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Summary:

Last reported status
• Model: Assumptions

• Model: Predicted Magnetic field

• Model: Identified Structure

Particles simulation

• Method

• How many particles do we need?

• Preliminary results
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Magnetic mirror structures

Fundamental plasma instability

Needs temperature anisotropy
(T⊥ > T‖) in order to develop

Non propagating (purely imagi-
nary frequency), strongly com-
pressive mode

Magnetic field is anti-correlated
with plasma density

Common in Earth magne-
tosheath but also in other space
plasmas
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Methods for deriving the geometry

Correlations
• applicable for any "well defined" magnetic structures

• assume linear correlation

• essentially statistical

• works when the correlations between measurements from different spacecraft are
large

Model

• less general then correlations method

• assume certain geometry of magnetic mirror structures

• allow the study of each structure separately

• can work even if the measurements from different spacecraft are dissimilar
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Model: Assumptions

Pressure equilibrium
. Pplasma = Pmagneticfield

Small perturbations
. δB << B

Time-independent magnetic field
. B 6= B(t)

Symmetry around z-axis
. B 6= B(ϕ)

Periodicity along z-axis
. B(ρ, z + 2L) = B(ρ, z)

Bi-Maxwellian Distribution
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Model: Magnetic field

Magnetic field perturbation:

• δBρ(ρ, z) =
2π
α

∞∑
n=1

J1

(nαρ
L

) [
an sin

(nπz
L

)
− bn cos

(nπz
L

)]
• δBz(ρ, z) = 2

∞∑
n=1

J0

(nαρ
L

) [
an cos

(nπz
L

)
+ bn sin

(nπz
L

)]
• Multi-layer structure

• Central structure is the classical im-
age of magnetic mirror

• Multiple magnetic field minima belong
to one structure

• In real world only inner layers will
survive
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Model: Results
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• fit on data from C1 and C2

• C3 and C4 are witness spacecraft

• Resulting dimensions:

. L = 6186 km

. R = 2051 km
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Particles simulation

Test particles:
• particles do not influence the magnetic field

Quasi-static magnetic field:
• time scale for the magnetic field variations � giroperiod

Equation of motion:

• m
∂2r
∂t2

= q

(
∂r
∂t
× B

)
Integrator:
• 5th order Runge-Kutta with adaptive stepsize control

We want to:
• determine the distribution function as a function of position inside the magnetic

mirror

• check the bi-Maxwellian distribution assumption

• compare with Cluster CIS data
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Test particle orbits

• Trapped particles

• Escaping particles

• Drift around z axis
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Trapped or not?

Used criterion: vz change sign
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Simulation steps

ti
distribution function:

bi-Maxwellian
magnetic field:

uniform∫
equation of motion B = B(t)

J
J





t1
distribution function:
local bi-Maxwellian (?)

magnetic field:
magnetic mirror∫

equation of motion B = constant
J
J





tf
distribution function:

local bi-Maxwellian (??)
magnetic field:
magnetic mirror
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How many?...
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Simulation parameters

Input

• Number of particles: 10000

• Grid ρ, z: 20x20 => average of 25 particles/cell

• Orthogonal temperature: 10 mil K

• Parallel temperature: 5 mil K

• Simulation time: 30 giroperiods

• magnetic field change time: 15 giroperiods

Output

• Trapped particles: 6032

• Escaping particles: 3968

• Energy conservation: 0.99
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Preliminary results: Density of particles

• Trapped and escaping particles

• Density roughly anti-correlated with
magnetic field intensity

• Specific regions where anti-correlation
is brocken
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PR: Trapped particles density

• Much better anti-correlation

• Still at the necks the density is high

• Is this because of the "quasi-trapped"
particles?
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PR: Escaping particles density

• Density roughly correlated with mag-
netic field intensity

• There is a region where magnetic
field intensity is constant along mag-
netic fild lines. Most particles there
are escaping.

• Why correlation?
. low parralel velocity
. closer field lines
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Conclusions

A case study has been performed

• multi-spacecraft measurements have been used

• full geometry have been determined

Preliminary results from particles simulation have been obtained
• most of the necessary numerical code has been written

• density distribution is consistent with the magnetic field configuration

To do list

• increase number of particles in the simulation in order to improve statistics

• find the distribution function as function of position

• find the temperature, anisotropy, flow velocity as function of position

• compare the results with Cluster CIS data
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A1. The Earth magnetosphere

Courtesy of Windows to the Universe, http://www.windows.ucar.edu
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A2. Magnetic mirrors in spacecraft data

Khurana, K. K and M.G Kivelson 1989, Ultralow frequency MHD waves in Jupiter’s middle magnetosphere, J. Geophys. Res. 94:5241
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A3. Magnetic field data

• Date: Nov. 10 2000,
08:20:00 - 80:25:00 UT

• Data resolution: High (22 vec/sec)

• Location: Dusk side magnetosheath

• Plasma flow: 815 km/s , C1 -> C3

• Magnetic field almost:

. aligned with ZGSE axis

. orthogonal to plasma flow
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A4. Generating the distribution

we have

• uniform distributed random numbers s ∈ (0, 1)

we need
• function v(random sequence(s))= sequence with probability f(v)

• f(v) =

(
m

2πKBT

)1/2

exp

{
−
m(v − u)2

2KBT

}

how to find it

• relation between probabilities: ds = f(v(s))dv

• v(s) = u+

(
2KBT

m

)1/2

erf
−1

(1− 2s)
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A5. Effect of time averaging

Without time averaging With time averaging
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