Pattern Recognition With Cluster Data

Dragoş Constantinescu 1,2

Summary:

Fitting techniques

- Mirror Mode pattern
- Example

Virtual interference techniques

- General idea
- Beamformer and applications
- Minimum variance and applications

1: Institut für Geophysik und extraterrestriche Physik, TU Braunschweig, Germany

2: Institute for Space Sciences, Bucharest, Romania

Pattern Examples

Mirror Mode Pattern

Magnetic field perturbation:

•
$$\delta B_{\rho}(\rho, z) = \frac{2\pi}{\alpha} \sum_{n=1}^{\infty} J_1\left(\frac{n\alpha\rho}{L}\right) \left[a_n \sin\left(\frac{n\pi z}{L}\right) - b_n \cos\left(\frac{n\pi z}{L}\right)\right]$$

• $\delta B_z(\rho, z) = 2 \sum_{n=1}^{\infty} J_0\left(\frac{n\alpha\rho}{L}\right) \left[a_n \cos\left(\frac{n\pi z}{L}\right) + b_n \sin\left(\frac{n\pi z}{L}\right)\right]$

- Multi-layer structure
- Central structure is the classical image of magnetic mirror
- Multiple magnetic field minima belong to one structure
- In real world only inner layers will survive

From JASTP Vol 64, Constantinescu, Self-consistent model of mirror structures

Application to Cluster data

- fit on data from C1 and C2
- C3 and C4 are witness spacecraft
- Resulting dimensions:
 - $\triangleright L = 6186$ km
 - $\triangleright R = 2051 \text{ km}$

From GRL Vol 30, Constantinescu et al. Magnetic mirrors in Cluster data

Virtual Interference Techniques

Interference of the measured values from an array of S sensors $\mathbf{B} = (B_1, ..., B_S)^T$ with a test pattern $\mathbf{w} = (w_1, ..., w_S)^T$ depending on the parameters $\mathbf{q} = (q_1, ..., q_n)$.

Method:

- Construct the output power P as a combination between \mathbf{B} and \mathbf{w}
- no unique way to do that but the guideline is ...
- The power should maximize when the parameters are chosen such way that the test pattern is closest to the pattern present in the data

Beamformer Technique

• Power: $P_{BF} = \mathbf{w}^+ \mathcal{M} \mathbf{w}$ where we define the sensor output matrix as $\mathcal{M} = \mathbf{BB}^+$

 $\bullet\,$ The test pattern ${\bf w}\,$ is chosen depending on the problem to study

Example: Plane waves representation

• measurements: $B_m = \sum_q B_{0q} e^{i(\mathbf{k}_q \mathbf{r}_{mq} - \omega t + \varphi_q)}$

• test pattern:
$$w_m = rac{1}{\sqrt{S}} e^{i \mathbf{k}^{test} \mathbf{r}_m}$$

- \bullet in this case $\mathbf{w}=\mathbf{w}(\mathbf{k}^{test})$ so we can determine the wave vector \mathbf{k}
- eg. only one source $B_m = B_0 e^{i\mathbf{k}\mathbf{r}_m}$

▷
$$P_{BF} = \frac{1}{S} |B_0|^2 \left| \sum_m e^{-i(\mathbf{k} - \mathbf{k}_{test})\mathbf{r}_m} \right|$$

▷ P_{BF} is maximum when $\mathbf{k} = \mathbf{k}^{test}$

Beamformer for Spherical Waves

• measurements:
$$B_m = \sum_q rac{1}{
ho_q} B_{0q} e^{i(k_q
ho_{mq} - \omega_q t + arphi_q)}$$

• test pattern:
$$w_m = \left(\sum_n (\rho_n^{test})^{-2}\right)^{-1} \frac{1}{\rho_m^{test}} e^{ik^{test}\rho_m^{test}}$$

Beamformer for Linear Array Configuration. Data

Because of the symmetry the test-space is reduced to a bi-dimensional space

Beamformer for Linear Array Configuration. Results

Solar System Sch

• Results:

	θ	ho
source 1	60^{o}	2d
result	57^{o}	1.5d

- good direction
- weak signal for 2^{nd} source
- not very good distance resolution
- for non-linear configuration is even worse...
- we need something better

Minimum Variance Technique

Beamformer problem:

• the power is too high for wrong parameters

Solution:

• construct the power in a different way:

$$\triangleright P_{MV} = \left(\mathbf{w}^+ \mathcal{M}^{-1} \mathbf{w}\right)^{-1}$$

this keeps the beamformer power for the right parameters and minimize the power for the wrong ones

When the pattern is a plane wave this technique is known as Wave Telescope or k-filtering

Minimum Variance for Tetrahedron Configuration. Synthetic Data

- regular tetrahedron
- two sources
- random phase
- random deviation from given frequency
- noise

• same wavelength
$$\lambda=rac{2}{3}d$$

		long	lat	dist
٠	s1	80^{o}	60^{o}	2d
	s2	-30^{o}	20^{o}	3d
,				

MV for Tetrahedron. Results for Source 1

	longitude	latitude	distance
source	80^{o}	60^{o}	2d
result	78^{o}	57^{o}	1.8d

Capon Power for latitude=57deg

Solar System Sch

MV for Tetrahedron. Results for Source 2

	longitude	latitude	distance
source	-30^{o}	20^{o}	3d
result	-31^{o}	17^{o}	3.1d

distance (0 : 6d)

Solar System Sch

Minimum Variance for Cube Configuration

We can dream on...

Magnetospheric Constellation

MV for Cube. Results for Source 1

	longitude	latitude	distance
source	80^{o}	60^{o}	1.9d
result	78^{o}	61^o	2.1d

Capon Power for latitude=61deg

Capon Power for rho=11

Solar System Sch

MV for Cube. Results for Source 2

		longitude	latitude	distance
source	9	-30^{o}	20^{o}	2.8d
result	:	-31^{o}	19^o	3.1d

Capon Power for latitude=19deg

Capon Power for rho=16

Solar System Sch

Conclusions and Further Work

Conclusions

- Virtual interference, in particular minimum variance for plane waves is a proved method for data analysis (Wave Telescope)
- Beamformer with spherical pattern cannot resolve the source distance in a reliable way for a tetrahedron configuration though it might work well for more sensors
- Minimum variance with spherical pattern can be used to determine source locations even for limited number of sensors (4)

Further work

- Find limitations of minimum variance with spherical pattern (distance, wave length)
- Apply the method to real data
- Find spatial arrangement of mirror modes using spherical pattern
- Use mirror mode pattern

