosphere
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Figure 5.7: Plasma (ions) and magnetic field parameters for the inbout transition from 14 March
2002 as measured by Cluster 3 satellite. In the text, a detailed description of the displayed physical
quantities is given. The black vertical dashed lines indicate the interval of analysis, whereas the blue
vertical dashed lines designate points in the magnetosheath taken as reference in the Walén test.
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Walén test with Cluster 3 data

Figure 5.8: Left-hand side: The result from deHoffmann-Teller analysis is shown. The plot
presents the fit between the electric field ~Ec = −~v × ~B (on ordinate) and the convection electric
field ~EHT = −~VHT × ~B associated with a time-stationary structure moving with the determined
HT velocity (on abscissa). The GSE components of HT velocity are indicated. Right-hand side:
The Walén test result, obtained when the relation ρ(1 − α) = const. is not incorporated in the
tangential stress balance equation. The fit between the Alfvén velocity components (on abscissa)
and the plasma velocity components in the HT frame (on ordinate) is shown. In both pictures
different components are indicated by different colours.

level (see Figure 5.3 and the accompanying comments) we have a consistent picture for the
sequence of phenomena. A few minutes before Cluster detects the event, the IMF Bz turned
from stable, slightly negative values to stable positive ones (i.e. pointing northward). That
triggered the reconnection onset at high magnetic latitudes (above the northen cusp) leading
to the RD formation at the MP.

The non-constancy of ρ(1− α) in experimental data.
From the second-last panel of Figure 5.7 we notice that N(1 − α), which is proportional to
ρ(1−α), if we neglect the electron contributions, is not constant across the discontinuity. The
evolution of this quantity mimics the evolution of the number density N , depicted in the last
panel, as if the (1− α) term plays no important role.

When selecting the event from 14 March 2002 we had in mind to present a case for which
the conditions are as close as possible to the requirements of the RD theory. The following list
summarize the experimental facts presented so far:

- when investigating the MP orientation by two independent methods (MVAB and timing
analysis) we arrived at the conclusion of a planar discontinuity

- the MP thickness was computed to be around 1060 km, much greater than the proton gyro
radius (average and maximum values are 49 and 55 km, respectively, for this event) and
the proton inertial length (with the average and maximum values of 82 and, respectively,
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Walén test with Cluster 3 data

Figure 5.9: The Walén test results, obtained when the relation ρ(1−α) = const. is incorporated
in the tangential stress balance equation. The considered time interval and satellite are the same
as in Figure 5.8 and different reference points in the magnetosheath were used, indicated by the
blue vertical dashed lines, labelled 0, 1, 2, and 3 in Figure 5.7. Note that the first such reference
point (corresponding to the result presented in the upper right panel) is the starting point of the
analyzed interval.

104 km). Therefore the MHD treatment is well justified.

- there is evidence in support of a stationary discontinuity. The clear and smooth transition
in the magnetic field seen by all satellites and also the conservation of total pressure (i.e.
plasma pressure perpendicular to ~B and magnetic pressure; see the fifth panel in Figure
5.7 and (5.14)) across the MP are evidences in this direction.

- according to the discussion at the end of Section 5.3, the presence of minor ion species
for this event is faint and does not influence significantly way the various conservation
laws deduced for a RD

- the deHoffmann-Teller and Walén tests were successful, indicating the presence of a RD

Yet, despite the above experimental facts, the quantity ρ(1−α) is not constant as expected
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5.4. Analysis of the 14.03.2003 event

according to the theory for a RD. Notice that we computed the plasma pressure anisotropy in
two ways (and obtained practically the same result) and that the ion density as determined
with HIA was cross-checked with the electron density provided by the WHISPER instrument.

The experimental finding that ρ(1−α) 6= const is not unique for the transition in question:
in general, the observations at the MP show that p‖ < p⊥ in the magnetosheath, like in Figure
5.7. This means that α ≡ (p‖− p⊥)µ0/B2 < 0 resulting in (1−α) > 1. From the observations
we know that NMsheath/NMsphere > 1; if we take a rather small value for this ratio, like 3,
one would need values for α < −2 in the boundary layer in order to save the relation. The
realization of this last condition is very improbable in that region, where sometimes we have
p‖ > p⊥ (and therefore α > 0 (see for example the superposed epoch analysis and the individual
events presented in the studies of Bauer [1997] and in Phan and Paschmann [1996], dedicated
to the low-latitude dayside magnetopause and boundary layer).

An even more puzzling aspect is that we obtain better results for the Walén test when
the relation ρ(1 − α) = const is incorporated in the tangential stress balance equation (see
discussion from Section 5.2 and Figure 5.1, the bottom panel). In Figure 5.9 we showed four
results of the test (labelled ‘0’, ‘1’, ‘2’ and ‘3’) performed on the same time-interval as for
Figure 5.8 in the variant that uses the running α, with the magnetosheath reference points
indicated in Figure 5.7 by the cyan dotted vertical lines. Note that in the first plot (upper left
panel, labelled ‘0’), where the reference point is actually the first data point of the analyzed
interval, we used exactly the same information as in Figure 5.8 but organized differently, by
incorporating the relation ρ(1−α) = const . The Walén slope improves from -0.68 to -0.83. and
the correlation coefficient becomes 1.0. The best result is obtained when using the reference
point labelled ‘2’ in Figure 5.7, when the slope becomes -0.89.

This type of behaviour is not specific to the event presented: in general by using the
running α in the Walén test we obtain values of the slope closer to ±1, even when the presence
of minor ions is negligible. As discussed in Section 5.2, this way of performing the tangential
stress balance test was introduced by Paschmann et al. [1986], as a way to take into account
the contributions from minor ion species when the plasma instrument is unable to discriminate
between different type of ions (see also Phan et al. [2004]).

The contribution of the current density in the Walén relation.
In case when no minor species are present or when their overall contribution in the equations
describing the conservation of various quantities across the discontinuity is so small that it
could be ignored, a better approximation for the Walén relation could be obtained. The idea is
to use indirectly, via the experimentally determined current density, the Walén relation based
on electron moments, a form of the test that is thought to be obeyed with a higher degree than
the classical form, based on ions.

In Scudder et al. [1999], the authors used the approximation

~E(z) = − ~Ve(z)× ~B(z) (5.16)

for the electric field all the way through the current carring layer of an RD, arriving at the
following formula for the jump condition in the proton velocity:

[
~Vp(z)

]
= ±κe

[
~B(z)
ρ(z)

]
+

[
∇× ~B(z)
µ0eN(z)

]
(5.17)

(formula 43b from the cited paper).
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The quantities appearing in these formulas are the electric field vector ~E, electron fluid
velocity ~Ve, magnetic field vector ~B, proton fluid velocity ~Vp, a constant of proportionality κe,
the density N and the mass density ρ of the uni-fluid. We indicated by z dependence, the
quantities variation along the normal direction and by [ ] the differences between the values at
any two points of measurement. The constant of proportionality κe for an electron - proton
plasma takes the well known form appearing in the standard Walén relation

κe =
√

ρ

µ0

√
1−

µ0(p‖ − p⊥)
B2

=
√

ρ

µ0
(1− α) (5.18)

where p‖ and p⊥ and α are uni-fluid quantities. Note that (5.16) offers a better approximation
for the electric field than the ideal MHD approximation ~E = − ~V × ~B, because of the known
fact that the electrons are following closer the magnetic field lines than the ions do.

By introducing in (5.17) the expression for κe, we arrive at

[
~Vp(z)

]
=

[√
1− α(z)
µ0ρ(z)

~B(z)

]
+

[
∇× ~B(z)
µ0eN(z)

]
(5.19)

We will work with this formula, considering (like throughout this thesis) that the uni-fluid
quantity α appearing in (5.19) could be approximated by using the proton parallel and per-
pendicular pressures (see discussion in Section 5.2) One notices that the term on LHS and the
second (or correction) term from RHS could be coupled to give the electron velocity ~Ve in case
of a proton - electron plasma

~Ve = ~Vp − ~J/eN (5.20)

The correction term ~J/eN was roughly evaluated in other papers either by using the total
magnetic field variation across the MP and the MP thickness (see for example Paschmann et al.
[2005a]) or by using an approximate value for the magnitude of ∇ × ~B (Phan et al. [2004]).
The authors arrived at the conclusion that the differences between ion and electron velocities
are small in the analyzed events (below 10%) and therefore unimportant. For our event, the
small inter-spacecraft separation (roughly 100 km) compared with the MP thickness and the
clean transitions seen by all satellites makes it possible to use the full three-dimensional current
density vector to asses the correction implied by this term in the Walén results.

In figures Figure 5.10 and Figure 5.11 we showed the results of applying (5.19) to Cluster
1 and Cluster 3 data, the only two satellites for which the HIA data are available. Starting
from top to bottom we have:

- the first three panels contained the same quantities as in Figure 5.8, namely the HIA
differential energy flux time-spectrogram, magnetic field components in GSE and plasma
bulk velocity components in GSE (coloured lines)

- with crosses, we overplotted on the third panel the GSE components of ~Vp − ~J/eN

- the two panels at the bottom contain the GSE components of the current density ~J ,
calculated from the curlometer technique, and the ions number density N . In obtaining
~J we used the same magnetic data as in the timing analysis (i.e. 0.8 second time-
resolution) and we averaged the result by using a boxcar of 4 seconds width, imposing
the same time tags as for the HIA on-board moments of the satellite in question.
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Cluster 1: influence of the current density on the Walén test

Figure 5.10: Results of the Walén test when the current density term is taken into account. Data
from Cluster 1 are shown. The format of this figure, as well as the physical parameters displayed
are described in the text.
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Cluster 3: influence of the current density on the Walén test

Figure 5.11: Results of the Walén test when the current density term is taken into account. Data
from Cluster 3 are shown. The format of this figure, as well as the physical parameters displayed
are described in the text.
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5.5. Overview on the 26 January 2001 event

The vertical dotted lines designate the time interval when all four satellites are located
within the MP interior (as discussed for Figure 5.4) and therefore, strictly speaking, one
should consider as valid only values for ~J from this time span. Between the two groups
of panels we present the results of the Walén test, (in terms of the regression line slope)
when the current density term was neglected (black numbers) and when this correction was
applied (red numbers). In order to show that the effect is not caused by some local fluctuation
in the measurements, different intervals were used in the analysis, indicated with magenta
horizontal segments. For example in case of Cluster 1, the first interval extends over 8 points
of measurements, starting roughly at 01:05:29 and ending roughly at 01:06:01. For this interval
the Walén test improves from -0.58 to -0.62. In total, in these two figures a total of 60 Walén
test are shown (30 for each satellite, corresponding to 15 data intervals, with and without
incorporating the ~J/eN quantity).

It is clear from Figure 5.10 and Figure 5.11 that the corrected form of the Walén test brings
better values in term of the regression line slope practically in all cases, although this effect is
small. If we consider the intervals just contained within the vertical dotted lines (where the
correction term is reliable determined) we obtained an improvement from -0.60 to -0.65 (∼ 8%)
for Cluster 1 and from -0.81 to -0.85 (∼ 5%) for Cluster 3. The fact that the amelioration
is relatively small and that we have still obtained results far from the ideal situation of ±1,
differentiate us from the work of Scudder et al. [1999], were the authors made a comparison
by performing the Walén test using electrons (‘cleaned’ from the photoelectric effect) and ions
on the same MP transitions.

When plotting Figure 5.10 and Figure 5.11, and in all the Walén tests presented there which
include the correction term, we took into account that the current density, computed with the
curlometer technique (see the Footnote 3 on page 87), is associated with the barycentre of the
spacecraft configuration. This aspect brings practically no changes in the conclusions presented
on this topic but nevertheless we implemented the needed changes for the sake of consistency.
Therefore, because Cluster 1 - the last satellite entering the MP - is roughly 46 km behind
the barycentre in the MP normal direction and considering a velocity for this structure of
approximately 39 km/sec (as resulted from the timing analysis) we arrive at the conclusion
that a delay of 1.17 seconds should be introduced in the current density time evolution. A
similar argument can be applied for Cluster 3, where an opposite compensation of 1.35 seconds
was used.

5.5 Overview on the 26 January 2001 event

The next issue to be discussed in this chapter will be illustrated with data from 26 January 2001,
when the Cluster spacecraft recorded multiple MP transitions in the high-latitude northern
hemisphere, around 15:00 magnetic local time. This event has been studied in Phan et al.
[2004], where the authors presented evidence in favour of a continuous reconnection process,
active over a period of more than 2 hours. During this time interval, an average of 10 complete
MP crossings per satellite were detected, for each of them the Walén relation being satisfied
with remarkable accuracy.

From our point of view, the particular feature of interest characterizing these transitions is
the occurrence of O+ ions in relative high abundance. We will investigate, from an experimental
perspective, whether the presence of this minor species has a noticeable effect in the outcome
of the tangential stress balance test. In following this, we will focus our attention on two
particular transitions, identifiable on Cluster 3 data at around 10:43:30 and around 11:03:00.
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CHAPTER 5. Magnetic reconnection at the magnetopause

Figure 5.12: Upper part: Cluster orbit projections on the planes of the GSE coordinate system
for the time of event. The distance between the satellites was increased by a factor of 35. Lower
part: Projection of Cluster configuration at the time of transition on the MP plane and on a plane
containing the MP normal. See text for a detailed explanation.
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5.5. Overview on the 26 January 2001 event

2001 Jan 26         CLUSTER 3           10:10 - 11:202001 Jan 26         CLUSTER 3           10:10 - 11:20

    
-40

-20

0

20

40
B

G
S

E

[n
T

]
   X

   
   Y

   Z

    
10

100

1000

10000

H
IA

Io
ns

  [
eV

]

    
10

100

1000

10000

1•103

3•107

eV
/c

m
2 -s

-s
r-

eV

    
0.1

1.0

10.0

H
IA

  N

[c
m

-3
]

    
-400

-200

0

200

400

H
IA

  V
el

[k
m

/s
]

   X

   
   Y
   Z

    

1

10

100

H
IA

  T
em

p

[e
V

]

   
   T PAR MAG

    

100

1000

10000

C
O

D
IF

H
+

 [e
V

]

    

100

1000

10000

2•103

1•107

1020

4.6
7.0
9.6
12.8

1040

5.0
7.2
9.6

13.0

1100

5.3
7.4
9.7
13.3

1120

5.6
7.6
9.7
13.5

100

1000

10000

C
O

D
IF

O
+

 [e
V

]

1020

4.6
7.0
9.6
12.8

1040

5.0
7.2
9.6

13.0

1100

5.3
7.4
9.7
13.3

1120

5.6
7.6
9.7
13.5

100

1000

10000

1•103

2•105

   
   

   
   

   
   

   
   

  e
V

/c
m

2 -s
-s

r-
eV

hhmm
2001 Jan 26 
GSMX
GSMY
GSMZ
DIST

S
at

 M
ay

  5
 2

0:
09

:2
7 

20
07

2001 Jan 26         CLUSTER 3           10:10 - 11:202001 Jan 26         CLUSTER 3           10:10 - 11:20

    
-40

-20

0

20

40
B

G
S

E

[n
T

]
   X

   
   Y

   Z

    
10

100

1000

10000

H
IA

Io
ns

  [
eV

]

    
10

100

1000

10000

1•103

3•107

eV
/c

m
2 -s

-s
r-

eV

    
0.1

1.0

10.0

H
IA

  N

[c
m

-3
]

    
-400

-200

0

200

400

H
IA

  V
el

[k
m

/s
]

   X

   
   Y
   Z

    

1

10

100

H
IA

  T
em

p

[e
V

]

   T PERP MAG

    

100

1000

10000

C
O

D
IF

H
+

 [e
V

]

    

100

1000

10000

2•103

1•107

1020

4.6
7.0
9.6
12.8

1040

5.0
7.2
9.6

13.0

1100

5.3
7.4
9.7
13.3

1120

5.6
7.6
9.7
13.5

100

1000

10000

 

hhmm
2001 Jan 26 
GSMX
GSMY
GSMZ
DIST

S
at

 M
ay

  5
 2

0:
09

:2
7 

20
07

Figure 5.13: Magnetic field and ions measurements for the event taking place on 26 January, 2001.
From top to bottom we show magnetic field GSE components, HIA differential energy flux time-
spectrogram, plasma density, GSE components of plasma bulk velocity, parallel and perpendicular
temperatures and CODIF differential energy flux time-spectrograms for protons and Oxygen ions.
In the last panel we indicated by an horizontal dashed line the energy level above which we expect
‘real’ Oxygen events (not produced by the spillover effect).
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CHAPTER 5. Magnetic reconnection at the magnetopause

General conditions.
In Figure 5.12 the Cluster satellites orbit and configuration at the time of the event are shown.
The transition occurs around [5.0, 7.2, 9.6]RE in the GSM coordinate system. In the upper
part of the figure, showing the orbit (taken from Cluster Science Data System home page), a
model MP and bow-shock were drawn and the distance between the satellites was scaled by
a factor of 35. The four spacecraft are in a tetrahedral configuration, the separation distance
being around 650 km.

On the bottom part of that figure two plane projections of the Cluster configuration at the
time of the traversal are shown, both of them with Cluster 3 at the origin of the coordinate
system. In the plot showing the projection on the MP plane - the plane perpendicular to
the direction resulted by averaging the individual normals obtained from constrained MVAB
method - the ~x axis corresponds to the direction along which the magnetic field exhibits the
maximum variance whereas the ~y axis indicates the magnetic intermediate - variance direction.
The adjacent projection has the average MVAB normal direction as ~x axis and the same ~y
axis. The picture indicates an inbound transition (consistent with the plasma data presented
in Figure 5.17), with the satellites’ crossings sequence being Cluster 4, Cluster 3, Cluster 2
and Cluster 1.

Figure 5.13 presents various physical quantities characterizing the conditions in the plasma
for the multi-crossing event of 26 January 2001. The displayed measurements were taken by
the Cluster 3 satellite. From top to bottom we have:

- magnetic field components in the GSE from Cluster FGM experiment

- HIA differential energy flux spectrogram for the whole sensor energy range

- plasma density, measured and computed on-board by HIA sensor of the CIS experiment.

- plasma velocity components in the GSE calculated on-board from HIA measurements

- plasma temperatures perpendicular (blue) and parallel (green) to the magnetic field
computed on-board by HIA

- CODIF protons differential energy flux spectrogram

- CODIF Oxygen differential energy flux spectrogram. In computing the 3D (i.e. based
on the velocity distribution function send by the CODIF instrument to the ground)
plasma moments for this ion species later on in this chapter, only the 5 upper-most
energy channels (roughly above 3.5 keV, indicated by the magenta horizontal line) will
be considered. Below this threshold, the events counted as Oxygen particles by the
instrument are actually a manifestation of the spillover effect, i.e. produced by protons.
See also the discussions related to Figure 5.14 and Figure 5.15.

The favourable circumstances of the 26 January 2001 event.
In case of 26 January 2001 event there are several favourable circumstances for fulfilling the
intention declared at the beginning of this section, namely to establish (from an experimental
point of view) whether a minor species contributes in a sizable manner to the outcome of the
Walén test.

Firstly, such an effect could be investigated with Cluster more easily when the minor species
in questions is O+, and not He 2+ or He+, because the CODIF instrument separates this ions
better from the protons in the time-of-flight section. This fact and taking into account that
the O+ energy range and the energy range of magnetosheath protons are roughly separated
(as is seen from Figure 5.13 and Figure 5.15), makes a relative accurate estimation on the O+
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5.5. Overview on the 26 January 2001 event

Product 28: energy vs. TOF
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Figure 5.14: The distribution of events registered by the product P28 according to the TOF
channel (on abscissa) and energy channel (on ordinate). As in Figure 5.5, the events collected during
100 minutes which include the analyzed transition are shown. In both figures we take care that
the satellite spent approximately the same amount of time inside and outside the magnetosphere,
so that a direct visual comparison is meaningfull.

moments possible. In addition, the Oxygen ions are 4 times heavier that the He 2+ or He+

meaning that, in case of the same abundance, their contribution to the uni-fluid (i.e. COM)
moments will be higher. It is therefore advisable to look for a case with high presence of
Oxygen ions.

Figure 5.14 is similar to Figure 5.5, but refers to the event taking place on 26 January 2001.
It refers to the Product 28 data measured by the same satellite (Cluster 3) and the length of
the time interval is again 100 minutes. During this period, which includes our transitions,
the satellite spends about the same amount of time inside and outside the magnetosphere.
Therefore, because the conditions corresponding to the plots were similar, one can compare
directly the number of O+ counts in the highest 25 elementary energy channels (approximately
between 8.5 keV and 40 keV; above the horizontal white line indicated in the plot) that roughly
contains this population in both events. We obtain that for the event analyzed in this section
the number of O+ ions is approximately 4.5 times higher. Note that, very probable, above the
CODIF energy range there is still a significant fraction from this ion species.

Another favourable circumstance is that, for the analyzed event, the CODIF instrument
on Cluster 4 satellite happened to be in the low-sensitivity mode and as a consequence the
detector was not saturated by the high proton fluxes in the magnetosheath. We will illustrate
this aspect with the help of Figure 5.15, where a comparison between the Cluster 3 (first
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CHAPTER 5. Magnetic reconnection at the magnetopause

3 panels) and Cluster 4 (the remaining panels) plasma data is shown for the time interval
[10 : 40, 10 : 48]. From top to bottom we have:

- the distribution of the number of raw counts as a function of energy (on abscissa) and
time (on ordinate) detected by CODIF on Cluster 3. The colour scale goes up to the
maximum number of counts registered in one sample.

- the next panel presents a comparison between the plasma density computed on-board
by the HIA instrument (green trace) and the plasma density computed from the CODIF
measurements (ground computed density is shown in blue whereas the on-board density
is shown in red).

- the same type of comparison, corresponding to the plasma velocity, is presented in the
third panel. In order to avoid figure overloading, only the GSE x velocity component is
shown.

- the distribution of the number of raw counts as a function of energy and time detected
by CODIF on Cluster 4. Like in the first panel, the colour scale goes up to the maximum
number of counts registered in one sample, which is about 4 times lower than in case
of Cluster 3. In both these panels, an horizontal dashed line, situated just above the
magnetosheath proton energy, indicates the lowest energy level used in the next section
for computing the Oxygen 3D plasma moments.

- the next four panels show a comparison between the CODIF ground computed (in blue)
and on-board computed (in green) plasma moments in terms of density, GSE x velocity
component, parallel and perpendicular temperatures. Note that for Cluster 4 there are
no HIA measurements available.

Two main conclusions can be obtained from Figure 5.15. On one hand, the plasma moments
provided by the CODIF instrument being in the high sensitivity mode, are heavily affected by
the saturation process. Due to the faster electronics, the HIA instrument has no such problems
and therefore its measurements are reliable. Looking for example at the density panel, there
is roughly a factor of 2.5 between the CODIF ground computed density and HIA on-board
computed density in the magnetosheath. Also, between the ground and on-board computed
CODIF densities there is roughly another factor of 3 missing.

On the other hand, in case of the Cluster 4 satellite when CODIF happens to be in the
low sensitivity mode, there is a very good agreement between the on-board and ground based
moments. This is remarkable considering that the on-board moments are computed based on
a higher time, energy and angular resolution (4 seconds, 128 energy channels and (8 x 32)
angular bins instead of 12 seconds, 16 energy channels and 88 angular bins for the ground
computed moments). We can also notice that the plasma densities provided by CODIF on
Cluster 4 and by HIA on Cluster 3 (and Cluster 1, not shown) are similar both in terms of
variations and in terms of absolute values.

Based on these observation, we conclude that for this event the CODIF detector provides
reliable plasma measurements in case of Cluster 4 and therefore we will make use of them in
the next section.

Inferring the magnetopause thickness.
An important aspect to be investigated in the analysis refers to how the MP thickness compares
with the kinetic parameters of ion gyro radius and ion inertial length. This comparison tells
us how good the simple MHD treatment of plasma as a fluid is in our particular case.

Because of the relatively perturbed character of the magnetic traces for this event, we were
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5.5. Overview on the 26 January 2001 event

Comparison of Cluster 3 and Cluster 4 plasma measurements
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Figure 5.15: Comparison between CODIF measurements on Cluster 3 (first 3 panels) and Cluster
4 (the following five panels) for the 26 January 2001 event. A detailed description of each panel is
presented in the text. For Cluster 3 we compare ground (in blue) and on-board (in red) computed
CODIF proton number density and velocity GSE x component with similar quantities from HIA (in
green). For Cluster 4 we compare ground (in blue) and on-board (in red) CODIF proton number
density, velocity GSE x component, parallel and perpendicular temperatures.
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CHAPTER 5. Magnetic reconnection at the magnetopause

reluctant in pursuing a timing analysis. However, as will be shown below, the MP normal direc-
tion and normal velocity can be estimated in a convincing way by the use of single spacecraft
techniques. We have done this for the transition taking place at 10:43:30 and then, taking
into account that a relatively clear identification of the magnetosheath and magnetospheric
magnetic levels is possible for that crossing, the crossing duration was computed leading thus
to an estimation for the MP thickness. In the remaining of this section we will deal with this
transition only.

In Table 5.2 we present the results obtained when various techniques for determining the
MP orientation and normal velocity were applied. More precisely, we used the constrained
(to 〈Bn〉 = 0) MVAB method (upper part in the table), the constrained (to 〈Bn〉 = 0) MFR
technique (in the middle) and deHoffmann-Teller analysis (at the bottom). In the first two
columns in that table, the satellites and the intervals of analysis are indicated. The right most

Table 5.2: Results from the constrained MVAB of the magnetic field (upper part, all satellites),
constrained MFR and HT analysis (middle and lower part, Cluster 1 and Cluster 3 satellites only).
In the text, a description of the table format is given.

Satelite Interval constrained (to 〈Bn〉 = 0) nested MVAB

λ [nT ]2 nx ny nz

0.0 0.1322 −0.9476 0.2907
Cluster1 10:42:52.0 - 10:44:26.5 44.69 0.4755 0.3181 0.8200

244.68 −0.8694 0.0299 0.4926

0.0 0.1179 −0.9457 0.3027
Cluster2 10:42:50.0 - 10:44:23.0 44.15 0.4717 0.3218 0.8207

246.29 −0.8735 0.0460 0.4840

0.0 0.1545 −0.9445 0.2899
Cluster3 10:42:47.5 - 10:44:23.0 40.62 0.4804 0.3283 0.8132

237.84 −0.8632 0.0136 0.5044

0.0 0.1096 −0.9417 0.3182
Cluster4 10:42:35.0 - 10:44:29.5 27.02 0.4851 0.3301 0.8097

124.88 −0.8675 0.0657 0.4930

constrained (to 〈Bn〉 = 0) MFR

λ [mV/m]2 nx ny nz Vn [km/s]

0.0 0.0465 −0.9375 0.3449
Cluster1 10:43:01.0 - 10:44:29.0 5.40 0.4756 0.3244 0.8177 50.1

8.92 −0.8784 0.1260 0.4610

0.0 −0.0907 0.9395 −0.3304
Cluster3 10:42:58.0 - 10:44:22.0 5.23 0.4950 0.3304 0.8036 55.6

9.33 0.8641 −0.0907 −0.4950

deHoffmann - Teller analysis

slope cc Vx Vy Vz Vn [km/s]

Cluster1 10:43:01.0 - 10:44:29.0 1.004 0.985 -246.1 115.5 165.0 55.0

Cluster3 10:42:58.0 - 10:44:22.0 1.005 0.977 -247.1 113.6 168.0 55.2
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5.5. Overview on the 26 January 2001 event

Polar plot with normals from MVAB and MFR methods

~XGSM

~YGSM

~ZGSM

Figure 5.16: Polar plot with the normals obtained from the constrained MVA of the magnetic field
(the symbols MVABC1) and by using the constrained MFR technique (the symbols MFRC1; only
Cluster 1 and Cluster 3 normals, where HIA measurements are available, are shown). The reference
direction in the polar plot is the average orientation of the MVABC1 normals; for these normals
also the orientation uncertainties of statistical origin are indicated by the coloured segments. In
the lower right corner the orientation of GSM unit vectors in the MP reference frame is shown.

columns contain information specific to each technique as follows: for the MVA method the
magnetic variances along the 〈B〉, minimum and maximum magnetic variance direction (λ
column) together with the GSE components of these directions are shown. With bold faces
we indicated the predicted MP normals. For MFR technique the first four columns are similar
to the ones from the MVA case but we have in addition a column with the values of the
inferred MP normal velocity. The columns presenting the results from HT analysis contain the
slope and the correlation coefficient of the fit between the electric field ~Ec = −~v × ~B and the
convection electric field ~EHT = −~VHT × ~B, the three components of VHT velocity in GSE and
the component of this velocity along the MVA normal.

In interpreting the outcome, we show in Figure 5.16 a polar plot with the normals orien-
tation. The reference direction in this plot (magenta square, symbol MVAB) is the average
of individual MVAB normals (coloured squares, symbols MVABC1; the accompanying line
segments correspond to the orientation uncertainties due to the statistical errors). Note that
all normals, including those provided by the constrained MFR method (coloured circles, sym-
bol MFR, shown without the related error segments) have a very similar orientation, their
direction being contained within an angular cone of approximately 1 ◦ half-width.

The following remarks have to be made

- the constrained MVAB method was applied on 5 nested intervals, for all 4 satellites, the
average individual MP normal directions appearing in the table with bold faces. The
ratio λmax/λint at each spacecraft level is in the range 4.7÷5.9, which is not a satisfactory
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result. Nevertheless, taking into account that for all satellites the normal predictions are
very close, we concluded that the constrained MVAB technique provides a reliable result
for this transition.

- the results from unconstrained MVAB method had to be discarded because the predicted
MP normals imply unreasonably high values for the normal magnetic field component
(around 23 nT for each satellite).

- the constrained MFR method was applied on Cluster 1 and Cluster 3 data (the only
satellites with an operational HIA sensor) making use of the MHD approximation ~E =
−~V × ~B. As in the previous technique, the MP normals are not well identified by the
individual satellites (λmax/λint ≈ 1.7) but, nevertheless, the predicted directions are very
close to the MVAB normals. Another fact that adds confidence to the results are the very
similar values for normal MP velocities obtained by this method and by deHoffmann-
Teller analysis (last column in the table).

- The deHoffmann-Teller analysis was also applied on Cluster 1 and Cluster 3 data, using
the same time intervals as in the MFR method. A good HT reference frame was obtained
in each case (the slope and the correlation coefficient close to unity). The values for the
MP normal velocity were determined by projecting the HT velocity on the individual
MVAB normals.

Taking the above arguments into account one can say that, although the individual appli-
cation of the above methods provides results with considerably uncertainties, the consistency
of these results lends credence on their validity. Because for the analyzed transition relatively
good magnetic levels for the magnetosphere and magnetosheath could be identified, the MP
crossing duration could be estimated to be around 29.8 seconds. This results in a MP thickness
of roughly 1600 km, much greater than the proton gyro radius (average and maximum values
are 50 and, respectively, 59 km for this transition) and the proton inertial length (with the
average and maximum values of 85 and, respectively, 105 km). Therefore the use of MHD
approximation on treating the protons is well justified.

5.6 Oxygen influence on the Walén test

In this section we will compare the results obtained from the Walén analysis when the presence
of the Oxygen ions is neglected (i.e. the standard mode to perform the analysis) with the results
obtained when the contribution of this minor species is taken into account. More precisely, for
the latter case we will compute in the first instance the centre-of-mass (COM) or uni-fluid ion
moments (i.e. density, velocity, parallel and perpendicular temperatures) and apply the Walén
test by using these quantities.

Depending on the available plasma detectors on each satellite and on the quality of their
measurements, we will use in our study:

- CODIF proton and Oxygen data, in case of Cluster 4. Specifically, we will use the
on-board computed moments because they are based on measurements acquired with
a higher time, energy and directional resolution (as described in Section 2.2). The on-
board processed density, velocity vector, and pressure tensor for each species of interest
(i.e. H+, He 2+, He+ and O+) are computed for 3 adjacent energy intervals and send
continuously to the ground. The highest such energy interval corresponds exactly to the
energy interval we used in the preceding section for calculating the 3D (ground based)
O+ moments, i.e. the 5 uppermost energy channels of the distribution function received
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5.6. Oxygen influence on the Walén test

at ground. The lower limit of the energy range is indicated by the horizontal dashed lines
in Figure 5.15, situated at around 3.5 keV, which is just above the upper limit of the
magnetosheath proton population In order to avoid the false counts in the O+ channels
produced by the spillover effect, we will use O+ on-board moments (and, for comparison,
the ground moments as well) corresponding to this upper energy range of the detector4.

- data from the HIA instrument, where all incident ions are considered protons, and CODIF
O+ data in case of Cluster 1 and Cluster 3. We will use HIA on-board moments, and not
the moments computed on ground, because they are based on measurements taken with
higher time, energy and angular bin resolution. As for the O+ information, we will use
the ground computed moments, based on CODIF measurements corresponding to the 5
uppermost energy channels (indicated by the horizontal dashed lines in Figure 5.15). In
doing that we avoid the spillover effect produced by the magnetosheath protons in the
lower energy channels. Moreover, even for the selected energy range we implemented a
routine for correcting the spillover effect, using the available documentation about the
instrument ground calibration (Kistler [2000]). However, we did not find a satisfactory
solution to the problem of detector saturation and therefore the measurements we used
are still influenced by this effect. Because for the time of the MP crossings investigated
by us, the ground based O+ moments have 32 seconds time resolution, we interpolated
them to the time tags of the HIA measurements.

The details about how to combine proton and O+ moments (Cluster 4), or HIA and O+ mo-
ments (Cluster 1 and 3), in order to obtain the corresponding uni-fluid quantities are described
in detail in Appendix H.

Among the multiple MP crossings seen by each satellite during the 26 January 2001 event
we selected two transitions, already mentioned at the beginning of the preceding section, having
in mind the following aspects:

- a significant change in the O+ density shown by the plasma detector, from the relatively
higher values in the magnetosphere to the lower levels in the magnetosheath.

- the results of the standard Walén test are relatively stable with respect of the analysis
interval.

The magnetopause transition around 10:43:30
Figure 5.17 provides a comprehensive picture of the evolution of some important physical quan-
tities for this MP crossing. All data refer to Cluster 4 and therefore the plasma measurements
were taken by the CODIF detector. The different panels present:

- the proton differential energy flux spectrogram for the whole energy range of the sensor.
As one can see, in this case we have an in-bound transition from the magnetosheath
plasma regime to the magnetopause boundary layer region.

- the GSE components of the magnetic field vector. The MP characteristic signature,
namely the change in the magnetic field orientation, is clearly seen by the evolution of
the x and z components in the interval indicated with vertical dashed lines.

- the GSE components of the proton velocity in blue, green and red (for the x, y and z
components respectively). Superposed, we plotted with magenta the corresponding GSE
velocity components of the uni-fluid.

4We are grateful to Alain Barthe from Centre d’Etude Spatiale des Rayonnements, Toulouse, for providing
us the on-board computed plasma density, velocity vector and pressure tensor for protons (corresponding to the
entire detector energy range) and O+ (corresponding to the highest energy range).
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Figure 5.17: FGM and CODIF (proton and Oxygen) measurements as recorded by Cluster
4, corresponding to the first MP crossing analyzed in this section. See the text for a detailed
description of all panels. The computed uni-fluid parameters (velocity, density and plasma pressure
anisotropy factor) are shown in magenta in the third, fifth and eighth panel respectively.
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5.6. Oxygen influence on the Walén test

- the GSE components of the O+ velocity.

- the number density N for protons (in black) and the for the uni-fluid (in magenta)

- the plasma pressure anisotropy factor α (defined in Section 5.1) for protons (in black)
and for the uni-fluid (in magenta). We computed these quantities using the magnetic
field orientation for calculating the parallel and perpendicular temperatures, to avoid
uncertainties due to the method usually used, i.e. diagonalization of the pressure tensor.

- the evolution of the N(1 − α) quantity based on protons (in black) and uni-fluid (in
magenta) quantities.

- the O+ number density calculated on-board (in black) and at ground (in blue) for the
higher part of the detector energy range (in accordance with the explanations given at
the beginning of this section). The ground computed number density is shown here only
to indicate the good agreement between the two ways of obtaining the O+ moments.

- the O+ differential energy flux spectrogram for the whole energy range of the sensor.
The upper part of the spectra, above the dashed horizontal line, indicates the energy
range used in the O+ moment calculations.

By looking at the fourth and eighth panels from Figure 5.17, we observe that indeed
the O+ number density experiences a significant change across the MP, from around 0.01
particles/cm3 in the magnetosheath (around 10:42:20) to roughly 0.08 in the magnetosphere
(around 10:44:30) whereas the proton number density drops from around 10 particles/cm3 in
the magnetosheath to below 3 at the magnetospheric side of the boundary layer. We also
notice that the uni-fluid density and velocity do not differ much from the proton moments in
the MP interior. In that region the difference is in the range of a few percent but, as expected,
it becomes significant inside the magnetosphere. The biggest change inside the MP is observed
in the plasma pressure anisotropy factor.

In table Table 5.3 we present the results of the Walén test for different intervals of analysis.
All the intervals have as start time the values in the leftmost column and as stop time the
values listed across the top. The black numbers denote the Walén slope in the standard
test, whereas the red, cyan and magenta numbers are the Walén slopes obtained when the
Oxygen contribution is taken into account. The red numbers were obtained when the ‘raw’
O+ on-board moments, i.e. the 4 seconds density, velocity and pressure tensor, were combined
with the proton moments. Then, to suppress the role of fluctuations in the measurements,
we decided to average the O+ moments. We used a ‘boxcar-smoothing’ procedure, with a
boxcar width extended over 3 adjacent data points and keeping the original time resolution
(4 seconds). The Walén slopes obtained in this case are indicated in Table 5.3 with the small
cyan numbers. For comparison, we performed exactly the same calculations by using the 3D,
ground computed O+ moments, corresponding to the highest energy range of the detector (as
explained above). The results of this analysis are indicated with the small magenta numbers.

The deHoffmann-Teller correlation coefficient was higher or equal to 0.95 for all the tests.
The number of points participating in the analysis for each of the 20 intervals we considered
is indicated by the blue numbers. The improvement in the Walén slope is clearly visible when
O+ contribution is taken into account and will be discussed later in this section.

The largest interval appearing in this table is shown in Figure 5.17 by the vertical dashed
lines. Also, the proton gyro radius and inertial length for that interval are indicated at the
top of the plot. In Figure 5.18 we present the Walén test results corresponding to one of the
intervals we examined, when the one-fluid quantities (based on protons and ‘raw’ O+ moments)
were used in the analysis.
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CHAPTER 5. Magnetic reconnection at the magnetopause

The same transition was investigated by using the Cluster 3 data, with the main difference
being that we combined HIA measurements with CODIF O+ measurements. Therefore in
Figure 5.19, which is similar to Figure 5.17, instead of CODIF protons moments we plotted
HIA moments. Also, in Table 5.4, similar to Table 5.3, we showed for different intervals the
Walén test results based on HIA data (black numbers) and the results obtained when the O+

information (ground computed moments) was taken into account. Again, the largest interval
from that table is indicated in Figure 5.19 with the vertical dashed lines.

By inspecting the numbers appearing in Table 5.4, one sees that the O+ correction brings
practically no improvement, in the sense that the Walén slope does not approach unity. We
have arrived at the same conclusion when we used Cluster 1 data in the analysis (not shown).
At the end of this section we will give a few reasons that, in our opinion, could explain this
outcome.

The magnetopause transition around 11:03:00
A study was carried-out in exactly the same manner for the second MP transition from 26
January 2001 that passed the selection criteria described above. Figure 5.20, containing data
acquired by Cluster 4, is similar to Figure 5.17. It describes an out-bound crossing as we can see
for example from the decrease in the average protons differential energy flux (first spectrogram,
panel 1) and from the drop in the O+ number density (panel 7). The accompanying Table

Table 5.3: Results from the Walén test using Cluster 4 data corresponding to the first MP
transition analyzed in this section. All intervals with start times as listed in the leftmost column
and stop times as shown across the top were considered. For each interval we show with black
numbers the Walén slope obtained in the standard test (i.e. without taking into account the O+

influence). The red, cyan and magenta numbers correspond to the Walén slopes obtained when
the correction was implemented using the ‘raw’ on-board moments, averaged on-board moments
and 3D ground based moments for the O+, respectively. In blue we indicated the number of points
taking part in each test.

start
stop 10:43:32 10:43:36 10:43:40 10:43:44 10:43:48

0.660 0.602 0.563 0.551 0.517
0.737 0.679 0.633 0.617 0.58610:42:36
0.748

14pt
0.681

15pt
0.634

16pt
0.618

17pt
0.581

18pt

0.743 0.696 0.661 0.651 0.618

0.685 0.620 0.576 0.562 0.525
0.769 0.703 0.652 0.633 0.59810:42:40
0.775

13pt
0.700

14pt
0.648

15pt
0.630

16pt
0.589

17pt

0.770 0.716 0.677 0.665 0.628

0.646 0.581 0.540 0.528 0.491
0.737 0.670 0.619 0.602 0.56710:42:44
0.733

12pt
0.657

13pt
0.608

14pt
0.592

15pt
0.551

16pt

0.733 0.680 0.642 0.633 0.595

0.626 0.557 0.514 0.504 0.465
0.717 0.644 0.592 0.576 0.54010:42:48
0.695

11pt
0.615

12pt
0.566

13pt
0.552

14pt
0.510

15pt

0.708 0.650 0.612 0.604 0.565
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5.5 compares, for different intervals of analysis, the Walén test results obtained when the
O+ influence was neglected in the study (black numbers) and when their contribution was
considered. The red numbers were obtained by using the ‘raw’ O+ on-board moments whereas
the cyan numbers correspond to the results obtained when the smoothing procedure was applied
to the O+ moments in the first place. Because the transition is relatively short and only two
data points from the 3D ground based moments fall within the interval of analysis, we shall
not provide a comparison with the results based on this data.

For this transition we will present no results from the investigations carried-out with data
acquired by Cluster 1 and Cluster 3 satellites. The outcome we obtained in these cases was not
different from the one shown from the previous transition, namely that practically no change
in the Walén test results occurred when the O+ correction was implemented.

Interpretation of the results
As we can see from Table 5.3 and Table 5.5, based on data acquired by Cluster 4 during
the two MP transitions, considering the O+ contribution results in significant corrections for
all intervals. Indeed, a comparison between the black and the red numbers indicates that
the Walén slope increases. In case of the first crossing, the improvements range somewhere
between 12 - 15 %. For the second transition the improvement was between also 12 - 15 %,
however, with one interval showing an increase in the Walén slope of 22.5 %.
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Time interval: 2001-01-26 [10:42:44 - 10:43:34] nr. points= 36

Figure 5.18: Walén analysis using uni-fluid quantities for one of the intervals appearing in
Table 5.3. Left side: The result from deHoffmann-Teller analysis is shown. The plot presents
the fit between the electric field ~Ec = − ~v × ~B (on ordinate) and the convection electric field
~EHT = − ~VHT × ~B associated with a time-stationary structure moving with the determined HT
velocity (on abscissa). The GSE components of HT velocity are indicated. Right side: The fit
between the Alfvén velocity components (on abscissa) and the plasma velocity components in
the deHoffmann -Teller frame (on ordinate) is shown. In both pictures different components are
indicated by different colours.
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Figure 5.19: FGM, HIA and CODIF Oxygen measurements recorded by Cluster 3, corresponding
to the first MP crossing analyzed in this section. See the text for a detailed description of all panels
appearing in the figure. The computed uni-fluid parameters (velocity, density and plasma pressure
anisotropy factor) are shown in magenta in the third, fifth and eighth panel respectively.
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Figure 5.20: FGM and CODIF (proton and Oxygen) measurements as recorded by Cluster 4,
corresponding to the second MP crossing analyzed. See the text for a detailed description of all
panels appearing in the figure. The computed uni-fluid parameters (velocity, density and plasma
pressure anisotropy factor) are shown in magenta in the third, fifth and eighth panel respectively.
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Table 5.4: Results from the Walén test using Cluster 3 data corresponding to the first MP
transition. All intervals with start times as listed in the leftmost column and stop times as shown
across the top were considered. For each interval we show with black numbers the Walén slope
obtained in the standard test (i.e. without taking into account the O+ influence) and with red
numbers the same parameter after the O+ correction was implemented. In blue we indicated the
number of points taking part in each test.

start
stop 10:43:28 10:43:32 10:43:36 10:43:40 10:43:44

0.665 0.633 0.592 0.551 0.51410:42:56
0.646

9pt
0.624

10pt
0.586

11pt
0.547

12pt
0.512

13pt

0.665 0.625 0.581 0.539 0.50010:43:00
0.649

8pt
0.617

9pt
0.577

10pt
0.537

11pt
0.500

12pt

0.742 0.663 0.601 0.549 0.50110:43:04
0.728

7pt
0.660

8pt
0.602

9pt
0.552

10pt
0.504

11pt

0.827 0.697 0.616 0.555 0.49710:43:08
0.817

6pt
0.699

7pt
0.621

8pt
0.561

9pt
0.503

10pt

0.816 0.656 0.578 0.520 0.46310:43:12
0.807

5pt
0.660

6pt
0.583

7pt
0.527

8pt
0.470

9pt

Table 5.5: Results from the Walén test using Cluster 4 data corresponding to the second MP
transition. All intervals with start times as listed in the leftmost columns and stop times as shown
across the top were considered. For each interval we show with black numbers the Walén slope
obtained in the standard test (i.e. without taking into account the O+ influence). The red and
cyan numbers correspond to the Walén slopes obtained when the O+ correction was implemented
using the ‘raw’ on-board moments and averaged on-board moments for the O+, respectively. In
blue we indicated the number of points taking part in each test.

start
stop 11:03:26 11:03:30 11:03:34 11:03:38 11:03:42

0.527 0.448 0.450 0.441 0.442
11:03:10 0.594 5pt 0.479 6pt 0.488 7pt 0.475 8pt 0.475 9pt

0.552 0.474 0.479 0.468 0.464

0.605 0.501 0.499 0.484 0.481
11:03:14 0.741 4pt 0.578 5pt 0.578 6pt 0.554 7pt 0.544 8pt

0.655 0.544 0.543 0.523 0.511

Because the effect of considering Oxygen ions in the analysis is systematic and because
the improvement is relatively big, we do not think that the changes are produced by some
fluctuations or error measurements. In fact, practically similar conclusions are obtained when
the results based on the smoothed O+ data (cyan numbers), or when the 3D ground computed
O+ moments are considered (for the second transition, the smoothing procedure had a bigger
effect, probably because the duration of this crossing is shorter). In case of the first transition,
the Walén slopes increase even when only the O+ density and velocity information is used,
without correcting the plasma pressure anisotropy factor by the minor ion contribution (not
shown). As described in the text, we took all the precautions in the study, like using the
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5.7. Observations about the Oxygen at the magnetopause

best available data, computing the parallel and perpendicular temperatures using the actual
magnetic field orientation and choosing intervals of analysis in accordance with the general
requirements for experimentally identification of a RD.

Nevertheles, the values of the Walén slope remained significantly below unity, indicated
that maybe other causes are responsible for the deviation from the ideal RD model. In this
connection one should mention that one such possible cause would be the fact that the O+

gyro radius was only approximately 3 times smaller than the MP thickness, defined as the
interval where 76% of the total magnetic rotation occurred. Therefore, some finite Larmor
radius effects are expected to be present in these cases.

In Puhl-Quinn and Scudder [2000] a comprehensive study is performed about the influence
of minor ions on the Walén test. Using as minor ions He 2+, the authors simulated an ideal
RD for various parameters characterizing the constituents of the ion mixture like ratio of the
number density and relative velocity along the magnetic field. Then, considering that most
of the existing plasma detectors - like HIA - do not discriminate between different species
(therefore assuming that all ions are protons) they studied how such a miss-assignment is
reflected in the result of the Walén test. The conclusion of the study was that, at least in
typical plasma regime usually encountered at the MP, the presence of the minor ions could not
account entirely for the lower values (i.e. subunitary) of the experimentally determined Walén
slope.

As discussed in Section 5.1, the jump conditions for a rotational discontinuity require that
the quantity ρ(1−α) (ρ being the plasma density and α the plasma pressure anisotropy factor)
should be constant across the transition but the experimental evidence does not support this
(see the event discussed in Section 5.4). From Figure 5.17 one can clearly see that by considering
the O+ influence the situation did not improve. Again, the evolution in plasma density dictates
the trend in ρ(1−α), as if α plays no significant role. Note also that we did not use this relation
when applying the Walén tests.

When performing the study by using data from Cluster 1 or Cluster 3, the results from
Table 5.4 show that practically no change in the values of the Walén slope was achieved. Below
we present a few reasons that in our opinion could explain this outcome:

- the CODIF sensors on both Cluster 1 and Cluster 3 were saturated, as shown in Section
5.5 (see the discussions related to Figure 5.15). This means that not all O+ particles
were detected, leading to an underestimation of the correction terms for the quantities
entering the Walén relation.

- usually when one combines measurements from different instruments (HIA and CODIF
in our case), uncertainties appear due to the intercalibration aspect.

- the 32 seconds time resolution of the O+ distribution function, available from CODIF for
this transition and used for moment computation at ground, is too low when compared
with the length of the analyzed intervals.

5.7 Observations about the Oxygen at the magnetopause

In addition to the effect of influencing the result of the Walén test discussed in Section 5.6,
there are other noteworthy aspects about the observed O+ near the MP that we will discuss
in the present section, based upon Cluster 4 measurements on 26 January 2001.

Looking at the second and fourth panels of Figure 5.17, one can notice a certain correlation
between the change in magnetic field direction and in the direction of the O+ bulk velocity
at the MP. This synchronous rotation of the two vectors is similar with what we expect to
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Walén test with Oxygen data: MP transition around 10:43:30

Time interval
[10:42:48 – 10:43:24]

Figure 5.21: Right part: The first three panels, from top to bottom we present the proton
differential energy flux, magnetic field, O+ velocity in GSE. The next three panels present the x, y
and z GSE components of the O+ (in colour) and protons (in black) velocities perpendicular to the
magnetic field. The bottom panel shows the O+ number density. Left part: The deHoffmann-Teller
and Walén plots are presented for the time interval [10:42:48 - 10:43:24]. The format in the same
as in Figure 5.8.

happen for a RD between the plasma COM velocity and the magnetic field. Therefore we
decided to investigate whether also the O+ component obeys individually a kind of Walén
relation. We recall here that no such relation is prescribed in the general theory of the RD,
where all concepts (deHoffmann-Teller frame, Alfvén velocity etc.) and quantities refer to the
uni-fluid (see Section 5.1).

In the right part of Figures 5.21 and 5.22 we present the evolution of some physical pa-
rameters referring to the two MP transitions studied in the preceding section. From top to
bottom, we have:

- the proton differential energy flux spectrogram.

- the GSE components of the magnetic field vector.
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5.7. Observations about the Oxygen at the magnetopause

- the GSE components of the O+ velocity. Throughtout this section we will use only
the averaged on-board O+ moments, obtained according to the procedure we already
described in Section 5.6.

- in the next three panels we show the GSE components (x, y and z in blue, green and
red traces, respectively) of the O+ velocity perpendicular to the magnetic field, i.e. the
components of the vector ~V ox

perp = ~Vox ×~b, where ~Vox designates the O+ velocity vector
and ~b a unit vector oriented along the magnetic field. Superposed, with black traces in
each panel, we show the GSE components of the proton velocity perpendicular to the
magnetic field, i.e. the components of the vector ~V pr

perp = ~Vpr ×~b, where ~Vpr designates
the proton velocity vector.

- the last panel presents the O+ number density.

For an ideal RD, the velocity of all plasma constituents (protons, electrons and minor ion
species) perpendicular to the magnetic field should be the same in the asymptotic adjacent
regions, because all the particles are experiencing the same electric drift, with velocity ( ~E ×
~B)/B2. By inspecting the panels 4, 5 and 6 from Figures 5.21 and 5.22, comparing the GSE
components of protons and O+ perpendicular velocities, we can see that this requirement is
approximately fulfilled in the magnetosphere region (to the right in Figure 5.21 and to the felt
in Figure 5.22) but not so much in the magnetosheath. A possible explanation for the relatively
large differences observed in the latter region could be ascribed to the low O+ concentration,
below the CODIF reliability threshold.

In the MP region itself (identified as the region of magnetic field rotation), one notices also
relatively large differences between the O+ and proton perpendicular velocities, the disagree-
ment between the two having a bipolar aspect. This is better seen in the fourth panels, where
the blue traces indicate higher values for the x GSE component of O+ perpendicular velocity
on the magnetospheric side and lower values on the magnetosheath side. The explanation for
this behaviour deserves further investigation; possibly the finite gyro radius aspect for the O+

component plays a role.

Table 5.6: Results from the Walén and HT analyses using O+ Cluster 4 data corresponding to the
first MP transition. All intervals with start times as listed in the leftmost columns and stop times as
shown across the top were considered. For each interval we show with black numbers the Walén slope
and correlation coefficient (black numbers), the deHoffmann-Teller slope and correlation coefficient
(red numbers) and the deHoffmann-Teller GSE velocity components (in blue). The largest interval
appearing in this table is indicated in the right part of Figure 5.21 by the vertical dashed lines.

start
stop 10:43:20 10:43:24 10:43:28 quantity

0.61 0.96 0.59 0.96 0.50 0.92 Walén (slope, cc)

10:42:48 1.13 0.76 1.10 0.80 1.05 0.90 HofTel (slope, cc)

[-330.9, 583.9, 56.4] [-321.1, 576.8, 59.1] [-316.0, 573.8, 59.7] ~VHT in GSE

0.82 0.97 0.73 0.97 0.53 0.92 Walén (slope, cc)

10:42:52 1.11 0.75 1.09 0.79 1.05 0.90 HofTel (slope, cc)

[-405.5, 770.8, 22.9] [-368.6, 702.6, 32.6] [-328.9, 615.1, 45.9] ~VHT in GSE

1.08 0.98 0.82 0.98 0.50 0.93 Walén (slope, cc)

10:42:56 1.10 0.75 1.09 0.78 1.05 0.89 HofTel (slope, cc)

[-508.9, 1054.4, -27.9] [-409.0, 826.2, 7.6] [-329.4, 630.0, 43.1] ~VHT in GSE
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Walén test with Oxygen data: MP transition around 11:03:30
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Figure 5.22: Right part: The first three panels, from top to bottom we present the proton
differential energy flux, magnetic field, O+ velocity in GSE. The next three panels present the x, y
and z GSE components of the O+ (in colour) and protons (in black) velocities perpendicular to the
magnetic field. The bottom panel shows the O+ number density. Left part: The deHoffmann-Teller
and Walén plots are presented for the time interval [11:03:10 - 11:03:38]. The format in the same
as in Figure 5.8.

In Table 5.6 we present the results of the Walén and deHoffmann-Teller analyses performed
with the O+ moments, using intervals belonging to the first MP transition. All the intervals
having start times listed in the leftmost column and stop times as shown across the top line were
considered. In each case we show the Walén slope and correlation coefficient (black numbers),
the deHoffmann-Teller slope and correlation coefficient (red numbers) and the deHoffmann-
Teller GSE velocity components (in blue). The largest interval appearing in this table is
indicated in the right part of Figure 5.21 by the vertical dashed lines.

In the left part of the same figure we plotted the results of the Walén and deHoffmann-Teller
analysis corresponding to the [10:42:48 - 10:43:24] time period (we used the same format as in
Figure 5.8). In what follows we will analyse only this interval but the same type of behaviour
was observed for other intervals belonging to this transition.
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5.7. Observations about the Oxygen at the magnetopause

As the upper left plot from Figure 5.21 shows, the identification of the HT frame was not
as good, with a correlation coefficient of only 0.8 and the slope of 1.10. The large value of the
D/D0 parameter, indicates that a significant part of the electric field in the GSE frame was
not transformed away when going to the HT frame. Nevertheless, as the lower left plot shows,
the Walén analysis based on O+ indicate a clear correlation between the velocity in HT frame
and the Alfvén velocity (the correlation coefficient was 0.96 and the Walén slope was 0.59).
The data points corresponding to different components are distributed more ore less along the
regression line, showing a fairly convincing large excursion along that line.

We performed a similar study by imposing from exterior a deHoffmann - Teller transfor-
mation with the velocity found in the uni-fluid analysis. For example, for the same interval
we found in the previous section a HT velocity of [-189.4, 97.2, 111.6] km/s in GSE. In this
reference frame the whole aspect of the Walén and HT plots change, showing no characteristics
which we usually attributed to a RD (e.g the HT correlation coefficient was 0.3 and the Walén
slope 0.08, with many points situated far from the regression line).

Figure 5.22, referring to the second transition, shows a different situation. From the right-
hand panel we see that at the MP there is no correlation between the change in magnetic
field direction and the O+ velocity vector. For all of the intervals belonging to this transition,
the Walén analysis based on O+ indicates a small slope, typically ∼ 0.1 or below. But, on
the other hand, in the deHoffmann-Teller analysis a good transformation was found for all
analyzed intervals. As an example, we present in the left part of the figure the Walén and HT
plots corresponding to the [11:03:10 - 11:03:38] time period (indicated with the vertical dashed
lines on right-hand panel). One can see that the obtained correlation coefficient and the slope
of the regression line (0.98 and 1.01, respectively) are close to the ideal values of 1.

We have so far no explanation for the facts presented in this section. As said earlier, in the
general theory of the RD the concepts of Alfvén velocity and of deHoffmann-Teller frame refer
to the centre-of-mass quantities and there are no specific requirements in this sense for the
individual fluid components. Why and under which conditions minor ions show this behaviour
needs further investigation.
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CHAPTER 6

Conclusions

In this chapter we shall summarise the conclusions at which we arrived in this thesis. Details
about the arguments supporting these conclusions were given in the thesis, at the locations
where each particular aspect was discussed.

A new technique for determining the crossing parameters of a non-planar MP
Almost all methods used in inferring the macroscopic characteristics of the magnetopause
assume a planar geometry for this boundary and consider that all physical quantities vary
only along the normal direction. In the first part of this thesis we developed a new technique,
designed to deal with the more realistic situation when the MP behaves like a 2-D, non-planar
discontinuity, and we applied this new technique on one test case.

A non-planarity may occur at the MP due to the presence of a local bulge or indentation, or
when a large amplitude wave is travelling along that surface. We recognize a 2-D, non-planar
MP in Cluster data when the single-spacecraft techniques provide different orientations for the
MP normal at each satellite but all these normals are roughly contained in the same plane.
The analysis of a MP crossing by Cluster on 24 June 2003 indicates this type of behaviour.
Between the individual normals provided by the (constrained to 〈Bn〉 = 0) MVAB technique,
the difference in orientation is about 13 ◦ while all these normals lie within 0.7 ◦ from a plane
situated in between (i.e from what we called the plane of the normals in Section 3.4). A similar
conclusion was obtained based on the results provided by the (constrained to 〈Bn〉 = 0) MFR
technique (see Subsection 4.3.2): although the electric field data have a lesser quality for the
analysed event, the individual MFR normals lie within 5 ◦ from the plane of the normals.
These results, together with the fact that the existing planar timing techniques provided a
MP normal well apart from the individual normals, allowed us to conclude that the planar
assumption is not valid and that actually the MP behaves like a 2-D, non-planar discontinuity
in the analysed case.

As a consequence, we proposed a 2-D, non-planar model for the MP that assumes either a
parabolic or a cylindrical shape for this layer. The 2-D assumption means that the layer does
not change its shape perpendicular to the plane of the normals (i.e. along what we called the
invariant direction). We also assumed a constant thickness for the MP. How valid this latter

125



CHAPTER 6. Conclusions

assumption is depends on the particular case under investigation: nevertheless it has some
justification because, contrary to the MP velocity and orientation, the MP thickness is not
expected to vary under pressure imbalance. In the proposed model the MP is allowed to move
in the plane of the normals either along one direction or along two mutually perpendicular
directions. Along the third direction, perpendicular to the plane of the normals, any motion
has no physical significance because it introduces no changes. In this way one can describe two
features of the non-planar MP: its ‘normal’ (i.e radial) motion caused by any pressure imbalance
across the discontinuity, and, by allowing for a second degree of freedom, the large-scale waves
travelling along that surface.

In the first approach, we proposed a procedure for determining the MP crossing parame-
ters that relies only on the timing information, i.e. on the times when each of the four Cluster
satellites detects the MP leading and trailing edges. A system of eight equations was estab-
lished, allowing us to obtain the parameters of the model. These are: the direction of the MP
movement (an angle in the plane of the normals), the MP radius of curvature (in the cylindri-
cal case) or the parabolic coefficient (in the parabolic case), the magnetopause thickness, the
initial position of the MP (two coordinates in the plane of the normals) and three coefficients
that describe the MP velocity-time dependence, which is assumed to be polynomial.

In the second approach, we improved the method by incorporating in the algorithm the
requirement of minimum normal magnetic field variance. The reason why this improvement
was possible is because in our 2-D model for the MP the direction of the MP movement is fully
prescribed by an angle in the plane of the normals. Therefore, we can impose from the very
beginning different values for this quantity in the range [−π, π], and solve the system of eight
equations under this condition. For each angle (i.e for each direction of the MP movement),
we obtain one solution and we can compute the magnetic variance along the normal of this
surface for each satellite. Finally we select that direction of the MP movement for which the
global normal magnetic field variance is minimum (see Section B.5).

The solution obtained in that way has two advantages: on the one hand, it combines in a
self-consistent way the timing information with the requirement of minimum normal magnetic
variance. On the other hand, in the improved version of the method, we can use four (instead
of three) coefficients to characterize the MP velocity time-dependence, resulting in a better
description of the MP motion. This is possible because the direction of MP movement is now
determined from an additional condition, and not from the system of equations.

When applying to our test case the different implementations of the new method (parabolic
or cylindrical geometry, one or two degrees of freedom, plain timing-analysis or the optimized,
timing-MVAB analysis) we obtained eight distinct solutions. In the parabolic case the solutions
were obtained algebraically, whereas in the cylindrical model we solved the system of timing
conditions by using numerical algorithms.

Two of the solutions, namely Prbl 2deg TA and Cyl 1deg TA (see the nomenclature intro-
duced in Section 4.2), have to be abandoned because, although mathematically correct, they
do not offer a satisfactory description of the MP crossing parameters for the analysed event.
The remaining six solutions were consistent and stable (see Appendix D). Based on the values
obtained for the MP velocity, thickness and radius of curvature, these solutions were classified
in three groups. For the solutions belonging to the first such group (i.e. for Prbl 2deg OpTA,
Cyl 2deg TA and Cyl 2deg OpTA solA) we obtained the lowest values for the global normal
magnetic variance but we also need to limit their range of validity in order to avoid an artifi-
cial return in the MP of the first pairs of satellites. The second group, consisting of solutions
Prbl 1deg OpTA and Cyl 1deg OpTA imply a unidirectional displacement of the MP (one de-
gree of freedom). The remaining solution, i.e. Cyl 2deg OpTA solB implies a back and forth
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tangential MP movement whereas the movement along the ‘normal’ (i.e radial) direction is
with constant velocity.

We have compared the results obtained in the various implementations of the method
designed for a 2-D, non-planar MP, with the results provided by the planar, single-spacecraft
methods of MVAB, MFR and deHoffmann-Teller. In Appendix E we compared the global
magnetic field variance along the instantaneous (geometrical) normals provided by the 2-D
method (more precisely by the mixed timing-MVAB implementations) with the similar quantity
based on the normals obtained from the planar MVAB technique. In the former case, depending
on the particular implementation, the value of the global normal magnetic field variance was
lower or approximately the same as in the planar case, when only data from the central intervals
[Tci − τi, Tci + τi ] were considered in the analysis. The global normal magnetic field variance
based on the result provided by the planar nested MVAB technique (i.e., according to the
standard way of obtaining MP normals in the planar assumption) is systematically higher
than in the case of the 2-D solutions. Considering these facts we concluded that the 2-D
method performs ‘better’ than the planar method from MVAB point of view.

We arrived at similar conclusions (see Section 4.4) when we compared the Faraday residue
computed based on the instantaneous MP velocities and normal directions obtained with the
2-D method, with the same quantity computed from the parameters provided by planar MFR
technique. As for the comparison with the result provided by the deHoffmann-Teller analysis,
despite a good identification of a HT frame for each satellite transition, this technique gives in
case of Cluster 4 and Cluster 3 negative values for the MP velocity along the normals obtained
in the planar, nested MVAB analysis. This result is inconsistent with the inbound crossing
event we are analysing.

There is another strong argument in favour of 2-D method: in the single-spacecraft tech-
niques, the estimated individual normal directions and velocities are, per definition, decoupled
from each other. This is because we are using the measurements recorded by each satellite
separately. In the 2-D method however, we are looking for a global solution. The data from
all four spacecraft are simultaneously participating in the analysis and the MP normal direc-
tions and velocities at each satellite are linked all the time through the geometry and through
the motion we determine in the analysis. This provides a more realistic solution for the MP
orientation and motion.

Turning to the physics underlying the observed behaviour of the magnetopause, we have
provided strong evidence that the 2-D MP feature, inferred from the Cluster measurements for
the crossing on 24 June 2003, was produced by the Kelvin - Helmholtz mechanism (producing
‘wind over water’ type waves). It was shown that the flow shear across the MP was relatively
large (more that 350 km/sec) and roughly contained in the plane of the normals. The method
developed in the thesis provides a new powerful tool to study the characteristic of such sur-
face waves, i.e. their wavelength and frequency. For example, by considering the parabolic
model and allowing for two degrees of freedom in the magnetopause movement, we obtained
a wavelength of ∼ 8 Earth radii and a period of ∼ 10−11 minutes in the analyzed case. The
tangential velocity, oriented perpendicular to the invariant direction was ∼ 80 km/sec. (see
Section 4.4).

Observation of magnetic reconnection at the magnetopause
In the second part of this thesis we studied the so called Walén test, which has been developed in
the past to identify whether or not the MP behaves like a rotational discontinuity (RD) for one
particular transition. The MP becomes an RD if the phenomenon called magnetic reconnection
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CHAPTER 6. Conclusions

is acting at the MP. The Walén relation combines in one single expression the conservation of
the normal mass flux, of the tangential electric field and of the tangential momentum across the
discontinuity. According to this relation, the plasma velocity in a particular frame of reference
(the so-called deHoffmann-Teller frame, the existence of which has to be first established)
should be equal to the local Alfvén velocity.

The Walén test has proven very successful in deciding whether a discontinuity has rotational
character or not, but a long standing issue remains, namely that in experimental data the factor
of proportionality between the plasma velocity and the Alfvén velocity is usually less than the
ideal value of one. Typical values obtained are around 0.6 to 0.8. This discrepancy might have
an explanation in the fact that, when we performed the Walén test we are usually relying on
some simplifying assumptions.

The main assumptions are the following:
- the MP is a planar, time-stationary discontinuity.

- the plasma can be treated as a fluid, for which ~E + ~v × ~B = 0

- when performing the Walén test, instead of using the plasma centre of mass (COM)
moments as is required by the theory, we may use the proton moments (i.e. the proton
density, velocity and temperatures).

When we perform the Walén test in this way we actually neglect two aspects. Firstly,
we neglect the role of electrons in the analysis; their contribution brings corrections to the
~E + ~v× ~B = 0 relation, mainly through the effect of electric currents that flow perpendicular
to the magnetic field (i.e. through the ~J × ~B term appearing in the generalized Ohm’s law
(5.15) from Section 5.2). Secondly, we consider that all the ions are protons. In the MP
environment this is usually justified, because the relative abundance of protons is close to 100
%. Nevertheless, sometimes minor ion species like He+, He 2+ or O+ may be present that could
significantly change the values of plasma moments.

In the thesis we studied the effects described in the last paragraph by carefully analysing
two MP events by Cluster. In these two events we provided evidence that the other simplifying
assumptions are well justified (i.e. that the MP behaved like a planar, time-stationary rota-
tional discontinuity, and that the magnetohydrodynamic treatment was justified because the
MP thickness was found to be much greater than the ion gyro-radius and ion inertial length).

It is known that obtaining reliable electron moments in the space plasma environment is
a difficult task. The electron measurements are heavily affected by the presence of photoelec-
trons, produced by the solar radiation incident on the spacecraft surface. Also, the electron
bulk velocity is small (compared to their thermal velocity) and consequently much affected by
the error in the measurements. Therefore in the first event, we estimate the electron quantities
in an indirect way. Having established that no ions other than protons were involved in this
case, it follows from the charge neutrality condition that the electron density should equal
the (measured) ion density. Knowing the density, and having determined the electric current
density (from applying Ampère’s law to the magnetic field measurements at the four Cluster
satellites), one can determine the difference between electron and ion bulk velocities. Since
the ion velocity is measured, the electron velocity then follows. This allowed us to assess the
contributions from electrons in the Walén test, concluding that it is of second order. Indeed,
the improvement in the Walén factor of proportionality was around 8%, from 0.60 to 0.65 in
case of Cluster 1 and around 5%, from 0.81 to 0.85 in case of Cluster 3.

For the second event, the large content of O+, originating at the ionosphere, and the
appropriate instrument mode allowed us to study the influence of minor ions on the Walén
relation. The detected relative abundance of O+ ions was around 1% in number density;
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considering that these ions are 16 times heavier than the protons, we may expect a significant
effect on the COM moments.

We investigated two magnetopause transitions belonging to the second reconnection event.
In both cases, by using the corrected moments - and not simply the proton moments as in the
standard procedure - in the Walén test, we found an improvement in the outcome. The factor
of proportionality increased by between 12 - 15 %, with one interval showing an increase of
even 22.5 %, to 0.74, and thus becoming closer to one. We may conclude that, in general,
the influence of minor ions is small, but in case of rare events, like the one investigated in the
thesis having a large O+ presence, their influence could be an important factor in establishing
whether one discontinuity is rotational or not.

Importantly, the two simplifying assumptions studied in the thesis cannot fully explain
the sub-unitary constant of proportionality between the plasma flow velocity and the local
Alfvén velocity, although they offer partial answers in the right direction. Other aspects
should be considered and this is a still open question in the problem of identifying a rotational
discontinuity at the MP.

In the thesis another important open issue related as well to the identification of a RD
was investigated. For such a discontinuity, besides the Walén relation, we have the relation
ρ(1−α) = const, i.e. a balance between changes in the plasma mass density and in the pressure
anisotropy factor, being based on the same conservation laws. The reconnection event from 14
March 2002 is almost ideally suited to experimentally check this relation. However, despite the
strong evidence that the magnetopause behaves like a thick, planar and stationary discontinuity
for that transition, the quantity ρ(1−α) proved to be not constant across the discontinuity. In
fact, we provided arguments that this experimental invalidation seems not to be a peculiarity
of the transition in question, but a more general result; as discussed in Section 5.4, the way
the quantities α and ρ vary at the MP makes the realisation of ρ(1− α) = const improbable.
An even more baffling aspect is the following: when we use a variant of the Walén relation
that incorporates the ρ(1− α) = const relation (therefore assuming its validity), we typically
obtain better results in the test. In our particular case the factor of proportionality in the
Walén test has improved by around 23 %, to 0.84.

In case of the second reconnection event, the large content of O+ particles allowed us to
make another interesting observation. A correlation between the change in magnetic field di-
rection and in the direction of the O+ bulk velocity at the magnetopause was noticed, similar
with what we expect to happen for a RD between the plasma velocity and the magnetic field.
When performing a Walén test by using only O+ quantities, the data clearly indicate a correla-
tion between the O+ velocity in the (O+ based) HT frame and the (O+ based) Alfvén velocity,
although the identification of the HT frame was not as good. No such relation is prescribed
in the general theory of the rotational discontinuity, where all concepts (deHoffmann-Teller
frame, Alfvén velocity etc.) and quantities refer to the COM fluid.

Thus the experimental findings on magnetic reconnection reported in this thesis appear to
require a re-evaluation of the underlying theoretical description.
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APPENDIX A

Minimum variance analysis

The first technique to address the problem of MP orientation (applicable also to any other
plasma discontinuity), and to establish in this way whether the data recorded during the
crossing of this boundary implies a non-zero normal magnetic component or not, was the
minimum variance analysis of the magnetic field (MVAB), proposed by Sonnerup and Cahill
[1967]. In this appendix we will present the MVAB technique following the description given
in the review article from Sonnerup and Scheible [1998].

The method is based on the absence of magnetic poles law, ∇ ~B = 0, using measurements
acquired by a single spacecraft not only on the two sides of the discontinuity but also within
it. A planar geometry is assumed, as well as that all physical quantities vary only along the
normal direction. In these conditions we have

∇ ~B = ∂Bz/∂z = 0

in a (x, y, z) Cartesian reference frame with the ~z axis oriented along the discontinuity normal.
Therefore, Bz is independent of z. Also, the z component of the Faraday’s law gives

∂Ex

∂y
− ∂Ey

∂x
= − ∂Bz/∂t = 0

meaning that, with the assumptions we made, the spacecraft will see all the time a constant
component along the normal direction. Consequently, given the measurements recorded during
a discontinuity traversal, the MVAB algorithm searches for the direction of minimum magnetic
variance and associates it with the normal direction.

Lets consider a set of experimental data, consisting of magnetic field data ~B(k) correspond-
ing to K points of measurements k = 1, 2 . . .K. The direction of the unit vector ~n, designating
the MP normal, is determined by minimizing the quantity

σ2 =
1
K

K∑
k=1

∣∣∣( ~B(k) − 〈 ~B〉
)
· ~n
∣∣∣2 (A.1)
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performed with the condition that |~n|2 = n2
x + n2

y + n2
z = 1. In (A.1) by 〈· · · 〉 we indicate the

average of a given quantity over the set of K points of measurements, i.e.

〈 ~B〉 =
1
K

K∑
k=1

~B(k)

Therefore σ, called magnetic variance, is a measure of the magnetic field fluctuation from its
mean value 〈 ~B〉.

In Sonnerup and Scheible [1998] a solution of this problem was obtained by using the La-
grange multiplier method. If we define the magnetic variance matrix MB, having the elements
given by

MB
ij = 〈BiBj〉 − 〈Bi〉〈Bj〉

the problem reduces to finding the eigenvectors and eigenvalues for this matrix. The eigenvec-
tor corresponding to the smallest eigenvalue is then associated with the discontinuity normal
direction while the other two eigenvectors, corresponding to the maximum and intermediate
eigenvalues, respectively, are tangent to the discontinuity.

Sometimes we know from other consideration that the MP behaves like a tangential dis-
continuity, i.e. that 〈 ~B〉 ·~n = 0. This additional constraint on the orientation of ~n can be easily
implemented if we replace the matrix MB by the matrix product PMBP , where P represents
the so-called projection matrix, having the elements given by

Pij = δij −mimj

with ~m = 〈 ~B〉/
∣∣〈 ~B〉∣∣ (see for example Sonnerup et al. [2006]). This way of performing the

analysis is know as the constrained MVAB technique.
In fact, on many occasions the result provided by the constrained MVAB technique is

closer to the correct normal direction than the result provided by the standard, unconstrained
technique. One such example is given in Sonnerup et al. [2006] and we also discuss other
three examples in this thesis (see the Sections 3.4, 5.3 and 5.5). The last two cases show that
sometimes the above conclusion is valid even when the magnetopause behaves as a rotational
discontinuity, i.e. when 〈 ~B〉 · ~n 6= 0. The reason is that the standard technique is more prone
to errors due to the small-scale magnetic field fluctuations, which are frequently present and
have an undesired influence on the magnetic variance computation. The constraint 〈Bn〉 = 0
limits in some sense these errors. In general it is advisable to perform both types of analysis
and to compare their results before deciding which are more reliable.

An important issue of the MVAB technique refers to the reliability of the determined
normal direction. Mathematically, this can be judged by comparing the three eigenvalues of the
magnetic variance matrix MB. If λ1 ≥ λ2 ≥ λ3 designate the eigenvalues corresponding to the
maximum, intermediate and minimum magnetic variance, respectively, a rule of thumb requires
a value for the ratio λ2/λ3 & 10 in order to have a reliable normal from the unconstrained
MVAB method. In case of the constained MVAB, where λ3 = 0, a similar rule requires a ratio
λ1/λ2 & 15.

In various polar plots we are using in the thesis for showing the normals provided by the
MVAB technique (see for example Figure 3.7), we indicate by an error ellipsis the uncertainty
in the orientation. The error ellipsis transforms into an error bar when the normal is computed
with the constrained variant of the method. The only uncertainties taken into account here
are of statistical nature. This type of uncertainties were computed in Sonnerup and Scheible
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[1998] by assuming that the magnetic measurements are affected by a stationary, isotropic and
spatially uncorrelated noise component. Other causes like non-stationarity or deviations from
the planar assumption were not considered.

A partial check on the time-stationarity can be performed by doing the so called nested
MVAB analysis, i.e using as time-intervals for MVAB a set of nested intervals centered near the
middle of the discontinuity and observing the stability of the corresponding normals. Such an
analysis is presented in Section 3.4. Throughout the thesis, in order to minimize the dependence
of the result from the interval of analysis, we determine the MP normal by performing a nested
MVAB analysis and then averaging the direction of the normals obtained for each nested
interval.

There are different ways to perform the averaging operation. In the simplest way, applied
throughout the present thesis, we take the vectorial sum of the normals. Another possible way
is to perform a variance analysis on the resulted normals and select the direction corresponding
to the minimum variance.
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APPENDIX B

Timing methods

In a timing analysis, the times when the four Cluster satellites encounter the magnetopause
(MP), together with the information about the spacecraft relative positions at these instants
is used. It is the purpose of this Appendix to review the existing planar timing analysis
techniques and to introduce a new one, conceived to be used when the MP behaves locally as
a 2-D, non-planar discontinuity.

We will assume throughtout this Appendix that the timing information was extracted from
data, e.g by the use of the procedure described in Chapter 3. In addition, in case of the 2-D
MP, we will consider that the invariant direction, i.e. the direction perpendicular to the plane
that contains the MP normals, was determined (see the procedure from Section 3.4).

Data preparation and notations
In all the algorithms to be presented in the next sections the satellites are first ordered by their
central crossing times. Therefore hereafter by satellite 1 we understand the first spacecraft that
crosses the MP centre, by satellite 2 the second one and so on. We choose as origin of time
the moment when the MP leading edge encounters the satellite 1 and as origin of the space
the satellite 1 position.

The satellites positions are regarded as fixed points in space, an assumption well-justified
considering their small orbital velocity relative to the typical MP velocity. For example in the
case analyzed in Chapters 3 and 4, the satellite orbital velocity along the MP normal at the
time of the event is around 0.11 km/s, to be compared with an average MP normal velocity of
50 km/s.

The following notations are made (see Figures B.1, B.2 and B.3):

B Tci is the central crossing moment corresponding to satellite i, i = 1, ...4

B ti are defined by the relations ti = Tci − Tc1. Evidently, t1 = 0

B τi is the half-time crossing duration corresponding to satellite i.

B Mi1 = Tci − τi and Mi2 = Tci + τi, i = 1, ...4 are the moments when the leading,
respectively the trailing MP edge is at the satellite i position.
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B
−→
Ri designates the position vector of satellite i relative to the origin (i.e. relative to the
position of the first satellite). Evidently, ~R1 = 0

B
→
l is the unit vector along the 2-D, non-planar MP invariant direction.

B −→m is the unit vector along the ~R2 × ~l direction. We could have chosen equally well
~R3 or ~R4 instead of ~R2; this is only for establishing a reference direction in the plane
perpendicular to ~l (i.e. in the plane of the normals).

B
→
s is the unit vector defined by ~s = ~m×~l.

B Ei,Fi are the first and, respectively, the second component of ~Ri in the reference frame
defined by the (~s, ~m,~l ) unit vectors. The third components of ~Ri are of no interest for
us, being along the invariant direction.

B
→
x and

→
y represent two orthogonal axes in the plane perpendicular to ~l. Their orientation

is specified by the angle β (see below). All the necessary conditions used for inferring
the motion and orientation of the 2-D MP will be put in this reference frame. It has the
~y axis oriented along the direction of primary MP movement (see next paragraph) and
~x is defined by the relation ~x× ~y = ~l.
As will be seen, the method developed in this appendix assumes either one or two degrees
of freedom for the MP displacements in the plane normal to ~l. The displacement along
~l are of no interest for us. In the former case, by primary direction we mean hereafter
the only possible direction of MP displacement. In the latter case, when the MP has a
compound movement, along two mutually perpendicular directions, by primary direction
we designate the direction along which a polynomial description for the velocity is pro-
posed (therefore allowing for an acceleration or even higher terms in the velocity change).
Along the other direction, called hereafter the secondary direction, we assume the MP is
moving with a constant velocity in the positive or negative sense.

B Xi,Yi are the x and, respectively, y components of ~Ri in the (~x, ~y,~l ) reference frame.

B β is the angle between ~m and ~y, positive in the sense from ~s to ~m. In case of plain timing
analysis, β is an unknown to be found by solving a system of equations; in the combined
analysis it is a parameter set from outside.

B
→
nP is a unit vector introduced only for a simpler characterization of 2-D MP orientation.
It lies along the principal direction ~y, pointing towards the exterior of the parabola or
cylinder. As will be seen in Section B.2, for the parabolic model

→
nP lies also along the

parabola axis. Note that
→
nP could be parallel or anti-parallel to ~y. In Figure B.2 we

chose to represent the case when ~nP and ~y are anti-parallel but what situation occurs in
one particular event depends on the timing information and on the spacecraft position
and will result directly from the algorithm.
This vector quantity is usefull when we have to decide wheather the local 2-D feature
under investigation is a bump or an indentation on the MP surface. For that purpose
we have to decide wheather

→
nP points towards the MP exterior (i.e outwards from the

magnetosphere) or in the opposite direction. Actually, in our test case we will not
compute or represent this vector; we used instead a positive or negative value for the
local radius of curvature to indicate this aspect (see Section B.4).

B A0,A1 . . .AN are the polynomial coefficients that describe the MP primary velocity (i.e.
along our ~y direction) U(t) = A0 + A1t + . . . + AN tN . Here N varies from case to case,
depending on the number of degrees of freedom we allowed for the MP movement and
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on whether we are performing a plain or combined timing analysis.

B Di1 = A0Mi1 + A1M
2
i1/2 + . . . + ANMN+1

i1 /(N + 1) and Di2 = A0Mi2 + A1M
2
i2/2 +

. . . + ANMN+1
i2 /(N + 1), i = 1, ...4 are the instantaneous MP displacements, from the

origin along ~y direction, at times when its leading, respectively trailing edge encounters
the satellite i position.

B v is the speed along ~x direction, when we allowed a second degree of freedom for the MP
layer.

B d is the magnetopause half-thickness

B w and C designate the initial position of the 2-D magnetopause. More precisely, in case
of the parabolic layer they refer to the leading edge peak’s location at the initial moment
(w is the x coordinate and C is the y coordinate; see Figure B.2). In case of the cylindrical
layer they designate the coordinates of the centre of curvature at the initial moment (see
Figure B.3)

B a, appearing in the parabolic model, describes the parabola shape. For example, at the
initial moment the parabola has the equation: y(x) = C + a(x− w)2

B R designates the radius of the inner circle in the cylindrical layer model (see Figure B.3).

B.1 Timing analysis in the planar model

In this section we will present the timing analysis techniques based on the planar model for
the MP. More specific, we will discuss the method which assumes a constant velocity for the
MP during the whole time-interval needed for the transition of the four satellites (constant
velocity approach or CVA technique) and the one which assumes a constant thickness for
the MP during the same interval (constant thickness approach or CTA technique). They are
discussed in detail in Haaland et al. [2004b] (called the CTA paper in Section 3.1), where CTA
was actually introduced and applied on a MP traversal. We will also propose a variant of the
CTA, implying a small change in the way the timing information is used in this technique.

Constant velocity approach

Assuming that the MP central surface is a plane, we have the problem of determining the
normal and the velocity along that normal, assumed constant, of a moving plane that intersects
the satellites positions at times Tci. Therefore in this case the unknowns are the velocity,
expressed as U(t) = A0, and the normal unit vector ~n.

The conditions are:
~R2 · ~n = A0(Tc2 − Tc1) = A0t2
~R3 · ~n = A0(Tc3 − Tc1) = A0t3 (B.1)
~R4 · ~n = A0(Tc4 − Tc1) = A0t4

These three equations can readily be solved to find the three components of the vector ~P =
~n/A0. Then the values for the MP velocity and orientation are given by

A0 = 1/|~P | (B.2)
~n = A0

~P

The thickness of the magnetopause at each satellite is given by

2di = 2τiA0 (B.3)
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Constant thickness approach

The assumption is now that the MP layer is a slab of plasma with constant thickness 2d. The
velocity dependence is expressed as

U(t) = A0 + A1t + A2t
2 + A3t

3 (B.4)

The unknowns are Ai (for i = 0...3), the half-thickness d and the unit vector ~n.
First we will show how the technique was introduced in the CTA paper. Basically the

velocity dependence (B.4) is found out by imposing two conditions: a) that the MP centre
meets the satellites positions at central times Tci and b) that the integral of the velocity over
the time-intervals [Tci − τi, Tci + τi] is the same. The value of this integral is then associated
with the MP thickness.

Explicitly, by integrating the expression (B.4) for the crossing duration at each satellite
and setting it equal to 2d we obtain the following:

2d =
∫ Tci+τi

Tci−τi

U(t)dt = A0t + A1t
2/2 + A2t

3/3 + A3t
4/4

∣∣∣∣Tci+τi

Tci−τi

(B.5)

= 2τi

[
A0 + A1Tci + A2

(
T 2

ci +
τ2
i

3

)
+ A3

(
T 3

ci + Tciτ
2
i

)]
, i = 1...4

We can immediately solve the above system of equations for the quantities Ai/d. We now set
the conditions that the MP centre travels the right distances in the normal directions to meet
the satellites positions:

~Ri · ~n =
∫ Tci

Tc1

U(t)dt, i = 2...4

Dividing these equations by d and putting ~P = ~n/d we obtain the following equations:

~Ri · ~P =
A0(Tci − Tc1)

d
+

A1(T 2
ci − T 2

c1)
2d

+
A2(T 3

ci − T 3
c1)

3d
+

A3(T 4
ci − T 4

c1)
4d

(B.6)

for i = 2...4. In the RHS of the above equations there are only known quantities and solving
for vector ~P we can express the solutions for the half-thickness and for the normal vector as:

d = 1/|~P | (B.7)
~n = d ~P

At this point we make the following observations: in CTA paper the quantities Tci and
τi are obtained by fitting the magnetic field time-series corresponding to the MP crossings
with a hyperbolic tangent function. Then Tci represents the time when the MP centre is at
the position of satellite i and 2τi represents the time-interval, centred on Tci, during which
the tanh function varies by a fraction of tanh(1) ≈ 0.76 of its total variation (i.e. of the
difference between the tanh asymptotic levels). According to the line of reasoning presented
for determining the velocity evolution (point b in the second paragraph of this subsection) the
moments Tci− τi and Tci + τi are not exactly the times when the leading and, respectively, the
trailing MP margins encounter the position of satellite i. Indeed, the velocity is presumably
variable during the crossing interval and therefore the MP centre could travel, for example,
more than d during the first part [Tci−τi, Tci] and less than d during the second part [Tci, Tci+τi].

140



B.1. The planar model

~n

~U
O

~R3

~R2

~R4

trailing edge XXXXXXzcentral plane XXXXzleading edge XXXz

Figure B.1: A sketch of a planar magnetopause moving past the Cluster satellites location. The
first spacecraft detecting the MP is located at O, whereas the other three satellites have the relative
positions indicated by ~R2, ~R3 and ~R4. The central plane, together with the leading and trailing
MP edges are shown. The velocity ~U is oriented along the normal ~n in this model, being a constant
vector in the CVA approach. In the standard implementation of CTA, the distance along ~n travelled
by the central plane during each crossing duration is constant, whereas in our variant of CTA the
distance between the MP edges is constant.

In analysing the MP transition from Chapters 3 and 4 we employed, apart from the standard
CTA, a slightly different approach that considers the MP as a planar structure of constant
thickness whose edges encounters the satellites positions at the times Tci − τi and Tci + τi

(therefore not using conditions implying the MP centre). This line of reasoning is consistent
with the procedure that will be followed in the 2-D method.

The conditions that MP edges meet the satellites position at the proper moments are:

~Ri · ~n =
∫ Mi1

M11

U(t)dt, i = 2...4 for the leading edge (B.8)

~Ri · ~n + 2d =
∫ Mi2

M11

U(t)dt, i = 1...4 for the trailing edge

with U(t) described by (B.4).
After a division with d we obtain a linear system of 7 equations and 7 unknowns, namely

n1/d, n2/d, n3/d, A0/d, A1/d, A2/d, A3/d. Using the relation n2
1 + n2

2 + n2
3 = 1 we can

readily obtain d and afterwards all other quantities.
Another observation is that, in principle, we are not bound to use a symmetric function

(like the hyperbolic tangent) for fitting the magnetic profiles. Strictly speaking this fitting
function should be chosen consistently with the variation of the MP normal velocity and with
the MP structure. Using a symmetric function we actually make the approximation that the
net effect of the MP movement and MP structure is a symmetric magnetic trace recorded by
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the spacecraft. Nevertheless, in our test case we use the (symmetric) tanh function, judging
that the quality of the fit is very good for this particular event.

B.2 The parabolic layer model

The model to be introduced in this section assumes that the MP behaves locally as a parabolic
layer of constant thickness, whose primary movement is perpendicular to the invariant direction
~l and along the (common) axes of the parabolas making the MP leading and trailing edges.

In Figure B.2 we showed the MP cross-section perpendicular to ~l (pointing into the paper)
at different successive times when its edges encounter the satelites positions (located at origin
and at ~R2, ~R3 and ~R4). The primary movement direction is along ~y, which is also an axis of
symmetry for the layer. By constant thickness we mean that the distance along ~y between the
leading and trailing edges is the same throughtout the layer. The vector ~np in this picture, lying
along ~y and pointing to the exterior of the parabola, is introduced for a simpler characterization
of the MP orientation. In Figure B.2 we chose to represent the situation when ~np is anti-
parallel to ~y and when also a tangential velocity is present (along the secondary direction ~x).
Wheather ~np and ~y are parallel or anti-parallel in one particular case depends on the actual
timing information and on the spacraft configuration and results directly from the algorithms
to be described.

In each implementation of the parabolic model we will give an analytical solution of the
timing analysis problem.

B.2.1 Plain timing analysis

The unknown quantities in this model are (see Figure B.2): the orientation of the primary
direction ~y in the plane perpendicular to ~l (i.e. the angle β made by ~y with the reference
direction ~m = ~R2 ×~l in that plane, positive in the sense of ~l), the scale of the parabola (given
by the quadratic factor a), the initial position of the MP leading edge peak (given by the
coordinates w and C in the plane perpendicular to ~l), the half-thickness d of the layer, and the
parameters that describe the movement (A0, A1 for the primary motion and v for the velocity
along the secondary direction). It will be made clear in Subsection B.2.2 that we need a MP
having two degrees of freedom in this implementation of the parabolic model.

In order to determine the unknowns we impose the conditions that the margins of the
parabolic layer meet the satellites positions at the proper times (four conditions for encounter-
ing the leading MP edge at Mi1 = Tci−τi and four conditions for encountering the trailing MP
edge at Mi2 = Tci + τi). For satellite 1, situated at the origin of the reference system having
the axes along ~x and ~y, the encounter with the MP leading edge gives:

time : M11 = 0
C + a(−w)2 = 0 (B.9)

and the encounter with the trailing edge:

time : M12 = 2τ1

C − 2d + a(−w − vM12)2 + A0M12 + A1
M2

12

2
= 0 (B.10)

In case of the second satellite and in the same reference frame, we have the following expressions
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~y

Tc1 − τ1

Tc1 + τ1

Tc2 + τ2

Tc4 + τ4

Tc3 + τ3

~x

w

2d

C

~R2

~R3

~m

→
nP · (~l × ~R4)

β

~R4

→
nP

~U(t) = ~y
N∑

i=1

Ait
N

~s
~l ~x v

Figure B.2: Magnetopause cross-sections in the plane normal to the invariant direction at suc-
cessive times when the discontinuity is modeled as a parabolic layer of constant thickness. ~y
designates the primary direction, along which the MP velocity is described by a polynomial time
dependence. Also, the layer has a constant thickness along ~y. The secondary movement, allowed
in one variant of this model, takes place along ~x. We depict here the situation when

→
nP (the unit

vector along ~y pointing towards exterior) is anti-parallel to ~y. The Cluster satellites are located
at ~Ri, i = 1...4 with ~R1 ≡ 0 . At the initial time Tc1 − τ1, the MP leading edge encounters the
first satellite, situated at origin: in the other four configurations shown, the MP trailing edges is
detected by satellites 1 to 4 at Tci + τi, i = 1...4. The initial coordinates (w,C) of the leading
edge apex as well as the MP thickness 2d are indicated. Other quantities appearing in this figure
are introduced in the text.

for the x and y coordinates:

x : ~x · ~R2 = (~y ×~l) · ~R2 = ~y · (~l × ~R2)
y : ~y · ~R2

These quantities, being invariants, can be evaluated in the (~s, ~m,~l) frame (see the definition of
this system at the beginning of this appendix). In the latter frame the components of the unit
vector ~y are (− sinβ, cos β, 0) and therefore we have:

x : E2 cos β + F2 sinβ

y : − E2 sinβ + F2 cos β

The condition of the MP leading edge encounter by satellite 2 is:

time : M21 = t2 + τ1 − τ2

C + a(E2 cos β + F2 sinβ − w − vM21)2 + A0M21 + A1
M2

21

2
= (B.11)

−E2 sinβ + F2 cos β
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and the similar relation for the MP trailing edge encounter:

time : M22 = t2 + τ1 + τ2

C − 2d + a(E2 cos β + F2 sinβ − w − vM22)2 + A0M22 + A1
M2

22

2
= (B.12)

−E2 sinβ + F2 cos β

We write directly the conditions corresponding to satellites 3 and 4:

C + a(E3 cos β + F3 sinβ − w − vM31)2 + A0M31 + A1
M2

31

2
=

−E3 sinβ + F3 cos β

C − 2d + a(E3 cos β + F3 sinβ − w − vM32)2 + A0M32 + A1
M2

32

2
=

−E3 sinβ + F3 cos β

C + a(E4 cos β + F4 sinβ − w − vM41)2 + A0M41 + A1
M2

41

2
=

−E4 sinβ + F4 cos β

C − 2d + a(E4 cos β + F4 sinβ − w − vM42)2 + A0M42 + A1
M2

42

2
=

−E4 sinβ + F4 cos β

By subtracting (B.9) from (B.10) and making use of the definitions for the quantities M11 and
M12 we obtain:

−d + 2avwτ1 + 2av2τ2
1 + A0τ1 + A1τ

2
1 = 0

Similarly, taking the difference (B.12) – (B.11) we obtain:

−d + 2avwτ2 − 2avτ2[E2 cos β + F2 sinβ] + 2av2τ2(t2 + τ1)
+ A0τ2 + A1τ2(t2 + τ1) = 0

Eliminating 2avw from the last two equations we arrive at the following:

−d

(
1− τ2

τ1

)
+ A1t2τ2 + 2av2t2τ2 − 2avτ2[E2 cos β + F2 sinβ] = 0

Dividing this by d and using also the conditions corresponding to satellites 3 and 4 we ob-
tain the following system of linear equations in the unknowns (av/d) cosβ, (av/d) sinβ and
(2av2 + A1)/d:

2E2τ2
av
d

cosβ + 2F2τ2
av
d

sinβ − t2τ2
2av2 + A1

d
=

τ2

τ1
− 1

2E3τ3
av
d

cosβ + 2F3τ3
av
d

sinβ − t3τ3
2av2 + A1

d
=

τ3

τ1
− 1 (B.13)

2E4τ4
av
d

cosβ + 2F4τ4
av
d

sinβ − t4τ4
2av2 + A1

d
=

τ4

τ1
− 1
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By solving this we find a solution, say

r1 =
av

d
cos β (B.14a)

r2 =
av

d
sinβ (B.14b)

r3 =
2av2 + A1

d
(B.14c)

From (B.14a) and (B.14b) one can immediately obtain the value of β angle:

β = arctan
(

r2

r1

)
+ kπ, k = 0, 1

We have two potential solutions because the possible values for β are in the range [0, 2π]. It
will be clear later that the condition d > 0 selects only one solution.

We will designate the quantity av/d as r

av

d
= r = ±

√
r2
1 + r2

2 (B.15)

Now, expanding (B.10) and using (B.9) and (B.14c) we arrive at the relation

2awv

d
+

A0

d
=

1− r3τ
2
1

τ1
(B.16)

When we divide equation (B.12) by d, expand its first quadratic term and use the relation
(B.9) we obtain

− 2 +
a

d
[E2 cos β + F2 sinβ]2 +

(
av2

d
+

A1

2d

)
M 2

22 +
(

2avw

d
+

A0

d

)
M22

− 2aw

d
[E2 cos β + F2 sinβ]− 2

av

d
M22[E2 cos β + F2 sinβ] = −1

d
[E2 sinβ − F2 cos β]

Taking into account the definition of r3 and r (see (B.14c) and (B.15) ) we can arrange the
previous equation like

a

d
[E2 cos β + F2 sinβ]2 +

(
2avw

d
+

A0

d

)
M22 −

2aw

d
[E2 cos β + F2 sinβ]

+
1
d
[E2 sinβ − F2 cos β] = 2rM22[E2 cos β + F2 sinβ] + 2− r3

2
M 2

22

By using (B.16) and considering the similar equations for satellites 3 and 4 we arrive at the
following system of linear equations in the unknowns a/d, aw/d and 1/d

[E2 cos β + F2 sinβ]2
a
d
− 2[E2 cos β + F2 sinβ]

aw
d

+ [E2 sinβ − F2 cos β]
1
d

={
2r[E2 cos β + F2 sinβ]− r3

2
M22 −

1− r3τ
2
1

τ1

}
M22 + 2

[E3 cos β + F3 sin β]2
a
d
− 2[E3 cos β + F3 sinβ]

aw
d

+ [E3 sinβ − F3 cos β]
1
d

= (B.17){
2r[E3 cos β + F3 sinβ]− r3

2
M32 −

1− r3τ
2
1

τ1

}
M32 + 2

[E4 cos β + F4 sin β]2
a
d
− 2[E4 cos β + F4 sinβ]

aw
d

+ [E4 sinβ − F4 cos β]
1
d

={
2r[E4 cos β + F4 sinβ]− r3

2
M42 −

1− r3τ
2
1

τ1

}
M42 + 2
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If we make the transformation β 7−→ β + π in the above system, the RHS will not change
because we could write, for example, r[E2 cos β+F2 sinβ] as r1E2+r2F2 and the values r1, r2, r3

are fixed, being a solution of (B.13). On the other hand the coefficients on the LHS will change
to

[E2 cos β + F2 sinβ]2 7−→ [E2 cos β + F2 sinβ]2

[E2 cos β + F2 sinβ] 7−→ − [E2 cos β + F2 sinβ]
[E2 sinβ − F2 cos β] 7−→ − [E2 sinβ − F2 cos β]

Let
(
a0/d0, a0w0/d0, 1/d0

)
be the solution obtained for the value β0 = arctan

(
r2/r1

)
and(

a1/d1, a1w1/d1, 1/d1

)
be the solution obtained for the value β1 = arctan

(
r2/r1

)
+ π. From

the above observation it means that
(
a0/d0, −a0w0/d0, −1/d0

)
is a solution for the value β1.

In addition, this is the only solution because (B.17) is a system of linear equations. This
demonstrates that by requesting d > 0 we actually validate only one value for β.

If p1, p2 and p3 is the solution of system (B.17) we can finally write down the expressions
for all our unknowns:

β = arctan(r2/r1) + kπ, k = 0, 1 so that d > 0
a = p1/p3

d = 1/p3

w = p2/p1

C = −p2
2/(p1p3)

v = r/p1

A0 =
1
p3

(
1− r3τ

2
1

τ1
− 2rp2

p1

)
A1 =

r3

p3
− 2r2

p1p3

B.2.2 Combined analysis

In the combined analysis algorithm, the angle β is an input parameter and therefore we have
at our disposal one more place for an additional unknown to describe the MP movement. We
can chose to increase by one or by two the degree of polynomial describing the velocity in the
primary motion, not allowing anymore for a tangential velocity in the latter case. Note that
now the quantities Xi and Yi (the components of ~Ri in the plane perpendicular to the invariant
direction ~l) are known.

Case 1: allowing only an unidirectional movement for the MP. In this case the un-
knowns are C, d, a, w,A0, A1, A2 and A3 (see the definitions at the beginning of this appendix).
The conditions corresponding to the first and second satellite are:

C + aw2 = 0 (B.18)

C − 2d + aw2 + A0M12 + A1
M2

12

2
+ A2

M3
12

3
+ A3

M3
12

4
= 0 (B.19)

C + a(X2 − w)2 + A0M21 + A1
M2

21

2
+ A2

M3
21

3
+ A3

M3
21

4
= Y2 (B.20)

C − 2d + a(X2 − w)2 + A0M22 + A1
M2

22

2
+ A2

M3
22

3
+ A3

M3
22

4
= Y2 (B.21)
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We can readily find out the polynomial coefficients A0, . . . A3 by taking the differences (B.19)
- (B.18), (B.21) - (B.20) and the corresponding ones for the third and fourth satellites. We
obtain in this way the distances the MP is travelling during the crossing period of each satellite.
Because the MP moves parallel to its axis of symmetry, the differences are all equal with 2d.
We arrive at the following system of linear equations in the unknowns A0/d, A1/d, A2/d and
A3/d

This is exactly the distance MP travels during the crossing period of each satellite and
because now it moves parallel to its axis the differences are all equal with 2d. We arrive at the
following system of linear equations in the unknowns A0/d, A1/d, A2/d and A3/d

(M12 −M11)
A0

d
+

M2
12 −M2

11

2
A1

d
+

M3
12 −M3

11

3
A2

d
+

M4
12 −M4

11

4
A3

d
= 2

(M22 −M21)
A0

d
+

M2
22 −M2

21

2
A1

d
+

M3
22 −M3

21

3
A2

d
+

M4
22 −M4

21

4
A3

d
= 2 (B.22)

(M32 −M31)
A0

d
+

M2
32 −M2

31

2
A1

d
+

M3
32 −M3

31

3
A2

d
+

M4
32 −M4

31

4
A3

d
= 2

(M42 −M41)
A0

d
+

M2
42 −M2

41

2
A1

d
+

M3
42 −M3

41

3
A2

d
+

M4
42 −M4

41

4
A3

d
= 2

with the solution say (q0, q1, q2, q3). We define the following sums:

S2 =
1
d

(
A0M21 + A1

M2
21

2
+ A2

M3
21

3
+ A3

M4
21

4

)
=

D21

d

S3 =
1
d

(
A0M31 + A1

M2
31

2
+ A2

M3
31

3
+ A3

M4
31

4

)
=

D31

d

S4 =
1
d

(
A0M31 + A1

M2
31

2
+ A2

M3
31

3
+ A3

M4
31

4

)
=

D41

d

The conditions that the leading MP edge encounters the satellites positions at the proper times
are:

C + aw2 = 0 (B.23)
C + a(X2 − w)2 + dS2 = Y2 (B.24)
C + a(X3 − w)2 + dS3 = Y3

C + a(X4 − w)2 + dS4 = Y4

By subtracting (B.23) from the other ones we arrive at the following linear system in the
unknowns a, aw and d

X2
2a− 2X2aw + S2d = Y2

X2
3a− 2X3aw + S3d = Y3

X2
4a− 2X4aw + S4d = Y4

If the solution for the above system of equations is (r1, r2, r3) then the expressions for the
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initial unknowns are:

a = r1

d = r3

w = r2/r1

C = −r2
2/r1 (B.25)

A0 = r3q0

A1 = r3q1

A2 = r3q2

A3 = r3q3

For each direction (each angle β that determines the values of Xi and Yi) we have one solution
and, as will be presented in Section B.4, we can then readily compute a set of quantities that
characterize the MP orientation and motion, like the instantaneous normal and normal velocity
at each satellite position. The algorithm developed in this implementation changes β in steps,
finds the solution (B.25) and computes the above mentioned set of quantities. Finally, that
angle β is selected for which the corresponding solution better agrees with a specified criterion
(like for example the minimization of the normal magnetic variance in a global sense; this
procedure will be presented in Section B.5).

We make here an observation about the plain timing approach in the parabolic case (see
previous section). There we were forced to introduced a tangential displacement for the MP
because if the movement takes place along the parabola axis only (i.e. only along the primary
direction) then the conditions that the satellites encounter the MP edges gives immediately a
system of equations like (B.22). In that case we would need four coefficients Ai for a general
solution and this is too much: the MP initial position (w and C), geometry (a, d) and the
direction of its motion in the plane perpendicular to ~l (angle β) require five quantities and
there are only eight conditions in total. We will see in the next section that for a cylindrical
MP we do not have this restriction. Indeed, there the MP layer has a constant thickness along
the radial direction and not along the ~y.

Case 2: allowing two degrees of freedom for the MP movement. In this case we
have the unknowns corresponding to the initial position (C and w), the ones specifying the
geometry (a and d), the coefficients describing the velocity along the primary direction (A0, A1

and A2), and the velocity along the secondary direction (v). The conditions for the first and
second satellites to encounter the MP leading and trailing edge at the proper times are:

C + aw2 = 0 (B.26)

C − 2d + a(w + vM12)2 + A0M12 + A1
M2

12

2
+ A2

M3
12

3
= 0 (B.27)

and respectively

C + a(X2 − w − vM21)2 + A0M21 + A1
M2

21

2
+ A2

M3
21

3
= Y2 (B.28)

C − 2d + a(X2 − w − vM22)2 + A0M22 + A1
M2

22

2
+ A2

M3
22

3
= Y2 (B.29)

As in the previous situation, Xi and Yi are known quantities because the angle β is an input
parameter of the algorithm. We will make the difference between (B.28) and (B.26) and
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rearrange the terms just to show how the linear system of equation that we have to solve in
this case is obtained.

a(X2 − vM21)(X2 − 2w − vM21) + A0M21 + A1
M2

21

2
+ A2

M3
21

3
= Y2 ⇒

aX2
2 − 2aX2(w + vM21) + avM21(2w + vM21) + A0M21 + A1

M2
21

2
+ A2

M3
21

3
= Y2 ⇒

aX2
2 − 2X2aw − 2X2avM21 + (A0 + 2vwa)M21 +

(
A1

2
+ av2

)
M2

21 +
A2

3
M3

21 = Y2

Subtracting (B.26) from all the other conditions of MP edge encounters we arrive at the
following linear system in the unknowns d, a, aw, av, A0 + 2vwa, (A1/2 + av2) and A2

−2d + M12(A0 + 2vwa) + M2
12

(
A1

2
+ av2

)
+

M3
12

3
A2 = 0

X2
2a− 2X2aw − 2X2M21av + M21(A0 + 2vwa) + M2

21

(
A1

2
+ av2

)
+

M3
21

3
A2 = Y2

−2d + X2
2a− 2X2aw − 2X2M22av + M22(A0 + 2vwa) + M2

22

(
A1

2
+ av2

)
+

M3
22

3
A2 = Y2

X2
3a− 2X3aw − 2X3M31av + M31(A0 + 2vwa) + M2

31

(
A1

2
+ av2

)
+

M3
31

3
A2 = Y3

−2d + X2
3a− 2X3aw − 2X3M32av + M32(A0 + 2vwa) + M2

32

(
A1

2
+ av2

)
+

M3
32

3
A2 = Y3

X2
4a− 2X4aw − 2X4M41av + M41(A0 + 2vwa) + M2

41

(
A1

2
+ av2

)
+

M3
41

3
A2 = Y4

−2d + X2
4a− 2X4aw − 2X4M42av + M42(A0 + 2vwa) + M2

42

(
A1

2
+ av2

)
+

M3
42

3
A2 = Y4

If (r1, r2, . . . r7) is the solution of the above system of equations then we can express the
unknowns as:

a = r2

d = r1

w = r3/r2

C = −r2
3/r2 (B.30)

v = r4/r2

A0 = r5 − 2r4r3/r2

A1 = 2
(
r6 − r2

4/r2

)
A2 = r7

Like in the previous case, we have a solution for each β and the algorithm selects that one
which better agrees with some optimization criterion (see Section B.5).

B.3 The cylindrical layer model

In this section we modeled the MP locally as a cylindrical layer, oriented along the invariant
direction ~l. The structure is allowed to move in the plane perpendicular to ~l either along
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one (i.e. primary) direction or along two perpendicular directions. In the latter case, for the
adjacent movement, called secondary, we assumed a constant velocity.

Figure B.3 is the analog of Figure B.2 for the cylindrical, or constant curvature layer. Now
w and C designate the coordinates of the centre of curvature at the initial moment. The other
variables with geometrical meaning are R and d - the radius of the inner circle and the MP
half-thickness. The angle β designates the direction of primary movement, which in this model
is radial.

In the plain timing analysis where the MP is locally modeled as a cylindrical layer we can
allow for a second degree of freedom (a constant velocity along the secondary direction) or we
can cast all the remaining three unknowns to describe the primary motion only. This is because
now, unlike in the parabolic case, the MP has a constant thickness along the actual geometrical
normal in each point of its surface and not along the direction of primary movement. Therefore
we do not have constrains leading to a system of equations like (B.22), that forces a description
with four polynomial coefficients for the primary movement.

In this model we were not able to solve analytically the system of eight conditions, describing
the encounter of the MP leading and trailing edges with the spacecraft positions, and therefore
we resort to methods for finding a numerical solution. As such algorithms work more efficient
when the number of equations are small, in all the following sub-cases we transform the system
of conditions, expressing some of the unknowns as a function of the others. More specific, we
arrived at a set of equations in β, Ai and v - in cases when we allowed for a movement along
the secondary direction. The reason for keeping these variables is that we also have to provide
an initial guess for the solution and these quantities seemed for us more suitable in this respect.
For example the angle β has a limited range of variation (i.e. from −π to π) and we could
search for the solutions in a loop that varies the initial point for β in this range with a step of
a few degrees. Also for the MP velocity we have a better presumption than, say for the initial
position of the cylinder axis.

In this model it is very difficult to asses the number of solutions with physical significance
in the general case. Therefore when the search for a numerical solution is performed, one has
to start from initial points sufficiently close to each other and covering a sufficiently broad
range of values. What ‘sufficient’ means depends on the actual information about timing and
position, and one gets a feeling about that by looking how far an initial point can be that still
leads to a valid solution.

B.3.1 Plain timing analysis

Case 1: allowing only an unidirectional MP movement. In this case we have a move-
ment only along the primary direction and the system of eight conditions, describing the
encounter of the MP leading and trailing edges with the spacecraft positions are:

w2 + C2 = (R + 2d)2 (B.31)
w2 + (C + D12)2 = R2 (B.32)

(X2 − w)2 + (Y2 − C −D21)2 = (R + 2d)2 (B.33)
(X2 − w)2 + (Y2 − C −D22)2 = R2 (B.34)

(X3 − w)2 + (Y3 − C −D31)2 = (R + 2d)2 (B.35)
(X3 − w)2 + (Y3 − C −D32)2 = R2 (B.36)
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~y
Tc1 − τ1

Tc2 + τ2

Tc3 + τ3

Tc4 + τ4

~x

w

2d

C
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~m
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→
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Figure B.3: Magnetopause cross-sections in the plane normal to the invariant direction at
successive times when the discontinuity is modeled as a cylindrical layer of constant thickness.
~y designates the primary direction. The secondary movement, allowed in one variant of this
model, takes place along ~x. We depict here the situation when

→
nP (the unit vector in the primary

direction of movement, pointing towards exterior) is anti-parallel to ~y. The Cluster satellites are
located at ~Ri, i = 1...4 with ~R1 ≡ 0 . At the initial time Tc1−τ1, the MP leading edge encounters
the first satellite, situated at origin: in the other three configurations shown, the MP trailing
edges is detected by satellites 2, 3 and 4 at Tci + τi, i = 2, 3, 4. The coordinates (w,C) of the
centre of curvature at the initial moment as well as the MP thickness 2d are indicated. Other
quantities appearing in this figure are introduced in the text.

(X4 − w)2 + (Y4 − C −D41)2 = (R + 2d)2 (B.37)
(X4 − w)2 + (Y4 − C −D42)2 = R2 (B.38)

with

Dij = A0Mij + A1M
2
ij/2 + A2M

3
ij/3 (B.39)

and the unknown β entering in the expressions for Xi and Yi. In the above equations we
assumed that the satellites and the cylinder axis are initially on opposite sides of the MP
(i.e. the first encounter is with the surface having the greater radius of curvature). As will be
clear in the following, this presumption does not affect our algorithm but in its very last stage
because we first find all the other unknowns, apart from R and d, in a way independent of
this. At the end, the algorithm tests both possibilities (satellites and the axis position at initial
moment on the same side or on opposite sides of the MP) rejecting the one which implies a
negative value for d.

In order to find the reduced system of equations, containing only the unknowns A0, A1, v
and β, for which we search for a numerical solution we will proceed in the following way: we
take the differences (B.33) - (B.31), (B.35) - (B.31), (B.37) - (B.31). All these conditions refer
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to the encounter of MP leading edge with the spacecraft positions. We also take the differences
(B.34) - (B.32), (B.36) - (B.32) and (B.38) - (B.32), implying the conditions that describe the
encounter of MP trailing edge with the spacecraft positions. Note that these differences are
independent of the initial presumption we mention in the above paragraph. The variables R
and d are eliminated and we obtain the following equations:

G2
2 − 2wX2 − 2CY2 − 2Y2D21 + D2

21 + 2CD21 = 0 (B.40)

G2
2 − 2wX2 − 2CY2 − 2Y2D22 + D2

22 −D2
12 + 2C(D22 −D12) = 0 (B.41)

G2
3 − 2wX3 − 2CY3 − 2Y3D31 + D2

31 + 2CD31 = 0 (B.42)

G2
3 − 2wX3 − 2CY3 − 2Y3D32 + D2

32 −D2
12 + 2C(D32 −D12) = 0 (B.43)

G2
4 − 2wX4 − 2CY4 − 2Y4D41 + D2

41 + 2CD41 = 0 (B.44)

G2
4 − 2wX4 − 2CY4 − 2Y4D42 + D2

42 −D2
12 + 2C(D42 −D12) = 0 (B.45)

where we used the notations G2
i = X2

i + Y 2
i

Making now the differences (B.41) - (B.40), (B.43) - (B.42) and (B.45) - (B.44) we obtain
three equations without w. Also, we eliminate the unknown w between (B.42) and (B.40) and
between (B.44) and (B.40). This is what we obtain:

2C(D22 −D21 −D12)− 2Y2(D22 −D21) + D2
22 −D2

21 −D2
12 = 0 (B.46)

2C(D32 −D31 −D12)− 2Y3(D32 −D31) + D2
32 −D2

31 −D2
12 = 0 (B.47)

2C(D42 −D41 −D12)− 2Y4(D42 −D41) + D2
42 −D2

41 −D2
12 = 0 (B.48)

X2(G2
3 − 2Y3D31 + D2

31)−X3(G2
2 − 2Y2D21 + D2

21) (B.49)

+ 2C(Y2X3 − Y3X2 + X2D31 −X3D21) = 0

X2(G2
4 − 2Y4D41 + D2

41)−X4(G2
2 − 2Y2D21 + D2

21) (B.50)

+ 2C(Y2X4 − Y4X2 + X2D41 −X4D21) = 0

Solving (B.46) for C we have:

C =
2Y2(D22 −D21)− (D2

22 −D2
21 −D2

12)
2(D22 −D21 −D12)

(B.51)

The algorithm used in this case relies on equations (B.47) - (B.50) with the above expression
(B.51) for C.
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After the substitution we obtain:

[2Y2(D22 −D21)− (D2
22 −D2

21 −D2
12)](D32 −D31 −D12)

− [2Y3(D32 −D31)− (D2
32 −D2

31 −D2
12)](D22 −D21 −D12) = 0

[2Y2(D22 −D21)− (D2
22 −D2

21 −D2
12)](D42 −D41 −D12)

− [2Y4(D42 −D41)− (D2
42 −D2

41 −D2
12)](D22 −D21 −D12) = 0

X2(G2
3 − 2Y3D31 + D2

31)−X3(G2
2 − 2Y2D21 + D2

21) (B.52)

+
2Y2(D22 −D21)− (D2

22 −D2
21 −D2

12)
D22 −D21 −D12

(Y2X3 − Y3X2 + X2D31 −X3D21) = 0

X2(G2
4 − 2Y4D41 + D2

41)−X4(G2
2 − 2Y2D21 + D2

21)

+
2Y2(D22 −D21)− (D2

22 −D2
21 −D2

12)
D22 −D21 −D12

(Y2X4 − Y4X2 + X2D41 −X4D21) = 0

In the above equations only the unknowns A0, A1, A2 (through Dij) and β (through Xi and
Yi appear. After solving (B.52) numerically we have for C the relation (B.51). In order to
determine w one can use relation (B.40) for example. R and d are obtained from (B.31) and
(B.32) and if the value for d is negative we have to use the equations

w2 + C2 = R2

w2 + (C + D12)2 = (R + 2d)2

instead.

Case 2: allowing two degrees of freedom for the MP movement. In this case there is a
compound movement of the MP: a primary movement, described by two polynomial coefficients
A0 and A1 and a displacement with a constant velocity v along the secondary direction. The
reduced system of equations, for which we search a numerical solution, will contain only these
variables and the variable β.

The equations are:

w2 + C2 = (R + 2d)2 (B.53)

(w + vM12)2 + (C + D12)2 = R2 (B.54)

for the first satellite and

(X2 − w − vM21)2 + (Y2 − C −D21)2 = (R + 2d)2 (B.55)

(X2 − w − vM22)2 + (Y2 − C −D22)2 = R2 (B.56)

for the second one. Here the variables A0, A1 are hidden in the expressions Dij = A0Mij +
A1M

2
ij/2 and β is entering in the expressions for Xi and Yi. We start following the same

procedure as in case 1 by taking the differences (B.55) - (B.53) (which are the condition for
the MP leading edge encounter), open the quadratic terms and rearrange the terms:

G2
2 − 2w(X2 − vM21) + v2M2

21 − 2X2vM21 − 2C(Y2 −D21) + D2
21 − 2Y2D21 = 0 (B.57)
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Similar equations are obtained when instead of satellite 2 we use the corresponding conditions
pertaining to satellites 3 and 4

G2
3 − 2w(X3 − vM31) + v2M2

31 − 2X3vM31 − 2C(Y3 −D31) + D2
31 − 2Y3D31 = 0 (B.58)

G2
4 − 2w(X4 − vM41) + v2M2

41 − 2X4vM41 − 2C(Y4 −D41) + D2
41 − 2Y4D41 = 0 (B.59)

In the above expressions we used again the notations G2
i = X2

i + Y 2
i . We do the same thing

with the conditions referring to MP trailing edge encounter, taking the difference (B.56) -
(B.54), and rearranging terms

G2
2 − 2w[X2 − v(M22 −M12)]− 2X2vM22 + v2(M2

22 −M2
12) (B.60)

− 2Y2D22 − 2C[Y2 − (D22 −D12)] + D2
22 −D2

12 = 0

The similar equations, obtained when conditions corresponding to satellites 3 and 4 are used
instead of satellite 2, provide

G2
3 − 2w[X3 − v(M32 −M12)]− 2X3vM32 + v2(M2

32 −M2
12) (B.61)

− 2Y3D32 − 2C[Y3 − (D32 −D12)] + D2
32 −D2

12 = 0

G2
4 − 2w[X4 − v(M42 −M12)]− 2X4vM42 + v2(M2

42 −M2
12) (B.62)

+ 2Y4D42 − 2C[Y4 − (D42 −D12)] + D2
42 −D2

12 = 0

If we put v = 0 in equations (B.57) - (B.62) we recover, as expected, the similar equations from
the previous case. Because in this case there is a more complicate dependence for w and C as
a function of β, A0, A1 and v, it is very difficult to write down the reduced system of equations
in a form like (B.52). Therefore here we only deduce the expressions for w and C, and indicate
the remaining unused equations where these variable should be substituted. We find it more
convenient to proceed in a way slightly different from the previous case: we eliminate C from
(B.57) and (B.58) and express the variable w as function of the remaining unknowns. Then we
eliminate w from (B.60) and (B.61) in order to obtain C as a function of the same remaining
unknowns. We write down directly the expressions we obtain:

C =
{

G2
3[X2 − v(M22 −M12)]−G2

2[X3 − v(M32 −M12)] (B.63)

+ 2[Y2D22 + X2vM22][X3 − v(M32 −M12)]− 2[Y3D32 + X3vM32][X2 − v(M22 −M12)]

+ v2(M2
32 −M2

12)[X2 − v(M22 −M12)]− v2(M2
22 −M2

12)[X3 − v(M32 −M12)]

+ (D2
32 −D2

12)[X2 − v(M22 −M12)]− (D2
22 −D2

12)[X3 − v(M32 −M12)]
}

{
2[Y3 − (D32 −D12)][X2 − v(M22 −M12)]− 2[Y2 − (D22 −D12)][X3 − v(M32 −M12)]

}−1
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w =
{

G2
3(Y2 −D21)−G2

2(Y3 −D31) + vM31(vM31 − 2X3)(Y2 −D21) (B.64)

− vM21(vM21 − 2X2)(Y3 −D31) + D31(D31 − 2Y3)(Y2 −D21)

−D21(D21 − 2Y2)(Y3 −D31)
}

{
2(X3 − vM31)(Y2 −D21)− 2(X2 − vM21)(Y3 −D31)

}−1

The equations used for finding a numerical solution are (B.58), (B.59), (B.61) and (B.62) where
the unknowns C and w are replaced by the expressions (B.63) and (B.64), respectively. At the
end we find the values for R and d in the same way as in the previous case.

Observation: If we put v = 0 in the expression (B.63) we obtain a different form for this
variables than (B.51) from case 1 and this is because here we took a slightly different path.
The two forms are equivalent and produce the same results.

B.3.2 Combined analysis

By transforming the β angle from an unknown to an input parameter, we can better charac-
terize the MP movement increasing the degree of polynomial describing the primary velocity.
Actually, in this combined-analysis we are using the same system of equations as in the plain
timing analysis.

Case 1: allowing only an unidirectional MP movement. The equations (B.31) - (B.38)
are still valid, as well as the reduced system of equations (B.52). The only differences consist
in the fact that now XI and Yi are known quantities and that in this case

Dij = A0Mij + A1M
2
ij/2 + A2M

3
ij/3 + A3M

4
ij/4

The algorithm looking for a numerical solution will search after solutions for A0, A1, A2 and
A3

Case 2: allowing two degrees of freedom for the MP movement. The same (initial
and reduced) system of equations hold as in the corresponding plain timing analysis but now

Dij = A0Mij + A1M
2
ij/2 + A2M

3
ij/3

The algorithm search after a solution for A0, A1, A2 and v.
In the combined analysis, we change, in steps, the value of the input parameter β and select

that value for which the corresponding solution better agrees with some optimization criterion
(procedure to be discussed in Section B.5).

B.4 Geometrical and dynamical parameters of the solutions

In this sections we will deduce expressions for various average quantities characterizing the
MP movement and orientation for a satellite traversal. During such a time interval the MP
velocity and orientation are in general not constant; also, in the parabolic layer case, the actual
thickness (i.e. along the local normal) varies. The expressions derived here are used in all the
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implementations of combined analysis as well as when we compare the results provided by the
timing method applied to a 2-D, non-planar MP with the results obtained from the single-
spacecraft, planar, techniques (like MVA on magnetic field, Minimum Faraday Residue and
deHoffmann-Teller analysis; see Section 4.3).

B.4.1 Parabolic layer case

In the parabolic case, for computing the thickness, orientation and normal velocity at one
satellite position we refer to Figure B.4 where two successive infinitesimally-close MP configu-
rations are shown. The displacement of the boundary layer over the satellite position, located
at P (xi, yi) and considered as a fix point in space, results in a transition in the sense of the
(geometrical) exterior normal.

We can imagine that at any moment of observation t the point P will be found also on a
moving parabola, described in the xOy reference frame by the equation:

y(x, l, t) = C − l +
N∑

k=0

Akt
k+1

k + 1
+ a(x− w − vt)2 (B.65)

Here (w,C−l) represents the peak’s initial coordinate (i.e. at t = 0) of that particular parabola.
The parameter l is equal to 0 when our point is located on the MP leading edge and to 2d when
it is situated on the MP trailing edge. In what follows, by instantaneous normal direction we
will understand the direction perpendicular to the curve (B.65), at the point where the satellite
is located.

The instantaneous tangent has the direction

~t = (cos θ, sin θ) with tan θ =
(

∂y

∂x

)
xi, t

= 2a(xi − w − vt) (B.66)

therefore

~t =

(
1√

4a2(xi − w − vt)2 + 1
,

2a(xi − w − vt)√
4a2(xi − w − vt)2 + 1

)
(B.67)

and the exterior normal is

~next = σa(sin θ,− cos θ) = σa

(
2a(xi − w − vt)√

4a2(xi − w − vt)2 + 1
, − 1√

4a2(xi − w − vt)2 + 1

)
(B.68)

where σa designates the sign of a. Here the term ‘exterior’ was used by referring to the MP
geometry only, which means that this normal can point either towards the interior or exterior
of the magnetosphere.

Each point of the MP, considered as a rigid structure, has a compound movement along
the primary and secondary directions with the corresponding velocities. Therefore the instan-
taneous velocity vector is

~vinst =

(
v,

N∑
k=0

Akt
k

)
(B.69)
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~U(t) = ~y
N∑

k=0

Akt
k

O x

y

2d

l

δl

P (xi, yi)

~t

~x v

~next

Figure B.4: Magnetopause cross-sections in the plane normal to the invariant direction at succes-
sive, infinitesimally-close times. ~y designates the primary direction, along which the MP velocity is
described by the polynomial. In case when we allow a second degree of freedom, the MP is moving
with constant velocity along ~x as well. The position of the satellite is indicated by P, together with
the orientation of the instantaneous exterior normal ~next and tangent ~t. Other quantities appearing
in this figure are introduced in the text.

In order to find the normal velocity at moment t we have to project this vector along the
normal (B.68) (shown as ~next in Figure B.4).

vi, norm = σa
2a(xi − w − vt)√

4a2(xi − w − vt)2 + 1
v − σa

1√
4a2(xi − w − vt)2 + 1

N∑
k=0

Akt
k (B.70)

Considering now that we have four satellites, the average normal velocity Vi,n and the associated
distance Ti corresponding to satellite i, i = 1...4 are computed from

Ti = (Mi,2 −Mi,1)Vi,n = 2τiVi,n =

Mi,2∫
Mi,1

~vinst · ~next δt

= σa v

Mi,2∫
Mi,1

2a(xi − w − vt)√
4a2(xi − w − vt)2 + 1

δt − σa

Mi,2∫
Mi,1

N∑
k=0

Akt
k√

4a2(xi − w − vt)2 + 1
δt (B.71)

If we adopt the opposite perspective, i.e that the MP is a fixed structure and the satellite is
moving relative to it, than the quantity Ti represents the distance, along the instantaneous
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normal, covered by the spacecraft. The sign of this quantity allows us to establish on which
side of the discontinuity the centre of curvature is situated: when Ti > 0 the satellite is moving
towards the interior with respect to the MP. From now on, we will understand by magnetopause
thickness, as seen by the satellite i during its transition, the quantity

Ti = |Ti| (B.72)

In order to solve the integrals (B.71) we make the substitution u = 2a(xi − w − vt) and put
Li,1 = 2a(xi −w− vMi,1) and Li,2 = 2a(xi −w− vMi,2). The different expressions for (B.71),
corresponding to all the variants in the parabolic layer model are the following.

Plain time analysis (N = 1, v 6= 0):

Ti = 2τiVi,n = σa
1

2av

(
A0 + A1

xi − w

v

)
ln
(
u +

√
u2 + 1

) ∣∣∣∣∣
Li,2

Li,1

(B.73)

− σa

(
1
2a

+
A1

4a2v2

)√
u2 + 1

∣∣∣∣∣
Li,2

Li,1

Combined analysis, unidirectional movement (N = 3, v = 0)

Ti = 2τiVi,n = −σa
1√

4a2(xi − w)2 + 1

3∑
k=0

Akt
k+1

k + 1

∣∣∣∣∣
Mi,2

Mi,1

(B.74)

Combined analysis, bidirectional movement (N = 2, v 6= 0)

Ti = 2τiVi,n = σa
1

2av

(
A0 + A1

xi − w

v
+ A2

(
xi − w

v

)2

− A2

8a2v2

)
ln
(
u +

√
u2 + 1

) ∣∣∣∣∣
Li,2

Li,1

− σa

(
1
2a

+
A1

4a2v2
+

xi − w

2a2v3
A2

)√
u2 + 1

∣∣∣∣∣
Li,2

Li,1

+ σa
A2

16a3v3
u
√

u2 + 1

∣∣∣∣∣
Li,2

Li,1

(B.75)

For the case of a parabolic layer, it is worth knowing what is the MP thickness variation
during one satellite transition. More precisely, for each satellite we compute the quantity:

δTi =
∣∣∣∣Di, in −Di, out

Ti

∣∣∣∣ (B.76)

Di, in refers to the moment when the satellite i encounters the MP leading edge. It is the
distance between the MP margins from the satellite position and along the leading edge normal
at that instance of time. Similarly, Di, out refers to the moment when the satellite i encounters
the MP trailing edge. It is the distance between the MP margins from the satellite position
and along the trailing edge normal at that instance of time.
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After a straightforward calculation we arrive at the following expressions:

Di, in =

∣∣∣∣∣∣
Li,1 + 1/Li,1 ±

√
(Li,1 + 1/Li,1)

2 + 8ad

2a

∣∣∣∣∣∣
√

1 + 1/L2
i,1 (B.77)

Di, out =

∣∣∣∣∣∣
Li,2 + 1/Li,2 ±

√
(Li,2 + 1/Li,2)

2 − 8ad

2a

∣∣∣∣∣∣
√

1 + 1/L2
i,2 (B.78)

where in the above formulas the − or + sign are selected so that the corresponding quantities
take the smaller values.

Another important quantity that characterize one satellite traversal is the average orienta-
tion of the (exterior) normal Ni,ext. This is obtained by integrating the components of (B.68)
over the crossing time-interval

Ni,ext = σa
1

2τi

Mi,2∫
Mi,1

2a(xi − w − vt)√
4a2(xi − w − vt)2 + 1

δt , −
Mi,2∫

Mi,1

1√
4a2(xi − w − vt)2 + 1

δt


When v = 0 the normal has a constant orientation given by (B.68): in all the other subcases
corresponding to the parabolic model the average normal is

Ni,ext = σa
1

4avτi

(
−
√

u2 + 1 , ln
(
u +

√
u2 + 1

)) ∣∣∣∣∣
Li,2

Li,1

(B.79)

The instantaneous radius of curvature of the MP could be computed using the formula

Ri,inst =

(
1 + dy

dx

)3/2

d2y
dx2

(B.80)

where the function y is given by (B.65). This leads us to the following result for the average
MP curvature corresponding to the transition made by satellite i

Ri,inst =
1

4aτi

Mi,2∫
Mi,1

(
1 + 4a2(x− w − vt)2

)3/2
δt (B.81)

which after the integration gives

Ri,ave = − 1
64a2vτi

(
u(2u2 + 5)

√
u2 + 1 + 3 ln

(
u +

√
u2 + 1

)) ∣∣∣∣∣
Li,2

Li,1

(B.82)

We judge whether a transition is inbound or outbound according to the satellite relative
movement along the normal. The sense of this normal is considered positive from the magne-
tosphere towards the magnetosheath and therefore when the satellite is moving towards the
magnetosphere it has a negative velocity. Equivalently, the MP relative velocity to be indicated
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by Vi,ave, will be positive in this case. In the tables presenting the various crossing parameters
corresponding to the test case (next chapter) we will show this velocity. Of course,

Vi,ave = ±Vi,n (B.83)

depending whether the two normals (the one provided by the geometry and the one estab-
lished from physical considerations) are parallel or anti-parallel. We also make the following
definition: if the direction provided by the geometry and the one established from physical
considerations coincide, we will chose a positive sign for the radius of curvature (this corre-
sponds to a bump in the MP). In the opposite situation we will put minus sign in front of that
quantity (this corresponds to an indentation in the MP).

B.4.2 Cylindrical layer case

Because in this situation the MP thickness is fixed by the model to 2d, the average MP velocity
for the transition of satellite i is simply

Vi,ave = ± d

τi
(B.84)

depending on whether we have an inbound or outbond transition. The instantaneous exterior
normal (in the geometrical sense) is along the vector joining the centre of the cylinder and the
point of observation

~ni,ext =
1√

(x− w − vt)2 +
(

y − C −
N∑

k=0

Akt
k+1

k + 1

)2

(
x− w − vt, y − C −

N∑
k=0

Akt
k+1

k + 1

)

For finding the angle between the average normal and the ~x axis we then numerically compute
the integral

φi =
1

2τi

Mi,2∫
Mi,1

arctan


y − C −

N∑
k=0

Akt
k+1

k + 1

x− w − vt

 δt (B.85)

and used the relation

Ni,ext = (cos φi, sinφi)

We will characterize the MP curvature by the geometrical mean of the inner and outer
radius, that is

√
(R(R + 2d)), affected by the sign + or − according to the convention presented

in the previous case.
We computed in this section quantities with a direct physical significance that locally

describe the MP, as resulted from solutions obtained in various implementations of the new
2-D timing technique. By ‘locally’ we mean in the vicinity of the Cluster constellation and
around the time of the event. The parameters Ai and v characterize more globally the solutions
but have no physical sense in general. We could not say, for example, that the MP moves with
the initial velocity A0 and acceleration A1; only when the principal direction is close to the
local normal this assertion becomes justified.
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B.5 Combining MVAB with the timing analysis

We recall that in this technique we first impose the direction of the primary MP movement
(i.e. the angle β in the plane perpendicular to the invariant direction) and than seek for the
solution that satisfies the timing conditions. After such a solution has been found, than, with
the help of formulas presented in Section B.4, we are in the position to compute the variance
along the instantaneous normal or tangential direction for any quantities during the crossing
time.

If a quantity obeys some conservation law at the MP then its variance will have a minimum
across the discontinuity. Indeed, we know that, for example, in case of the magnetic field and
for a planar geometry, the variance of this vector should be minimum along the MP normal (see
Appendix A). This relies on the relation ∇ · ~B = 0, expressing the absence of magnetic poles,
from which one obtains immediately that ~Bn is constant. For a 2-D MP the same condition
should hold provided that the MP local radius of curvature is much bigger than its thickness.
To see this we consider a cylindrical geometry and consider that all quantities depends only
on the radial distance, when the expression of the divergence equation takes the form

∇ · ~B =
Bn

r
+

∂Bn

∂r
= 0

resulting in the relation rBn = const.. If the MP has a thickness of 2d and the local radius of
curvature is R then the relative variation of the magnetic radial component during the crossing
is

Bn,R+2d −Bn,R

Bn,R
= −2d

R
� 1 (B.86)

Therefore, the variance along the radial direction (i.e. along ~n) should be minimum. This
implies that, in case of a 2-D combined analysis, it is well justified to select an optimum
orientation for the primary direction (an optimum β) so that for the corresponding solution
the global magnetic variance is minimum. By global we mean a weighted sum of the individual
variances

σ2
i =

1
Mi

Mi∑
m=1

∣∣∣( ~B
(m)
i − 〈 ~B〉i

)
· ~n(m)

GEO,i

∣∣∣2 i = 1...4 (B.87)

computed from the measurements ~B
(m)
i , m = 1...Mi taken by each of the four Cluster satellites.

Here n
(m)
GEO,i designates the 2-D, instantaneous geometrical normal, corresponding to satellite

i. The super-script m indicates that these normals are changing in time and therefore, in the
above formulas, the orientation of the normals at the time when the B(m) measurement is
taken will be considered.

To be more specific about the way we implemented this criterion in the combined-analysis
algorithms we say that:

- for each satellite, the time interval used for computing the variance is ∆i = [Tci −
τi, Tci + τi], i.e. the interval corresponding to the timing conditions. Strictly speaking,
the solutions refer to these periods only and extrapolating them to longer intervals,
although possible, should be made with care (see the discusions in Section 4.3)

- the weighting factors wi we used for computing the global variance are inverse propor-
tional to the sums of eigenvalues (the trace of the magnetic variance matrix) obtained
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when a constrained MVA analysis on the magnetic field is performed for the intervals
∆i. Here by constrained we mean in the plane perpendicular to the invariant direction ~l.

wi = Tr−1
c,i (λ)

/
k=4∑
k=1

Tr−1
c,k(λ) (B.88)

where Trc,i is the trace from the constrained MVA corresponding to satellite i.
As it was pointed out by Sonnerup et al. [2006], this is not the only way to chose
the weighting factors wi. The underlying argument we followed when addopting it was
that the magnetic field measured by one satellite could be more ‘agitated’ (by whatever
natural reason). In this case its contribution to the global variance should be diminished.
Because the instantaneous normals are all contained in one plane we used the eigenvalues
provided by MVA constrained in that plane too.

A similar procedure of combining the timing analysis could be imagined for any other
quantity which obeys a conservation law at the MP traversal (like, for example, the magnetic
flux, at the base of Minimum Faraday Residue technique). We can even combine different
type of quantities and use them simultaneously by summing their variance (with some proper
weighting factors) following the same procedure developed by Sonnerup et al. [2006] in case of
the planar assumption.

Note that in the technique presented in this appendix, the algorithm finds self-consistently
(i.e. in the same time) the parameters describing the MP orientation, curvature, thickness and
motion. That aspect differentiates this work from that of Mottez and Chanteur [1994] and Dun-
lop and Woodward [1998, 1999], devoted also to characterize the curvature of a discontinuity
and its motion when four points of measurements are available.

In these papers, the authors first apply the planar MVAB technique for each satellite and
associate the result with the MP normal corresponding to the central crossing times at the
satellite positions. Afterwards, the curvature and motion of the central MP surface is obtained
by imposing a system of timing conditions. Proceeding in this way, the authors assume that
the influence of the discontinuity motion and curvature on the result of the MVAB planar
technique is of the second order. Dunlop and Woodward [1998, 1999] used simulated data to
show how the determination of the normal, using the planar MVAB method, is influenced, in
case of a curved boundary, by various effects like data interval length and spacecraft trajectory.
If one wants to limit these effects, the analyzed discontinuity should be characterized by a large
radius of curvature (relative to the thickness) and to use for MVAB only points from a thin
interval around its centre (see also the discussions from Section 4.5).

In the method we developed, the possibility of self-consistently determine the MP crossing
parameters is a consequence of the constant thickness assumption, adopted from the beginning
in our models.
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Tables and figures with the solutions found for the non-planar

magnetopause

In this appendix we present the solutions obtained in various implementations of the 2-D, non-
planar method. For each solution, a table containing values of several characteristic parameters
(to be explained below), and an associated figure are provided.

Tables description

Parameters of the solution section presents the values of the unknowns that appear in the
system of timing conditions. These are:

- the polynomial coefficients A0, A1, ... describing the velocity along the primary direction
and the velocity V along the secondary direction in cases when we allowed for two degrees
of freedom for the MP movement.

- the parabolic coefficient a, or, in the case of the cylindrical model, the inner radius R.
These quantities indicate the scale of the MP’s 2-D feature.

- the initial coordinates of the MP leading edge peak in the parabolic model, or of the
centre of curvature in the cylindrical model. C is along the primary direction (along ~y
axis in Figures A to H) and w is along the other (i.e. ~x) axis.

- the (constant) separation distance between the inner and outer MP edges in the parabolic
model. According to the proposed model, this distance is along the primary direction
(and not along the local MP normal). For the cylindrical model, the similar quantity
represents the MP thickness and appears further down in the table.

- the angle between the principal direction and 〈~n〉
MV AB

, representing the average of MVAB
normals obtained in the nested analysis (and shown in Table 3.1). Both these directions
are contained in the plane perpendicular to the invariant direction ~l, with 〈~n〉MV AB being
the reference direction in the Figures 3.7, 4.1 and 4.4. The angle is positive when the
rotation from 〈~n〉MV AB to ~y is in the sense of ~l.

Transition parameters section presents the individual and global values of normal velocity,
thickness and radius of curvature. These quantities were computed using the formulas from
Section B.4. For the parabolic model we show also how the thickness - defined as the distance
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along the normal between the inner and outer edges - varies during transition (see equation
(B.76)). In the cylindrical model, the geometrical mean of the inner and outer radius is shown.
For the global quantities we computed the arithmetical mean (normal velocity and thickness)
or the geometrical mean (radius of curvature) of the corresponding individual ones. Note that,
according to the convention adopted in Section B.4, a negative radius of curvature means an
indentation in the MP and a positive value means a bulge on this boundary.
Comparison with planar normals section presents:

- for each satellite, the angle between the average geometrical normal ~n ave
GEO and the pro-

jection of the normal obtained from nested MVAB analysis on the plane perpendicular
to the invariant direction ~l. The quantities are positive when the rotation from ~nMV AB,

projection to ~n ave
GEO is associated with the orientation for ~l.

- for each satellite, the angle between the average geometrical normal ~n ave
GEO and the con-

strained (i.e. perpendicular to ~l) planar normal ~n central
MV AB, ⊥~l

obtained when the constrained
MVAB is applied on the central points of the transition.

- the variation in the orientation of the instantaneous geometrical normals during the
crossing. Positive values correspond to a positive rotation from the leading edge normal
to the trailing edge normal.

In calculating the global values (which in this case are simple arithmetical means) we used the
absolute values of the individual quantities. For the global value of ^

(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
we

showed in blue the result obtained when only Cluster 4, 3 and 1 were considered. All angles
are expressed in degrees.
In MVAB results section all the quantities refer to the central crossing intervals (i.e. the
intervals used in the timing equations) with the exception of the last line, containing the results
from the nested MVAB analysis, where the procedure described in Section 3.4 applies. 2D
indicates that the corresponding parameters were computed by using only quantities contained
in the plane perpendicular to ~l, whereas 3D parameters were computed without this restriction.
The different lines refer to:

- the weighting factors used in computing the global values (i.e. in computing the average
values over all four spacecraft). They are described by the equation (B.88).

- the magnetic field variance and the average normal magnetic field obtained when the
instantaneous, geometrical normal is used.

- the magnetic field variance and the average normal magnetic field resulting when the
planar MVAB technique is applied to the central crossing intervals. These quantities
were obtained under the constraint that the normals are perpendicular to ~l.

- the magnetic field variance along a constructed 3D normal, having the projection per-
pendicular to ~l given by the instantaneous geometrical normal ~n ave

GEO. The component
along ~l is equal to the component of the corresponding nested MVAB normal along the
same direction.

- the magnetic field variance from the nested MVAB analysis (also shown in the second
column of Table 3.1).

We indicated in blue the global values obtained when only the results from Cluster 4, 3 and 1
are considered.
In MFR results section all the Faraday residues refer to the points from the central crossing
intervals. ~nMFR and ~vMFR designate the normal vectors and normal velocities obtained in the
planar MFR analysis (values appearing also in Table 4.1). Note that these quantities were
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obtained from the constrained (to Bn = 0) MFR analysis applied to the intervals shown in
Figure 4.4. 2D and 3D have the same meaning as in the MVAB results section. The
different lines refer to:

- the weighting factors used in computing the global values. They are described by the
equation (4.4).

- Faraday residues (FR) obtained when the instantaneous normal velocity and normal
direction provided by the 2-D method are used.

- Faraday residues computed by using the projection on the plane perpendicular to ~l of
~nMFR and ~vMFR.

- Faraday residues computed by using a 3D normal and an associated velocity along it.
These 3D quantities are constructed from the instantaneous normal and velocity provided
by the 2-D solution by adding to them a component along ~l so that the resulting vectors
have the same inclination with respect to ~l as the corresponding ~nMFR.

- Faraday residues on the central intervals computed by using ~nMFR and ~vMFR.
We indicated in red the global values obtained when only the results from the trailing pair of
satellites (i.e. from Cluster 3 and Cluster 1) are considered.
DeHoffmann–Teller results section presents:

- the projection of ~VHT along the average geometrical normal, computed for the time
interval of the HT analysis (i.e. the time interval appearing in the second column of
Table 4.1). Because these intervals are nearly identical to the central crossing intervals,
the above mentioned normals are practically identical to ~n ave

GEO.

- the projection of ~VHT along the normals provided by the nested MVAB analysis.

Figures description

The Figures A to H present the solutions for the 2-D, non-planar MP found in various im-
plementations of the new method. Primary movement takes place along ~y while the so-called
secondary direction is oriented along ~x. Therefore the drawings are MP cuts made with a
plane perpendicular to the invariant direction ~l (which points into the page). The satellite
positions are indicated by the dots coloured according to the mission convention (Cluster 1 -
black, Cluster 2 - red, Cluster 3 - green and Cluster 4 - blue).

Each of the four panels is associated with one satellite and shows the MP configuration at
two moments: when the satellite in question enters the layer (light gray) and when it leaves the
layer (darker gray). The MP geometrical normals at these two moments and at the satellite
position are shown, together with the individual normal obtained from the planar, nested
MVAB technique (actually the projection of this on the plane perpendicular to the invariant
direction).

In the third panel, besides ~y and ~x unit vectors, the average of the planar, nested MVAB
normals as well as a ‘global’ normal, obtained as the vectorial mean of the individual average
geometrical normals ~n ave

GEO are shown with 〈~n〉
MV AB

and 〈~n〉
ext

symbols, respectively. In the
fourth panel, the orientation of the ~XGSM , ~YGSM and ~ZGSM unit vectors are indicated.

In Figure G, presenting the Cyl 2deg OpTA solA solution, we showed in each panel with
orange arrows the ~n central

MV AB, ⊥~l
normals, obtained from the constrained (i.e. perpendicular to ~l )

planar MVAB normals corresponding to the central intervals.
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Table A: Parabolic MP with 2 degrees of freedom
Parameters from the plain timing analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −6226.6
A1 [km/s2] −598.6
V [km/s] −2556.2

parabolic coefficient a [km−1] 4.58 · 10−5

peak initial coord. w [km] −28093.8
C [km] −36144.3

inter-margins distance 2d [km] 4509.4
^ (primary dir., 〈~n〉

MV AB
) [deg] −88.8

Transition parameters

normal velocity [km/s] 50.58 86.79 75.73 20.86 18.96
thickness [km] 704.5 1118.4 975.8 371.8 352.1
thickness variation [% ] 62 71 72 34 34
radius of curvature [RE] −784.7 −143.1 −214.6 −3240.6 −3810.3

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 10.51 −19.60 −17.11 2.13 3.19

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 18..92 15.76 −28.41 −16.09 14.83 16.35

∆~nGEO [deg] 5.95 11.10 9.52 1.64 1.53

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 7..505 5.811 13..409 4..168 6..276 7..146
〈Bn〉 using ~nGEO −2.85 −3.54 0.41 0.51

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 7..461 5.929 12.797 4.458 6.436 7.054
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 2..077 3.737 1..752 0..736 2..677 4..818
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 2..144 3.802 1.871 0.763 2.799 4.824
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 25.09 72.95 23.45 −21.54 25.52

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56

166



Prbl 2deg TA

0

2000

4000

6000

8000

0

2000

4000

6000

8000

−3000 −2000 −1000 0 1000 2000

0

2000

4000

6000

8000

−3000 −2000 −1000 0 1000 2000

0

6000

8000

leading edge normal

MVAB normal
Cluster1
Cluster2
Cluster3
Cluster4

 secondary direction [km]

 p
ri

m
ar

y 
di

re
ct

io
n 

[k
m

] 

trailing edge normal

Plain timing analysis for a parabolic MP with 2 deg. of freedom

~ZGSM
~ZGSM

~YGSM

~XGSM

〈~n〉ext

~x

~y

〈~n〉
MV AB

Figure A: For details see the explanations at page 165

167



Prbl 1deg OpTA

Table B: Parabolic MP with 1 degree of freedom
Parameters from combined timing - magnetic variance analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] 89.60
A1 [km/s2] −5.374
A2 [km/s3] 0.1925
A3 [km/s4] 2.10 · 10−3

parabolic coefficient a [km−1] −2.96 · 10−5

peak initial coord. w [km] 2109.2
C [km] 131.5

inter-margins distance 2d [km] 831.4
^ (primary dir., 〈~n〉

MV AB
) [deg] −3.9

Transition parameters

normal velocity [km/s] 52.04 64.02 56.84 44.63 42.68
thickness [km] 809.8 825.0 825.9 795.4 792.8
thickness variation [% ] 0.2 0.1 0.1 0.4 0.4
radius of curvature [RE] 2.87 2.72 2.71 3.03 3.06

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 9.08 −3.20 −3.10 −15.12 −14.92

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 4..57 2.09 −12.01 −2.08 −2.42 −1.76

∆~nGEO [deg] 0.0 0.0 0.0 0.0 0.0

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 3..276 2.758 5..085 1..219 2..891 4..243
〈Bn〉 using ~nGEO −0.53 −2.03 −1.63 −1.79

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 3..235 2.798 4.761 1.238 2.625 4.543
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..706 2.672 1..419 1..004 1..982 3..374
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..763 2.781 1.473 1.014 2.182 3.391
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 32.61 83.47 1.75 17.96 27.24

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Table C: Parabolic MP with 2 degrees of freedom
Parameters from combined timing - magnetic variance analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] 70.92
A1 [km/s2] −3.26
A2 [km/s3] 3.10 · 10−2

V [km/s] 77.88
parabolic coefficient a [km−1] −6.25 · 10−5

peak initial coord. w [km] −2058.6
C [km] 265.0

inter-margins distance 2d [km] 860.8
^ (primary dir., 〈~n〉

MV AB
) [deg] 16.8

Transition parameters

normal velocity [km/s] 49.74 65.44 58.00 38.51 37.00
thickness [km] 764.9 843.3 842.8 686.2 687.3
thickness variation [% ] 4 2 2 6 6
radius of curvature [RE] 1.81 1.33 1.33 2.46 2.45

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.09 −0.61 0.05 −14.32 −13.39

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 3..09 0.97 −9.42 1.07 −1.62 −0.23

∆~nGEO [deg] 6.94 6.92 7.80 6.37 6.66

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 2..764 2.518 3..624 1..446 2..579 3..577
〈Bn〉 using ~nGEO 0.11 −1.37 −1.37 −1.43

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 2..701 2.501 3.402 1.344 2.367 3.800
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..762 2.751 1..246 1..219 2..033 3..483
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..812 2.851 1.297 1.222 2.215 3.498
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 31.47 84.53 −2.70 16.85 27.19

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Table D: Cylindrical MP with 1 degree of freedom
Parameters from the plain timing analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −161.58
A1 [km/s2] 8.397
A2 [km/s3] −0.2505

inner radius R [km] 30277.3

centre initial coord. w [km] 25624.6
C [km] 17691.1

^ (primary dir., 〈~n〉
MV AB

) [deg] −122.9

Transition parameters

normal velocity [km/s] 55.19 66.82 59.26 48.32 46.35

thickness [km] 861.1 861.1 861.1 861.1 861.1

radius of curvature [RE] 4.82 4.82 4.82 4.82 4.82

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 10.96 −5.96 −6.14 −15.38 −16.36

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 6..44 3.67 −14.77 −5.12 −2.68 −3.20

∆~nGEO [deg] 5.73 −2.44 −2.51 −8.12 −9.86

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 4..191 3.527 6..507 1..530 3..451 5..647
〈Bn〉 using ~nGEO −1.07 −2.51 −1.85 −2.20

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 4..172 3.618 6.108 1.632 3.131 6.048
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..687 2.617 1..545 0..903 1..945 3..303
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..746 2.726 1.602 0.917 2.142 3.321
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 33.34 82.16 6.14 17.79 27.27

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Table E: Cylindrical MP with 2 degrees of freedom
Parameters from the plain timing analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −87.47
A1 [km/s2] 4.961
V [km/s] −36.65

inner radius R [km] 11418.5

centre initial coord. w [km] 10801.9
C [km] 5581.7

^ (primary dir., 〈~n〉
MV AB

) [deg] −105.3

Transition parameters

normal velocity [km/s] 47.45 57.45 50.95 41.54 39.85

thickness [km] 740.3 740.3 740.3 740.3 740.3

radius of curvature [RE] 1.85 1.85 1.85 1.85 1.85

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.88 4.35 3.68 −12.63 −10.87

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 2..88 2.35 −4.46 4.70 0.07 2.29

∆~nGEO [deg] 6.40 −2.10 −1.58 10.05 11.87

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 2..497 2.261 3..321 1..395 2..282 3..138
〈Bn〉 using ~nGEO 0.64 −1.17 −1.09 −1.00

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 2..427 2.219 3.154 1.268 2.139 3.263
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..783 2.867 1..188 1..214 2..135 3..613
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..822 2.958 1.215 1.212 2.303 3.626
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 29.42 86.06 −8.61 13.18 27.06

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Cyl 1deg OpTA

Table F: Cylindrical MP with 1 degree of freedom
Parameters from combined timing - magnetic variance analysis

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] 116.01
A1 [km/s2] −6.430
A2 [km/s3] 0.201
A3 [km/s4] 2.05 · 10−3

inner radius R [km] 12904.9
centre initial coord. w [km] 8708.4

C [km] −10613.9
^ (primary dir., 〈~n〉

MV AB
) [deg] −37.1

Transition parameters

normal velocity [km/s] 52.84 63.97 56.73 46.26 44.38
thickness [km] 824.4 824.4 824.4 824.4 824.4
radius of curvature [RE] 2.09 2.09 2.09 2.09 2.09

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 9.75 −2.42 −1.97 −17.43 −17.19

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 5..24 3.24 −11.23 −0.95 −4.73 −4.03

∆~nGEO [deg] 1.96 3.07 3.05 0.88 0.84

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 3..220 2.852 4..503 1..225 3..132 4..315
〈Bn〉 using ~nGEO −0.31 −1.79 −1.87 −2.05

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 3..175 2.877 4.214 1.200 2.816 4.656
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..684 2.581 1..366 1..073 1..951 3..224
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..736 2.687 1.411 1.078 2.143 3.241
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 33.67 83.81 0.27 23.33 27.27

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Cyl 2deg OpTA solA

Table G: Cylindrical MP with 2 degrees of freedom
Parameters from combined timing - magnetic variance analysis. Solution A

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −87.68
A1 [km/s2] 4.961
A2 [km/s3] 2.56 · 10−4

V [km/s] −36.59

inner radius R [km] 11431.8

centre initial coord. w [km] 10817.9
C [km] 5579.7

^ (primary dir., 〈~n〉
MV AB

) [deg] −105.2

Transition parameters

normal velocity [km/s] 47.45 57.44 50.94 41.54 39.85

thickness [km] 740.3 740.3 740.3 740.3 740.3

radius of curvature [RE] 1.85 1.85 1.85 1.85 1.85

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.87 4.35 3.68 −12.61 −10.85

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 2..89 2.36 −4.46 4.69 0.09 2.31

∆~nGEO [deg] 6.41 −2.11 −1.60 10.06 11.88

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 2..497 2.260 3..323 1..394 2..281 3..138
〈Bn〉 using ~nGEO 0.63 −1.17 −1.09 −0.99

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 2..427 2.218 3.155 1.267 2.138 3.263
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..784 2.868 1..189 1..214 2..136 3..614
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..823 2.959 1.215 1.212 2.303 3.628
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 29.41 86.06 −8.61 13.14 27.06

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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Cyl 2deg OpTA solB

Table H: Cylindrical MP with 2 degrees of freedom
Parameters from combined timing - magnetic variance analysis. Solution B

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −156.35
A1 [km/s2] 10.62
A2 [km/s3] −0.149
V [km/s] −37.45

inner radius R [km] 14857.5

centre initial coord. w [km] 15055.8
C [km] 4132.3

^ (primary dir., 〈~n〉
MV AB

) [deg] −95.0

Transition parameters

normal velocity [km/s] 48.40 58.60 51.97 42.37 40.65

thickness [km] 755.1 755.1 755.1 755.1 755.1

radius of curvature [RE] 2.39 2.39 2.39 2.39 2.39

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.80 1.53 0.72 −14.62 −14.35

^
(
~n ave

GEO , ~n central
MV AB, ⊥~l

)
[deg] 3..03 1.62 −7.28 1.74 −1.92 −1.19

∆~nGEO [deg] 2.22 −4.12 −3.53 0.85 0.40

MVAB results [nT ]2 or [nT ]

weighting factors 0.223 0.285 0.215 0.276

2D variance using ~nGEO 3..014 2.712 4..066 1..132 2..851 4..236
〈Bn〉 using ~nGEO 0.10 −1.63 −1.54 −1.70

variance using ~n central
MV AB, ⊥~l

2..724 2.697 2.820 1.163 2.794 4.206
〈Bn〉 using ~n central

MV AB, ⊥~l
1.44 −1.75 −1.35 −1.58

3D variance using ~nGEO, 3D 2..971 2.728 3.824 1.084 2.600 4.524
variance from nested MVAB 3..587 3.448 4..088 4..639 2..580 2..894

MFR results [mV/m]2

weighting factors 0.289 0.362 0.176 0.173

2D FR using ~nGEO and ~vGEO 1..714 2.708 1..311 1..079 2..014 3..414
FR using ~nMF R, 2D and ~vMF R, 2D 2..724 2.920 0.559 4.267 2.415 3.434

3D FR using ~nGEO, 3D and ~vGEO, 3D 1..759 2.806 1.343 1.082 2.194 3.430
FR using ~nMF R and ~vMF R 2..649 2.847 0..464 4..206 2..282 3..422

deHoffmann–Teller results [km/s]

VHT along ~n ave
GEO 31.27 85.26 −4.36 16.95 27.23

VHT along ~n nested
MV AB 22.25 86.64 −5.78 −14.44 22.56
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APPENDIX D

Stability of the solutions found for the non-planar magnetopause

In order to illustrate how the results that describe the MP configuration and movement depend
on the magnetic levels used to set the timing conditions, we select the same solution discussed
in Subsection 4.3.1, namely Cyl 2deg OpTA solA obtained from the combined timing-MVAB
technique. We choose to discuss this case because it implies one of the highest dynamical
behavior for the MP. As one can see from Table G in Appendix C, it implies a small radius of
curvature, high variations in the instantaneous normal velocity (see in this respect also Figure
4.5) and relative high variations in the orientation of the instantaneous geometrical normal
(the parameter ∆~nGEO appearing in Tables A to H from Appendix C). Therefore one can
presume that the characteristics of this solution depend more on the timing information than
in other cases. Besides, due to the fact that this solution is very close to the one from the
plain timing analysis (i.e. from the solution Cyl 2deg TA), the investigation will also indicate
how stable the latter technique is.

We change the magnetic levels used to extract the timing information in the following
way: in the original implementation the values Bm ± (1/2) tanh(1) ∆B were employed (see
equations (3.3) and (3.4)), meaning a symmetric (with respect to the mean value Bm) magnetic
variation of tanh(1) ≈ 76.2 % of the total magnetic jump ∆B (i.e. the jump between the
asymptotic levels). We test the stability of the results by using other three, symmetric to Bm,
intervals implying magnetic variations equal to tanh(1.1) ≈ 80.0 %, tanh(1.2) ≈ 83.4 % and
tanh(1.3) ≈ 86.2 % of ∆B. That corresponds to an increase in the crossing times by 10%,
20 % and 30 % respectively. The results from the new solutions are presented in Table D.1,
Table D.2 and Table D.3 respectively. In these tables we also compare the geometrical and
dynamical parameters corresponding to the 76.2 % · ∆B magnetic extension band with the
same parametes from the original solution. In other words we kept the definition for the MP
extension and present how its thickness, normal velocity, radius of curvature etc. changes when
the time-interval used in the conditions of satellites encounter by the MP edges changes.

To understand the quantities appearing in Tables D.1, D.2 and D.3 we refer to the expla-
nations at the beginning of Appendix C, where a description of the Tables A to H, presenting
the various 2-D MP solutions, is provided. In this stability study no results from MFR anal-
ysis are shown. The changes in the MP geometrical and dynamical parameters due to the
different implementation of the timing conditions could be seen under the ‘76 % interval’
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APPENDIX D. Stability of the 2-D solutions

Table D.1: Stability of the solution when the interval used in the timing conditions
increases by 10 %. Parameters from combined timing - magnetic variance
analysis for a cylindrical MP with 2 degrees of freedom, solution A

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −99.92
A1 [km/s2] 5.274
A2 [km/s3] 8.98 · 10−4

V [km/s] −36.26
inner radius R [km] 11851.5
centre initial coord. w [km] 11404.0

C [km] 5561.8
^ (principal dir., 〈~n〉

MV AB
) [deg] −104.2

−105..2

Transition parameters

normal velocity [km/s] 48.74 59.01 52.33 42.67 40.94
thickness [km] 836.5 836.5 836.5 836.5 836.5
radius of curvature [RE] 1.92 1.92 1.92 1.92 1.92

1..85 1..85 1..85 1..85 1..85

76 % interval

normal velocity [km/s] 48.97 58.94 52.27 43.15 41.53
47..45 57..44 50..94 41..54 39..85

thickness [km] 764.8 759.6 759.5 768.9 771.4
740..3 740..3 740..3 740..3 740..3

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.39 3.72 3.02 −12.31 −10.51

∆~nGEO [deg] 7.30 −2.76 −2.21 11.09 13.15

76 % interval

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.41 3.69 2.98 −12.39 −10.60

7..87 4..35 3..68 −12..61 −10..85
∆~nGEO [deg] 6.64 −2.52 −2.02 10.07 11.94

6..41 −2..11 −1..60 10..06 11..88

MVAB results [nT ]2

weighting factors 0.225 0.283 0.222 0.270

2D variance using ~nGEO 2..424 3..610 1..221 2..194 2..888
〈Bn〉 using ~nGEO 0.37 −1.28 −1.05 −0.95

variance using ~n central
MV AB, ⊥~l

2.750 3.158 1.115 2.785 4.098
〈Bn〉 using ~n central

MV AB, ⊥~l
1.03 −1.64 −1.26 −1.42

3D variance using ~nGEO, 3D 2.359 3.445 1.123 2.037 3.015
variance from nested MVAB 3..587 4..088 4..639 2..580 2..894
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Table D.2: Stability of the solution when the interval used in the timing conditions
increases by 20 %. Parameters from combined timing - magnetic variance
analysis for a cylindrical MP with 2 degrees of freedom, solution A

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −111.35
A1 [km/s2] 5.679
A2 [km/s3] −2.40 · 10−3

V [km/s] −36.84
inner radius R [km] 12177.4
centre initial coord. w [km] 11874.3

C [km] 5573.1
^ (principal dir., 〈~n〉

MV AB
) [deg] −103.7

−105..2

Transition parameters

normal velocity [km/s] 50.19 60.76 53.89 43.94 42.15
thickness [km] 939.6 939.6 939.6 939.6 939.6
radius of curvature [RE] 1.98 1.98 1.98 1.98 1.98

1..85 1..85 1..85 1..85 1..85

76 % interval

normal velocity [km/s] 50.67 60.59 53.72 44.95 43.41
47..45 57..44 50..94 41..54 39..85

thickness [km] 792.2 780.8 780.6 801.0 806.3
740..3 740..3 740..3 740..3 740..3

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 6.97 3.00 2.30 −12.20 −10.38

∆~nGEO [deg] 8.08 −3.32 −2.71 12.03 14.25

76 % interval

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 7.02 2.94 2.21 −12.37 −10.57

7..87 4..35 3..68 −12..61 −10..85
∆~nGEO [deg] 6.73 −2.78 −2.28 10.00 11.86

6..41 −2..11 −1..60 10..06 11..88

MVAB results [nT ]2

weighting factors 0.221 0.299 0.223 0.258

2D variance using ~nGEO 2..378 3..899 1..137 2..230 2..641
〈Bn〉 using ~nGEO 0.00 −1.40 −1.05 −0.95

variance using ~n central
MV AB, ⊥~l

2.764 3.536 1.132 2.915 3.862
〈Bn〉 using ~n central

MV AB, ⊥~l
0.43 −1.57 −1.17 −1.38

3D variance using ~nGEO, 3D 2.321 3.750 1.095 2.037 2.762
variance from nested MVAB 3..587 4..088 4..639 2..580 2..894
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APPENDIX D. Stability of the 2-D solutions

Table D.3: Stability of the solution when the interval used in the timing conditions
increases by 30 %. Parameters from combined timing - magnetic variance
analysis for a cylindrical MP with 2 degrees of freedom, solution A

Average/global Satellite

quantity Cluster 2 Cluster 4 Cluster 3 Cluster 1

Parameters of the solution

velocity coefficients A0 [km/s] −120.35
A1 [km/s2] 6.133
A2 [km/s3] 9.55 · 10−3

V [km/s] −38.26
inner radius R [km] 12267.9
centre initial coord. w [km] 12080.4

C [km] 5601.8
^ (principal dir., 〈~n〉

MV AB
) [deg] −103.8

−105..2

Transition parameters

normal velocity [km/s] 51.68 62.57 55.49 45.24 43.41
thickness [km] 1048.2 1048.2 1048.2 1048.2 1048.2
radius of curvature [RE] 2.01 2.01 2.01 2.01 2.01

1..85 1..85 1..85 1..85 1..85

76 % interval

normal velocity [km/s] 52.37 62.24 55.17 46.78 45.29
47..45 57..44 50..94 41..54 39..85

thickness [km] 819.7 802.1 801.7 833.7 841.3
740..3 740..3 740..3 740..3 740..3

Comparison with planar normals

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 6.73 2.35 1.66 −12.37 −10.54

∆~nGEO [deg] 8.73 −3.70 −3.00 12.93 15.27

76 % interval

^
(
~n ave

GEO , ~n nested
MV AB, ⊥~l

)
[deg] 6.80 2.24 1.52 −12.62 −10.82

7..87 4..35 3..68 −12..61 −10..85
∆~nGEO [deg] 6.71 −2.87 −2.33 9.93 11.73

6..41 −2..11 −1..60 10..06 11..88

MVAB results [nT ]2

weighting factors 0.226 0.305 0.217 0.251

2D variance using ~nGEO 2..394 4..020 1..110 2..408 2..479
〈Bn〉 using ~nGEO −0.22 −1.48 −1.06 −0.97

variance using ~n central
MV AB, ⊥~l

2.777 3.634 1.141 3.079 3.731
〈Bn〉 using ~n central

MV AB, ⊥~l
0.22 −1.43 −1.04 −1.35

3D variance using ~nGEO, 3D 2.343 3.860 1.130 2.161 2.607
variance from nested MVAB 3..587 4..088 4..639 2..580 2..894
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sections. The values corresponding to the original implementation of the timing conditions
(tanh(1) ≈ 76.2 % of the total magnetic jump ∆B) appear in green and they are taken from
Table G in Appendix C.

As far as the geometrical parameters are concerned we notice that the solution is very
stable: the orientation of the principal direction changed only within 1.5 degrees. Also, the
values for the angles ^ (~n ave

GEO, ~nMV AB) (between the average geometrical normal and the normal
from the planar nested MVAB) and ∆~nGEO (indicating the variation of the geometrical normal
during one transition) are very similar, both for the individual transitions and in the global
sense.

The dynamical parameters have a somewhat larger variation, with the average normal
velocity varying by ≈ 3.2 %, ≈ 6.8 % and ≈ 10.3 % when the timing information was set at
tanh(1.1), tanh(1.3) and tanh(1.3) ∆B magnetic extension, respectively. In the latter case,
for individual satellites the variation could rise by as much as ≈ 13.7 %. A similar behavior
is noticed for the corresponding thicknesses. We believe that this has to do with the relative
large variation in the normal velocity at each spacecraft (see in Figure 4.5, the evolution of the
blue line), when perhaps the use of a symmetrical profile to fit the magnetic traces and extract
the timing information is not so appropriate. Indeed, we carry-out a similar investigation for a
solution implying less variation in the normal velocity namely the solution Cyl 2deg OpTA solB.
In Figure 4.5 the latter solution appears in yellow trace. In this case, the stability analysis
indicates that the relative variations in the average normal velocity are only ≈ 1.0 %, ≈ 2.2 %
and ≈ 3.6 %, respectively.
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APPENDIX E

Magnetic variance in the planar and 2-D, non-planar methods

In order to compare the results obtained from the planar MVAB technique with the results
from the non-planar method we will concentrate on one particular solution of the 2-D problem,
namely solution Cyl 2deg OpTA solA. Later, we will present a similar analysis corresponding
to the other solutions obtained in the combined timing-MVAB analysis.

As mentioned in Subsection 4.3.1, such a comparison involves the problem of different data
sets used by each method: the planar MVAB requires intervals large enough to encompass
the whole magnetic field rotation, whereas in our 2-D method we use only the central inter-
vals, between Bm + (1/2) tanh(−1) ∆B and Bm + (1/2) tanh(1) ∆B, according to the system of
conditions describing the satellites encounter with the MP edges. In this respect, compare,
for example, in the upper part of Figure 3.10, the intervals between the vertical grey stripes
(marking the extent of the eleven nested intervals used in the planar nested MVAB technique)
with the interval between the magenta vertical dashed lines (used for imposing the timing
conditions).

In consequence, for the task of this section, different intervals of comparison will be used.
Namely, we will use intervals of increased width, centred on the central crossing times Tci,
and we will show how the normal magnetic variance and normal magnetic component 〈Bn〉
implied by the chosen 2-D solutions, compare with the similar quantities obtained from the
single-spacecraft, planar MVAB technique. More precisely, for the time-intervals mentioned
above, we computed the global and the individual (i.e. referring to each satellite) quantities
of normal magnetic filed variance and 〈Bn〉 using the following normals:

- the instantaneous, geometrical normals implied by the 2-D, non-planar MP. Clearly, the
direction of these normals is changing in time, according to the MP movement prescribed
by the solution we analyse. For simplicity, in this section we will refer to them as the
instantaneous 2-D normals.

- the normals compiled in Table 3.1, i.e. provided by the (constrained to 〈Bn〉 = 0) planar
MVAB on the eleven nested intervals, and used in Section 3.4 for inferring the invariant
direction ~l. To be more precise, we used their projection on the plane perpendicular
to ~l but this is a minor detail in the following discussion. Indeed, because the nested
individual normals already lie very close to that plane, taking the projections results in
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only minor differences in the computed values. The directions of these normals are fixed
in space; for simplicity, in this section we will refer to them as the fixed, planar MVAB
normals.

- the normals obtained when, for each satellite and for the time-interval in question, a
constrained planar MVAB is performed. By ‘constrained’ we mean here perpendicular
to the invariant direction ~l. As a consequence, in this case the directions of the normals
are changing with the interval of analysis according to the planar MVAB theory. In this
section we will refer to these normals as planar, interval-specific MVAB normals.

The results of the comparison are illustrated in Figure E.1. On the left column we show how
the normal magnetic field variance and average normal magnetic component 〈Bn〉 changes with
the width of the interval of analysis, when the planar or the 2-D assumptions were adopted.
Panels 1 to 4 in that column refer to Cluster 2, Cluster 4, Cluster 3 and Cluster 1 respectively
(the order corresponds to the sequence of MP encounter). As mentioned, all the results were
computed by using symmetrically centred intervals, i.e. for satellite i the intervals are centred
at Tci. In each panel, on the abscissa, the half-width of the interval of analysis appears,
in seconds from τi, and therefore the origin of this axis corresponds to the central intervals
[Tci−τi, T ci +τi] used in the timing conditions. The range of the ~x axis starts with an interval
of τi − 2 seconds half-width and stops at the half-width of the largest possible central interval
that is still included in the largest interval from the planar nested analysis. In each panel, the
vertical dashed lines (in grey) are drawn at multiples of τi. In panel 5 the weighted sums of
the individual normal magnetic field variances are shown (i.e. the so called ‘global’ variances).
For computing the global values we used the weighting factors provided by (B.88), defined in
Section B.5.

Two sets of planar results are presented: in cyan the normal magnetic field variance (con-
tinuous lines) and 〈Bn〉 quantity (dashed lines) were computed using the fixed, planar MVAB
normals. For that purpose, the following formulas for the magnetic field variance and for 〈Bn〉
were used:

σ2
i =

1
Mi

Mi∑
m=1

∣∣∣( ~B
(m)
i − 〈 ~B〉i

)
· ~n nested

MV AB,i

∣∣∣2

〈Bn〉i =
1

Mi

Mi∑
m=1

~B
(m)
i · ~n nested

MV AB,i i = 1...4

Here by i we indicated a specific satellite and Mi represents the total number of points contained
in the data interval for which we compute the above quantities. ~n nested

MV AB,i designates the fixed
planar MVAB normals.

The second set of planar results is shown in orange; with this colour we present the evolution
of the normal magnetic field variance (continuous lines) and of the average normal magnetic
component 〈Bn〉 (dashed lines) obtained with the planar, interval - dependant MVAB normals
(i.e. by applying the standard MVAB technique, imposing the constaint that ~n ·~l = 0, on each
of the central intervals used for comparison).

For each satellite, the normal magnetic field variance and 〈Bn〉 along the 2-D, instantaneous,
geometrical normals are shown in the corresponding panels using the mission colour code (i.e.
red for Cluster 2, blue for Cluster 4, green for Cluster 3 and black for Cluster 1). More precisely,
the above mentioned quantities were computed based on the Cyl 2deg OpTA solA solution by
extending its validity on each of the central intervals used for comparison. Therefore the
formula (B.87) from Section B.5 was applied on smaller and larger central intervals, having

190



Comparison between planar and cylindrical MP with 2 deg. of freedom
Sol. A from mixed analysis 
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Figure E.1: Left column: Magnetic variance (continuous lines) and average quantity 〈Bn〉 (dashed
lines) computed for different central intervals, with the half-width appearing on the abscissa, in case
when the normals are provided by the nested, planar MVAB (cyan), by the running, planar MVAB
(orange) and by the 2-D cylindrical model for the MP presented at pages 178 and 179 (colour
coded according to the mission convention). Right column: The change in normals orientation as
a function of interval half-width for the above mentioned cases. See text for more explanations.
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the half-width appearing on the abscissa):

σ2
i =

1
Mi

Mi∑
m=1

∣∣∣( ~B
(m)
i − 〈 ~B〉i

)
· ~n(m)

GEO,i

∣∣∣2

〈Bn〉i =
1

Mi

Mi∑
m=1

~B
(m)
i · ~n(m)

GEO,i i = 1...4

Here n
(m)
GEO,i designates the 2-D, instantaneous normals. The super-script m indicates that

the direction of these normals is changing in time. Therefore in the above formulas, for the
satellite i the orientation of the normal at the moment when the B

(m)
i measurement was taken

is considered.
The four panels on the right column present the change in the orientation of the corre-

sponding normals as a function of interval half-width. In each panel we have the fixed, planar
MVAB normals in cyan, the planar, interval-specific MVAB normals in orange, and the 2-D,
instantaneous normals shown in the mission colour code. For that purpose we took for each
satellite a reference direction in the plane perpendicular to the invariant direction ~l, specifically
the direction along the fixed, planar MVAB normal. In consequence, in each panel, the cyan
continuous trace lies along the ~x axis. Along the ~y axis we represent the angles (in degrees)
relative to the reference direction we have chosen. The orientation of planar, interval-specific
MVAB normals is shown with orange crosses (by using crosses, instead of continuous lines,
one can see also the actual extent of each interval of analysis). As for the 2-D, instantaneous
normals, in each panel we plotted three lines. The continuous line shows the evolution of the
average geometric normal, as computed for the satellite in question and for the corresponding
interval of analysis (see the formula (B.85) from Section B.4). In the same time the range of
angular variation for the 2-D instantaneous normals are indicated with the two dashed lines.
It means that, during each particular interval of analysis the 2-D, instantaneous normals will
move between the dashed lines, having an average orientation indicated by the continuous line.

By looking at each of the right panels, as a first observation one notices that the magnetic
field variance curve based on the planar, interval-specific MVAB normal (orange continuous
lines), always lies below the magnetic field variance along the fixed, planar MVAB normal (cyan
continuous lines), as it should be the case because the former is the minimum value possible
for each interval. At the same time, we expect to have close results from the two sets of planar
MVAB normals as the interval increases. Therefore it is no surprise that all the orange and
cyan curves (referring to the magnetic field variances, to the average magnetic components
or to the orientation of the normals indicated in the panels from the right column) meet at
the end of the plotted range. In addition the orange and cyan dashed lines, designating the
〈Bn〉 quantities computed from the two sets of planar MVAB normals, are approaching zero
for larger intervals, because we used a constrained (to 〈Bn〉 = 0) MVAB in our nested analysis.

Analysing the right column, we notice, for Cluster 2 and Cluster 1, big variations in the
orientation of the planar, interval-specific MVAB normals as the width of the analysis interval
decreases. This evolution could be ascribed to the MP rotation or/and to the local, internal
(temporal or structural) irregularities of this discontinuity. It is difficult to separate these
two factors but we think that in these cases the local effects dominate for intervals of half-
width below or around τ2 and τ1, respectively. Indeed, as one can see at the beginning of the
corresponding traces, the planar, interval-specific MVAB normals change their orientation by
more than 2 degrees from one interval of analysis to the other, i.e. when two magnetic field
measurements, 0.4 seconds apart are successively included in the analysis (one at the right
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and one at the left of the central time). Considering the general smoothness of the magnetic
traces for this event, it is difficult to imagine a MP movement causing such a rapid change in
orientation. Also, the corresponding 〈Bn〉 values (orange dashed lines in the panel on the left
column) are relatively big in that region. Therefore, most probably, these are the manifestation
of the ‘non-ideal’ features of the 2-D MP, meaning by this expression that the local, internal
irregularities (magnetic islands, noise etc.) are playing an important role.

The effects we discussed in the above paragraph can be neglected in case of Cluster 1 for
intervals of analysis having the half-width equal or bigger than τ1, but in case of Cluster 2 (the
top panels on both columns) the effects are still important for an interval of half-width τ2. As
a result, we conclude that the planar MVAB result on [Tc2 − τ2, Tc2 + τ2] interval is spoiled
by the local fluctuations or by the internal structure. This is the reason why, in tables A to
H from Appendix C, presenting the parameters of each 2-D, non-planar solution, we used for
comparison with the planar results both the global magnetic field variance based on data from
all four satellites (black numbers in the MVAB section of these tables) and the same quantity
based only on data from Cluster 1, Cluster 3 and Cluster 4 (the blue numbers).

The behaviour of the results obtained for Cluster 2 would suggest a slightly larger definition
of the magnetic levels used to extract the timing information but, as we showed in Appendix D
devoted to investigate the stability of the 2-D solutions, the predicted MP shape, orientation
and motion is practically not affected by this aspect.

In the section entitled Comparison with the planar normals of Tables A to H from
Appendix C, we made a comparison, for each satellite, between the orientation of the average
geometrical normal and the orientation of the planar normal obtained in the MVAB nested
analysis (what we called in this section fixed, planar MVAB normal). By looking at these
values and at the accompanying figures, one would be inclined to say that all 2-D, non-planar
solutions imply, in case of Cluster 3 and Cluster 1, a systematic difference between the two
normals. Actually, the last two panels on the right column in Figure E.1 make clear that
the difference in orientation is due to the different time-intervals on which the two normals
are based. In fact, in case of Cluster 3 and Cluster 1 for the intervals having the half-width
of τ3, respectively τ1, the planar MVAB analysis provides normals very close to the average
geometrical normals. Moreover, for all the central intervals with the half-width greater than τ3,
respectively τ1, the planar, interval-specific MVAB normals lie in the range of angular variation
for the 2-D, instantaneous normals (i.e. lie between the dashed, colour coded lines). This is
exactly the result that we expect when the planar MVAB technique is applied on a ideal 2-D
discontinuity (see Dunlop and Woodward [1998]). The result is remarkable, particularly if we
take into account the fact that the analyzed 2-D solution is practically the same as obtained
from the plain timing analysis (solution Cyl 2deg TA, from 174 and 175).

From the panels on the left column we see that the average normal magnetic components
computed with the 2-D, instantaneous normals are not zero. While in general it could happen
that the timing conditions introduce an undesired and non-realistic offset in the values of
these quantities, this is not the situation for the particular solution we discuss. Indeed, for
all satellites the corresponding curves are closer to the ~x axis than the 〈Bn〉 curves computed
with the planar, interval-specific normals, for most of the intervals with a half-width smaller
than 2τi.

It is important to notice that the existence of non-zero values for 〈Bn〉 does not necessarily
imply an inconsistency with the results of the planar nested analysis or with the outcome from
the Walén analysis. In the nested analysis, in order to obtain reliable normals, we imposed
Bn = 0 on average for the eleven nested intervals but this does not mean 〈Bn〉 = 0 for smaller
intervals. This aspect can be observed in the evolution of the cyan dashed lines (see for example
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Comparison between planar and parabolic MP
Mixed timing - MVA analysis 
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Figure E.2: The same descriptions as for the left column of Figure E.1 applies here, the only
differences being that now the comparison is made with the solution provided by the mixed timing
– MVAB analysis for a parabolic MP having 1 degree of freedom (left column) or 2 degrees of
freedom (right column).
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Mixed timing - MVA analysis 
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Figure E.3: The same descriptions as for the left column of Figure E.1 applies here, the only
differences being that now the comparison is made with the solution provided by the mixed timing
– MVAB analysis for a cylindrical MP having 1 degree of freedom (left column) or 2 degrees of
freedom, solution B (right column).
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the panels on the left column of Figure E.1 referring to Cluster 2 and Cluster 4). As for the
Walén tests (see Section 3.3), they were performed by using magnetic data averaged over 4
seconds (the time resolution of the plasma sensor) and assuming a planar MP.

The curves in the bottom left panel (presenting the global normal magnetic field variances)
show that even for central intervals having the half-width as large as ≈ τi + 5 seconds, the
2-D, instantaneous normals imply a smaller global magnetic variance (magenta line) than
the planar, interval-specific normals (orange line), which are the ‘best’ normals obtained in
the planar assumption (i.e. implying the minimum magnetic variance). In fact, a similar
statement can be made at the individual level in case of Cluster 3 and Cluster 1, while in case
of Cluster 4 the two curves are very close to each other. The situation is reversed on Cluster 2
(allthough the curves are still very close) but, as we already mentioned, in this case the local
irregularities play an important role. Considering the above arguments, one can definitely
endorse the assertion that, for the above mentioned intervals, the 2-D solution performs better
than the planar solution from MVAB point of view.

Nevertheless, in judging one particular solution relying on the 2-D, non-planar assumption
it is not necessary to adopt such a strict criterion (namely that the curve representing the
global magnetic variance based on the 2-D, instantaneous normals to be situated below the
similar curve based on the planar, interval-specific MVAB normals). The individual planar,
interval-specific MVAB normals are independent from one another and, so to speak, free to
change their direction from one interval to the other, according to the measurements acquired
by each satellite. On the other hand the instantaneous normals for a 2-D solution are linked
at each moment by the geometry proposed for the MP (parabolic or cylindrical) and evolve in
time according to the global MP dynamics. Therefore, it is reasonable to think that in case of
the 2-D problem, values for the global normal variances greater than (but close to) the global
variances based on planar, interval-specific MVAB normals, might still define a solution that
performs better, from the MVAB perspective, than the one obtained in the planar assumption.

With respect to the interval of validity for a particular 2-D, non-planar solution, the left
panels in Figure E.1 allows us to set an upper - limit. We notice that starting with a certain
width of the interval of analysis, in each panel, the individual and global normal magnetic
variances begin to rise monotonically; from that point on the solution should be abandoned.

In Figure E.2 and Figure E.3 we have plotted the curves corresponding to the normal
magnetic variances and to the 〈Bn〉 quantities (in the same format as in the left column
of Figure E.1) for the remaining 2-D, non-planar solutions obtained in the combined timing-
MVAB analysis. Using the same line of reasoning it is possible to carry-out a similar comparison
between these solutions and the results obtained in the planar MVAB technique.

196



APPENDIX F

The deHoffmann-Teller analysis

In this appendix we briefly present the non-iterative, matrix based technique of finding the
deHoffmann - Teller (HT) frame, developed by Sonnerup et al. [1987] and reviewed in Khrabrov
and Sonnerup [1998]. In their original work, devoted to the analysis of jump conditions across
MHD shock waves, deHoffmann and Teller [1950] introduced a particular reference frame in
which the plasma flow on either side of the shock becomes aligned with the magnetic field. In
other words, the convection electric field vanishes in these regions.

As we discussed in Section 5.2, in the context of performing the Walén analysis at the
MP, of interest is the search for a HT frame by using not only measurements taken in the
adjacent asymptotic regimes but also measurements inside the boundary. If the identification
of such a reference frame is successful, it means that we can interpret the time variations
registered during the MP transition as being produced by a time-stationary structure, without
an intrinsic electric field, moving over the spacecraft.

Giving a set of experimental data, consisting of electric field ~E(m) and magnetic field ~B(m)

corresponding to M points of measurements m = 1, 2 . . .M , (or, equivalently when the MHD
approximation ~E = −~V × ~B is valid, consisting of plasma bulk velocities ~V (m) and magnetic
field ~B(m)) the problem of identifying a HT reference frame is equivalent to finding a velocity
vector ~VHT so that the quantity

D(~V ) =
1
M

M∑
m=1

∣∣∣ ~E(m) + ~V × ~B(m)
∣∣∣2 =

1
M

M∑
m=1

∣∣∣(~V (m) − ~V
)
× ~B(m)

∣∣∣2
become as small as possible. The solution to this problem is obtained from the condition
∇~V D = 0 and is given by the following linear system for ~VHT :

K0
~VHT =

〈
K(m)~V (m)

〉
(F.1)

In the above expression, each K(m) is a 3 X 3 matrix, with the elements µν defined by

K(m)
µν = B(m)2

(
δµν −

B
(m)
µ B

(m)
ν

B(m)2

)
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where δµν is the Kronecker symbol. In (F.1) the 〈. . .〉 denotes the averaging operation over the
M points of measurements and K0 ≡

〈
K(m)

〉
. If K0 is not a singular matrix, then the solution

for (F.1) is

~VHT = K−1
0

〈
K(m)~V (m)

〉
To judge the quality of the HT frame determination, the electric field in the starting

reference frame ~E(m) = −~V (m) × ~B(m) is plotted against the electric field in the HT frame
~E

(m)
HT = − ~VHT × ~B(m) component by component (see for example the left-hand side of Figure

5.8). Ideally, in this type of plot the slope of the regression line would be 1 and the correlation
coefficient c between the two fields would also be 1.

Another way to measure the quality of the HT frame is by computing D(~VHT )/D(~V ), i.e.
the ratio between the average (magnitude square of) electric field in HT frame and the same
quantity in the starting reference frame. The two quantities c and D(~VHT )/D(~V ) are related
by the formula

c2 +
D(~VHT )

D(~V )
= 1

Khrabrov and Sonnerup [1998] have shown that, even for three points of measurements,
the situation of finding one reference frame in which the convection electric field vanishes, is
very unlikely to be satisfied by chance. In our thesis, when investigating the rotational vs.
tangential character of the MP we used as threshold for a good HT identification a correlation
coefficient c & 0.95.

198



APPENDIX G

The Minimum Faraday Residue technique

The Minimum Faraday Residue (MFR) is a single-spacecraft technique, relying on a planar, 1-D
assumption for the MP (or any other discontinuity). The method was introduced by Terasawa
et al. [1996] and Kawano and Higuchi [1996] and is based on the magnetic flux conservation
law. In this appendix, we will closely follow the presentation of the technique from Khrabrov
and Sonnerup [1998], where an analytical solution, based on an eigenvector/eigenvalue deter-
mination problem was given.

The MFR technique provides both the orientation of the discontinuity (i.e. the unit vector ~n
normal to the surface) and its velocity un, assumed constant, along this normal. In the above
mentioned assumptions all variables recorded by the satellite depend only on the variable
ξ = ~r · ~n− unt, and the Faraday’s law

∂ ~B

∂t
= −∇× ~E

becomes

un
d ~B

dξ
= ~n× d ~E

dξ

This equation can be integrated to give

un
~B = ~n× ~E + ~C

Lets consider a set of experimental data, consisting of electric field ~E(k) and magnetic
field ~B(k) corresponding to K points of measurements k = 1, 2 . . .K, (or, equivalently when
the MHD approximation ~E = − ~V × ~B is valid, consisting of plasma bulk velocities ~V (k)

and magnetic field ~B(k)). The problem to be solved consists in finding those values for the
parameters ~C, un and ~n that minimize the quantity

IF (~C, un, ~n) =
1
K

K∑
k=1

∣∣∣un
~B(k) − ~n× ~E(k) − ~C

∣∣∣2 (G.1)
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called the Faraday residue. The last parameter, ~n, is subject to the constraint that |~n|2 = 1.
The first parameter is obtained from the condition ∇ ~C IF = 0 and brings the solution

~C =
〈
un

~B − ~n× ~E
〉

(G.2)

where here and in what follows, by 〈· · · 〉 we indicate the average of a given quantity over the
set of K points of measurements, i.e. (

∑K
k=1 · · · )/K. When the value (G.2) for ~C is substituted

in (G.1), the result we obtain can be expressed in the following way

IF (un, ~n) =
〈
|δ ~E

′
⊥ |2
〉

+ u2
n

〈
(~n · δ ~B)2

〉
(G.3)

Here and below, the symbol δ denotes the fluctuation of a given quantity from its mean value,
i.e. δ ~B(k) = ~B(k) − 〈 ~B〉. The quantity ~E

′
= ~E + un~n × ~B represents the electric field as

measured in the reference frame moving with the discontinuity, i.e. at velocity un~n. The
subscript ⊥ indicate the tangential (i.e. to the discontinuity) component of a vector. From
(G.3) we see that in the MFR method the parameters un and ~n are found by minimizing
the variance of the tangent electric field, in the reference frame of the discontinuity, plus u2

n

times the variance of the normal magnetic component Bn = ~n · ~B. This interpretation of the
Faraday residue was used in Subsection 4.3.2 when we discussed how sensitive the planar MFR
technique is, when applied to a 2-D, non-planar structure.

The analysis go further by minimizing the expression of IF from (G.3) with respect to
un and ~n. All the details of the calculation are presented in the paper from Khrabrov and
Sonnerup [1998]; here we only repeat from that paper the practical steps to be followed in
order to obtain the parameters that provide the orientation and the boundary normal velocity.

1. The average values of the electric
〈
~E
〉

and magnetic
〈
~B
〉

fields are computed

2. The electric field variance matrix ME is constructed

ME
ij =

〈(
Ei − 〈Ei〉

)(
Ej − 〈Ej〉

)〉
3. The electric and magnetic variances are formed〈∣∣δ ~B

∣∣2〉 =
〈∣∣ ~B −

〈
~B
〉∣∣2〉 〈∣∣δ ~E

∣∣2〉 =
〈∣∣ ~E −

〈
~E
〉∣∣2〉

4. The Poynting vector, associated with the electromagnetic disturbance from the mean
field is calculated

~P =
〈
δ ~E × δ ~B

〉
5. The following matrix is formed:

Qij =
〈∣∣δ ~E

∣∣2〉δij −ME
ij −

PiPj〈∣∣δ ~B
∣∣2〉

with δij designating the Kronecker symbol

6. The direction of ~n is given by the eigenvector (say, ~x3) corresponding to the smallest
eigenvalue of Q.
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7. The normal velocity is given by

un =
~P · ~x3〈∣∣δ ~B
∣∣2〉

Like in case of the constrained MVAB technique (see Appendix A), sometimes it is desirable to
determine the normal vector ~n with the additional constraint that its direction is perpendicular
to a known unit vector ~m. Such a condition can be easily implemented if on step 5 we replace
the matrix Q by the matrix product PQP , where P represents the so-called projection matrix,
having the elements given by

Pij = δij −mimj

(see for example Sonnerup et al. [2006]).
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APPENDIX H

Computing the ion single - fluid moments

The present appendix presents the procedure we followed in order to obtain the centre of
mass (COM) moments for the ion fluid, in case when a minor ion species is present. Two
situations are analyzed: first, when only CODIF measurements corresponding to the protons
and the secondary component are employed and second, when HIA measurements together
with CODIF data referring to the minor ion species are used. In treating the above mentioned
topic we rely on the work of Paschmann et al. [1986], their Appendix 2, where the scaffold of
the subsequent argumentation is presented.

Below we assume that the ion population consists of two species, protons (having the mass
mp) and another singly charged ions (with the mass mi). The parameters characterizing each
component are the number density Np, respectively Ni, bulk velocity ~Vp and ~Vi and total
pressure tensors (the sum of the thermal and dynamical parts) Pp and Pi. The ions single -
fluid quantities are:

- number density

N = Np + Ni (H.1)

- mass density

ρ = ρp + ρi (H.2)

- bulk velocity

~V =
mpNp

~Vp + miNi
~Vi

mpNp + miNi
(H.3)

- total pressure tensor or momentum flux density tensor

P = Pp + Pi (H.4)

leading to the following expression for the components of the thermal pressure tensor

P xy = P xy
p + P xy

i − ρV xV y (H.5)
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APPENDIX H. Computing the ion single - fluid moments

Using CODIF protons and minor species moments
In this case we have access to the following experimentally determined quantities: Np, ~Vp, Pp

(protons) and Ni, ~Vi, Pi (ions). Consequently, we apply directly the equations (H.1) - (H.5).
One should say that, although this way of computing the ion single - fluid moments is more

straightforward, in the MP context we often encounter the situation when the CODIF sensor
is saturated (see the discussions in Section 2.2). Therefore, in those cases we expect HIA to
provide more reliable plasma moments and the results from the next paragraph apply.

Using HIA moments and CODIF moments corresponding to the minor specie
Consider an energy/charge sensor that cannot discriminate between species, when a particle
of type i having the velocity (magnitude) Vi enters its entrance aperture. Then, to its velocity
the value

√
mi/mp Vi is wrongly assigned because the event is attributed to a proton.

In case of a Top Hat analyser (Carlson et al. [1982]), like HIA, the various plasma moments
are obtained by the on-board software by proper summations over the elements of the count
rates matrix, recorded during one spin or multiples of spin periods. For example the number
density will be proportional to the sum

N ∼
∑

l

1
V (El)

∑
m

∑
n

C(El, φm, θn) =
√

m
∑

l

1√
El

∑
m

∑
n

C(El, φm, θn) (H.6)

(see Fazakerley et al. [1998] and Paschmann et al. [1998] for the derivation of this and next
similar expressions). In this formula C(El, φm, θn) designates an element of the count rates
matrix corresponding to the measurement made by the detector along the direction in space
identified by the angles φm and θn, in the energy channel El. We indicated by m the mass
of the particles being detected and with V the magnitude of their velocity; the constant
of proportionality involves only the detector geometry factor and constants for the volume
integration.

When the sensor samples a mixture of protons and particles of type i, the registered count
rates will be the sum of the individual count rates

C(El, φm, θn) = Cp(El, φm, θn) + Ci(El, φm, θn)

and the number density reported by the detector will be

N
′ ∼ √

mp

∑
l

1√
El

∑
m

∑
n

[
Cp(El, φm, θn) + Ci(El, φm, θn)

]
(H.7)

because all events are considered as being produced by the protons. (H.7) can be written as

N
′ ∼

(
√

mp

∑
l

1√
El

∑
m

∑
n

Cp(El, φm, θn)

)
+

1
γ

(
√

mi

∑
l

1√
El

∑
m

∑
n

Ci(El, φm, θn)

)

with γ =
√

mi/mp. In the above expression, the terms in parenthesis are proportional (with
the same factor as in (H.6)) to the real Np and Ni, i. e. the protons and particles i number
densities detected if the instrument could have correctly identified each specie. Therefore we
arrived at the formula

N
′
= Np +

1
γ

Ni (H.8)
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and the ion mass density estimate by HIA will be

ρ
′
= mpN

′
= ρp +

1
γ3

ρi (H.9)

In determining the ions bulk velocity from the measurements of a Top Hat analyser, one
first computes the number flux density vector N ~V and then divides the result by N given by
(H.6). The formula that gives the x component of the number flux density vector is based on

NVx ∼
∑

l

∑
m

cos φm

∑
n

cos θnC(El, φm, θn) (H.10)

the expressions for the other two components having the same structure. Considering again
the situation when the instrument is sampling an ion mixture, we arrive at the conclusion
that this quantity will be correctly computed, even if the detector is not able to differentiate
between species, the reason for that being the independence of (H.10) from the particles mass.
However, the computed bulk velocity will be wrong, namely

~V
′
=

Np
~Vp + Ni

~Vi

N ′ (H.11)

which is different from (H.3).
The momentum flux density tensor, i. e. the quantity defined as

P =
∫

f(~v)~v ~v d3v

with f(~v) being the velocity distribution function, is computed for an HIA type instrument by
the use of the formula

P xy ∼ m
∑

l

V (El)
∑
m

cos2 φm

∑
n

cos2 θnC(El, φm, θn)

∼
√

m
∑

l

√
El

∑
m

cos2 φm

∑
n

cos2 θnC(El, φm, θn) (H.12)

and the analogous ones, with the same structure, for the other components. Expression (H.12)
is similar to (H.6) as far as the mass dependence is concerned and by applying the same argu-
ments we arrive at the following relation for the components of the HIA estimated momentum
flux density tensor, when the instruments measures a mixture of ions

P ′ xy
= P xy

p +
1
γ
P xy

i (H.13)

with the accompanying relation for the estimated components of the thermal pressure tensor

P
′ xy = P xy

p +
1
γ
P xy

i −mpN
′ ~V

′xV
′y (H.14)

In case when the HIA (contaminated) moments together with the CODIF moments cor-
responding to the minor specie i are available, we have access to the following parameters,
which are sent to the ground by the CIS/Cluster instrument: N

′
, ~V

′
, P ′

(HIA) and Ni, ~Vi,

205



APPENDIX H. Computing the ion single - fluid moments

Pi (CODIF). In order to apply the formulas (H.1) - (H.5), that supply the needed ion single-
fluid moments, we express the proton moments as a function of the experimentally determined
quantities. The equations are:

Np = N
′ − 1

γ
Ni

ρp = mp

(
N

′ − 1
γ

Ni

)
~Vp =

N
′ ~V

′ −Ni
~Vi

Np
(H.15)

P xy
p = P ′ xy

− 1
γ
P xy

i

P xy
p = P xy

p − ρpV
x
p V y

p
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F. Sedgemore-Schulthess, and The Fgm Team, Cluster observes the Earth’s magnetopause:
coordinated four-point magnetic field measurements, Annales Geophysicae, 19 , 1449, 2001.

Dunlop, M. W., A. Balogh, and K.-H. Glassmeier, Four-point Cluster application of magnetic
field analysis tools: The discontinuity analyzer, Journal of Geophysical Research (Space
Physics), 107 , 24, 2002a.

Dunlop, M. W., A. Balogh, K.-H. Glassmeier, and P. Robert, Four-point Cluster application
of magnetic field analysis tools: The Curlometer, Journal of Geophysical Research (Space
Physics), 107 , 23, 2002b.

Eastman, T. E., E. W. Hones, Jr., S. J. Bame, and J. R. Asbridge, The magnetospheric
boundary layer - Site of plasma, momentum and energy transfer from the magnetosheath
into the magnetosphere, Geophysical Research Letters, 3 , 685, 1976.

Escoubet, C. P., M. Fehringer, and M. Goldstein, The Cluster mission, Annales Geophysicae,
19 , 1197, 2001.

Fairfield, D. H., Observations of the Shape and Location of the Magnetopause: A Review, in
Physics of the Magnetopause, edited by P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen,
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Haaland, S., B. U. Ö. Sonnerup, M. W. Dunlop, E. Georgescu, G. Paschmann, B. Klecker, and
A. Vaivads, Orientation and motion of a discontinuity from Cluster curlometer capability:
Minimum variance of current density, Geophysical Research Letters, 31 , 10,804, 2004a.
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Khrabrov, A. V., and B. U. Ö. Sonnerup, Orientation and motion of current layers: Minimiza-
tion of the Faraday residue, Geophysical Research Letters, 25 , 2373, 1998.

209



BIBLIOGRAPHY

Kistler, L. M., TOF peak analysis, mass threshold and ”spillover”determination, version 2.0,
in Cluster CODIF Calibration Report , 2000.

Kivelson, M. G., and C. T. Russell, Introduction to space physics, Cambridge University Press,
1995.

Klumpar, D. M., et al., The Time-of-Flight Energy, Angle, Mass Spectrograph (Teams) Ex-
periment for Fast, Space Science Reviews, 98 , 197, 2001.

Landau, L. D., and E. M. Lifshitz, Electrodynamics of continuous media, Course of theoretical
physics, Pergamon Press, Oxford, 1960.

Lemaire, J., and M. Roth, Penetration of solar wind plasma elements into the magnetopause.,
Journal of Atmospheric and Terrestrial Physics, 40 , 331, 1978.

Levy, R. H., H. E. Petschek, and G. L. Siscoe, Aerodynamic aspects of the magnetospheric
flow, AIAA Journal , 2 , 2065, 1964.

Longmire, C. L., Elementary plasma physics, Interscience, New York, 1963.

Lundin, R., Observational and Theoretical Aspects of Processes Other Than Merging and
Diffusion Governing Plasma Transport Across The Magnetopause, Space Science Reviews,
80 , 269, 1997.

Lundin, R., et al., Evidence for impulsive solar wind plasma penetration through the dayside
magnetopause, Annales Geophysicae, 21 , 457, 2003.

Marcucci, M. F., et al., Energetic magnetospheric oxygen in the magnetosheath and its response
to IMF orientation: Cluster observations, Journal of Geophysical Research (Space Physics),
109 , 7203, 2004.

Morse, P. M., and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

Mottez, F., and G. Chanteur, Surface crossing by a group of satellites: A theoretical study,
Journal of Geophysical Research, 99 , 13,499, 1994.

Mozer, F. S., S. D. Bale, and T. D. Phan, Evidence of Diffusion Regions at a Subsolar Mag-
netopause Crossing, Physical Review Letters, 89 , 015,002, 2002.

Ogilvie, K. W., and R. J. Fitzenreiter, The Kelvin-Helmholtz instability at the magnetopause
and inner boundary layer surface, Journal of Geophysical Research, 94 , 15,113, 1989.

Parks, G. K., Physics of space plasmas: an introduction, Westview Press, Advanced Book
Program, 2004.

Paschmann, G., Comment on ’Electric field measurements at the magnetopause. I - Observation
of large convective velocities at rotational magnetopause discontinuities’ by T. L. Aggson,
P. J. Gambardella, and N. C. Maynard, Journal of Geophysical Research, 90 , 7629, 1985.

Paschmann, G., Observational Evidence for Transfer of Plasma Across the Magnetopause,
Space Science Reviews, 80 , 217, 1997.

Paschmann, G., Space Physics: Breaking through the lines, Nature, 439 , 144, 2006.

210



BIBLIOGRAPHY

Paschmann, G., G. Haerendel, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock, Plasma and
magnetic field characteristics of the distant polar cusp near local noon - The entry layer,
Journal of Geophysical Research, 81 , 2883, 1976.
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de Physique et de Chimie de l’Environnement, Orléans).
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