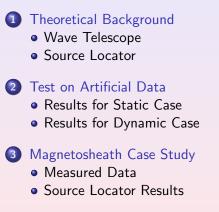
Tracing Wave Source Motion Inside the Magnetosheath Using CLUSTER Data

Dragoș Constantinescu^{1,2} Karl-Heinz Glassmeier¹ Uwe Motschmann³


¹Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig

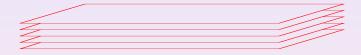
²Institute for Space Sciences, Măgurele

³Institute for Theoretical Physics, TU Braunschweig

STIMM, Sinaia 2005

Outline

4 Conclusions


<ロ> (四) (四) (三) (三)

Wave Telescope Source Locator

< ≣ >

4

Wave Telescope

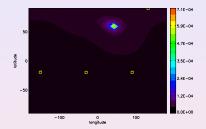
measured wave field
$$B_{\text{sensor}} = B_0 e^{i\mathbf{k}\cdot\mathbf{r}_{\text{sensor}}}$$

array output matrix $B_{ij} = B_i B_j$
test pattern $w_{\text{sensor}}(\mathbf{k'}) = C e^{i\mathbf{k'}\cdot\mathbf{r}_{\text{sensor}}}$
output power $P(\mathbf{k'}) = [\mathbf{w}^{\dagger}(\mathbf{k'})\mathcal{B}^{-1}\mathbf{w}(\mathbf{k'})]^{-1}$

Wave Telescope Source Locator

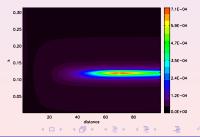
4

Source Locator



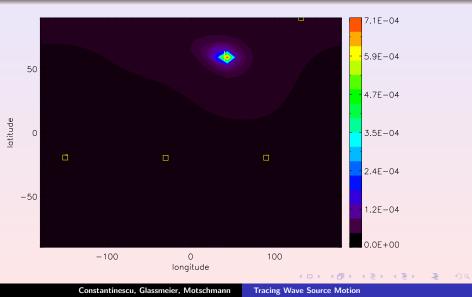
measured wave field
$$B_{\text{sensor}} = B_0 \frac{1}{\rho_{\text{sensor}}} e^{ik\rho_{\text{sensor}}}$$

array output matrix $B_{ij} = B_i B_j$
test pattern $w_{\text{sensor}}(k', \mathbf{r'}) = C \frac{1}{\rho'_{\text{sensor}}} e^{ik'\rho'_{\text{sensor}}}$
output power $P(k', \mathbf{r'}) = [\mathbf{w}^{\dagger}(k', \mathbf{r'})B^{-1}\mathbf{w}(k', \mathbf{r'})]^{-1}$

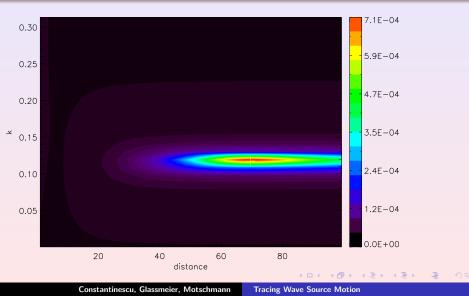

Static Case Dynamic Case

Results for Static Case

- artificial data
- regular tetrahedron
- 10 km separation

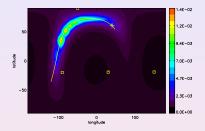


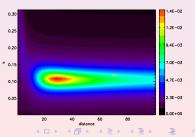
	given	found
dist.	70 km	69 km
long. lat.	40°	43°
lat.	60°	59°
k	$0.11 { m km^{-1}}$	$0.10 {\rm ~km^{-1}}$


Static Case Dynamic Case

Results for Static Case

Static Case Dynamic Case

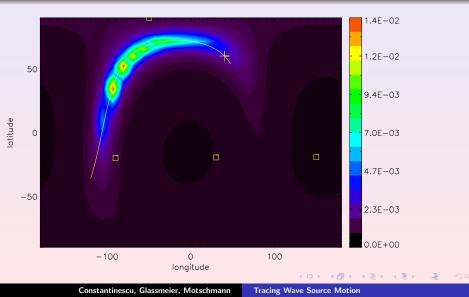

Results for Static Case


Static Case Dynamic Case

Results for Dynamic Case

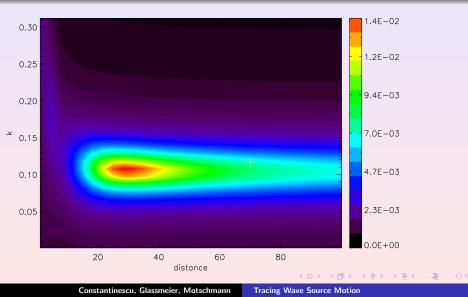
- artificial data
- regular tetrahedron
- 10 km separation
- velocity: 170 km/s

	closest	found
	approach	
dist.	21 km	28 km
long.	-91°	-93°
lat.	39°	34°
k	$0.11 {\rm ~km^{-1}}$	$0.10 {\rm ~km^{-1}}$



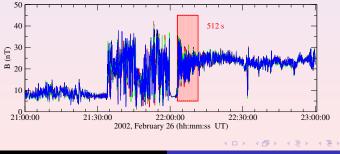
Constantinescu, Glassmeier, Motschmann

Tracing Wave Source Motion


Static Case Dynamic Case

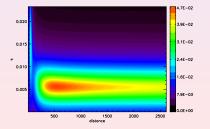
Results for Dynamic Case

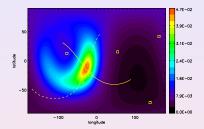
Static Case Dynamic Case

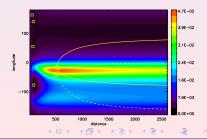

Results for Dynamic Case

Measurements Results

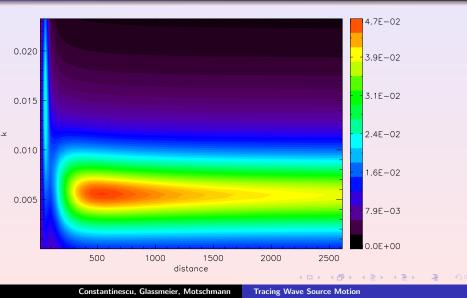
Case Study: Measured Data


Time interval: Location: Plasma flow velocity: Spacecraft separation: Shock regime: 2002 February 26, 22:03 – 22:11 UT Magnetosheath 140 km/s between 87 and 135 km Quasi-parallel

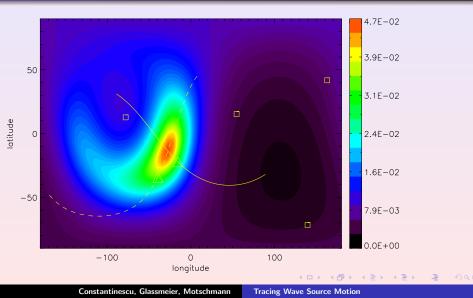

Measurements Results


Case Study Results

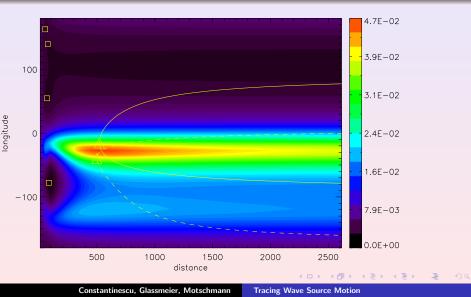
frequency:	66 mHz
wave length:	1142 km
distance:	538 km
longitude:	-27°
latitude:	-13°



Tracing Wave Source Motion


Measurements Results

Case Study Results


Measurements Results

Case Study Results

Measurements Results

Case Study Results

Conclusions

We have generalized the wave telescope technique to spherical waves

- 2 The new method provides the distance to the source
- We have identified a wave source in the magnetosheath, close to the shock
- The finite distance to the identified source suggest that waves are locally generated in this region

イロト イヨト イヨト イヨト

O The identified source seems to move with the plasma flow.

Conclusions

- We have generalized the wave telescope technique to spherical waves
- 2 The new method provides the distance to the source
- We have identified a wave source in the magnetosheath, close to the shock
- The finite distance to the identified source suggest that waves are locally generated in this region

(□) (□) (□) (□) (□)

O The identified source seems to move with the plasma flow

Conclusions

- We have generalized the wave telescope technique to spherical waves
- **2** The new method provides the distance to the source
- We have identified a wave source in the magnetosheath, close to the shock
- The finite distance to the identified source suggest that waves are locally generated in this region

(□) (□) (□) (□) (□)

I The identified source seems to move with the plasma flow

Conclusions

- We have generalized the wave telescope technique to spherical waves
- 2 The new method provides the distance to the source
- We have identified a wave source in the magnetosheath, close to the shock
- The finite distance to the identified source suggest that waves are locally generated in this region

5 The identified source seems to move with the plasma flow

Conclusions

- We have generalized the wave telescope technique to spherical waves
- 2 The new method provides the distance to the source
- We have identified a wave source in the magnetosheath, close to the shock
- The finite distance to the identified source suggest that waves are locally generated in this region

5 The identified source seems to move with the plasma flow