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Exospheric model of solar wind

The solar wind is the continuous outflow of completely-ionised gas from the outermost region of the solar
atmosphere - solar corona. It consists of protons and electrons, with an admixture of a few percent of heavier
ions. Number density is estimated at a few particles per cm3. The temperatures exceed one million degrees
Kelvin. The hot coronal plasma never reaches equilibrium, is continually being accelerated up to supersonic
velocities and flows outward into interplanetary space.
The solar wind exospheric model assumes existence of a sharp boundary, called exobase, which sep-
arates a collision dominated region (where a fluid model would apply) and a completely collisionless
region, named exosphere. This boundary is defined as the distance r0 from the Sun where the
Coulomb mean free path of the particles becomes equal to the local density scale height. Above
the exobase the dynamic of charged particles (electrons and protons are considered in our studies)
is determined by the gravitational potential, electrostatic potential and magnetic field distribu-
tion. Owing to the lack of collisions in the exosphere, the Boltzmann equation describing evolu-
tion of the Velocity Distribution Function (VDF) of the particles reduces to the Vlasov equation.
With Liouvilles theorem and with conservation of
the total energy:

E =
mv2

2
+ mΦg + ZeΦe = const

and magnetic moment:

µ =
mv2

⊥

2B
= const,

a solution of Vlasov equation is obtained.

Once a VDF is assumed for particles at the exobase level r0, their VDF at any larger radial distance rin the

exosphere is uniquely determined by Liouvilles theorem. Furthermore, macroscopic quantities for different
species (like density, bulk velocity, temperature and heat flux) are recived by by integrating moments of
VDF.
The key-point of exospheric kinetic model of the solar wind is the correct determination of interplanetary
electrostatics potential is the key point of exospheric model. To avoid charge separations and currents on large
scales in the exosphere, the electrostatic potential gives rise to a force which attracts the electrons towards
the Sun and repels the protons.

General assumptions:
• only protons and

electrons are considered

• the velocity distribution
function (VDF) of
electrons at the exobase
is given by a Lorentzian
(κ) distribution, VDF
of protons is
Maxwellian

• model is one
dimensionall - radial
dependence on r only is
assumed, time
stationary

• strictly collisionless

• rotation of the Sun is
neglected

Input parameters:

• radial distance of the
exobase r0

• temperature of electrons
Te and protons Tp at r0

• value of κ index

• maximum radial distance

• domain of rmax

Output parameters:

• the electrostatic potential
ΦE

• the total normalized
potential of the protons

• the number density, the
flux, bulk velocity,
temperature, heat flux

Numerical model

Exospheric
model
of the

solar wind

Exospheric solutions

• suprathermal electrons (κ function) in atractive
potential

fκ(v) ∝ (1 +
mev

2

κV 2
κ

)−(κ+1)

• quasi-neutrality

ne(Φe, Φg, B) = np(Φe, Φg, B)

• zero current condition (Fe, Fp - field-alligned fluxes
of particles ):

Fe(Φe, Φg, B) = Fp(Φe, Φg, B)

Key point of exospheric
model: Determination
of interplanetary elec-
trostatic potential ΦE(r).
It is found by iterating
potential difference be-
tween infinity and the
exobase, until the fluxes
of electrons and protons
are equal.

Collisionless transport equations

Main goal of this project is to establish that the moments of the VDF fulfill transport equa-
tions that give a macroscopic description of solar wind plasma. Under the assumption of
steady state conditions and radial symmetry, collisionless transport equations are (Lemaire

and Scherer, 1973):
mass continuity equation:

nV r2 = const. (1)

momentum conservation equation for each species (electrons, protons):

nmV
dV

dr︸ ︷︷ ︸

inertial term (T1)

+
d

dr
(nkBT‖)

︸ ︷︷ ︸

pressure gradient (T2)

+
2nkB

r
(T‖ − T⊥

︸ ︷︷ ︸

magnetic mirror force (T3)

) =

− nm
dΦg

dr︸ ︷︷ ︸

gravitational term (T4)

− Zen
dΦE

dr︸ ︷︷ ︸

electrostatic term (T5)

(2)

energy conservation equation:

r2q
︸︷︷︸

heat flux

+C







mV 2

2︸ ︷︷ ︸

kinetic energy

+
kB(3T‖ + 2T⊥)

2︸ ︷︷ ︸

enthalpy

+ mΦg
︸︷︷︸

gravitational energy

+ ZeΦE︸ ︷︷ ︸

electrostatic energy







= E∞

(3)
where: n - density, V - bulk velocity, r - radial distance, C - constant, T⊥ - perpendicular
temperature, T‖ - parallel temperature, Φg - gravitational potential, ΦE - electrostatic
potential, q - heat flux.

Numerical results

The moments of the VDF for both protons and electrons are introduced into the mass
continuity, momentum and energy conservation equations. The analysis is carried for
the following parameters: r0 = 1.5 R⊙, Te = 106 K, Tp = 2 ·106 K, κ1 = 2.5 , κ1 = 4.0 .

Moments of VDF function:
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k=2.5
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For lower values of κ (for faster solar wind),
the bulk velocity is higher. For κ = 2.5 we
obtain the velocity at the value of approxi-
mately 600 km/s and for κ = 4.0 the solar
wind velocity is 300 km/s. For lower κ in-
dex electron temperature is higher, this fact
emphasises the importance of suprather-
mal electrons on acceleration of the solar
wind.

Mass continuity equation for electrons
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µ=6.97e+32 s−1

σ=1.46e+26 s−1

µ=5.55e+32 s−1

σ=9.57e+25 s−1

For both considered values of κ, function
remains constant, so we conclude that mass
continuity equation is conserved. Identical
results were obtained for protons.

Momentum conservation equation for electrons and protons Magnitude of
each term of momentum equation (2) is presented as the function of solar radii. In case
of electrons, due to their very law mass, inertial and gravitational terms are negligible at
all radial distances. Comparison of left hand side and right hand side of equation (2),
respectively for protons and electrons, assures that momentum equation is conserved.
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Momentum conservation equation. Electron case
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Momentum conservation equation. Proton case
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Momentum conservation equation. Electron case

 

 

Right hand side k=2.5
Left hand side k=2.5
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Momentum conservation equation. Proton case
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Energy conservation equation for electrons and protons
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Energy conservation equation. Electron case
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Energy conservation equation. Proton case
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In a same manner as for the momentum
equation, each term of energy equation (3)
is presented. Analysis lead to conclusion
that energy is conserved. With the in-
crease of value of kappa parameter, total
energy of particles decrease. For electrons
the greatest part of total energy comes from
heat flux. Since the protons are considered,
main contribution to total energy is associ-
ated with convection of kinetic energy and

heat flux.
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Energy conservation equation
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Relation between electric and gravitational force
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For protons, we obtained that at large
radial distance outward electric force be-
comes larger than the inward gravitational
force. Closer to the Sun, the gravitational
potential dominates the elctrostatic poten-
tial.

Conclusion

• It is shown that the moments derived for a Kappa VDF fulfill the transport equations
and give an accurate macroscopic description of plasma. Mass continuity is satisfied by
the kinetic exospheric solution.

• Energy conservation equation is also satisfied by the moments of the kinetic exospheric
model.

•We have identified the radial distance where the outward electric force becomes larger
than inward gravitational force.

• Faster solar wind is produced when the flux of suprathermal electrons increases.

•We have been able to show that close to the acceleration region the pressure gradient is
equal to polarization electric field.
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