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unas, 1976; Sonnerup, 1981), time-dependent (Pudovkin and Semenov, 1985, Kiendl et al.,

1992), ...

• Kelvin-Helmholtz instability at the magnetopause (Dungey, 1955; Southwood, 1968;

Fujimoto and Terasawa, 1991)

• diffusion(Tsurutani and Thorne, 1982; Winske and Omidi, 1995)

• pressure pulses (Sibeck et al., 1989, 1990; Lin et al., 1996)

• impulsive penetration (Lemaire, 1976, 1985; Heikkila, 1982; Woch and Lundin, 1992)
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large active space structures (Hastings and Gatsonis, 1989), magnetotail (Hones, 1982),
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• plasma bulk velocity: u ≈ u+
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=
E ×B
B2

±
m±V⊥

2

2qB3
B ×∇ (B) (1)

• plasma "slipping" (Alfvén and Fälthammar, 1963)

• collective effects: diamagnetism; boundary space charge layers; field aligned
potential drops/weak double layers (Lemaire and Roth, 1991)
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Infinitely long (cylindrical) filaments:

• ideal MHD: simulate penetration only for strict alignment of B in 2D geometry
(Huba, 1996; Dai and Woodward, 1997);

• resistive MHD: simulate penetration for a small cone angle (< 60) in 2D geometry
(Ma et al., 1991)

• hybrid: simulate penetration only for strict alignment in 2D geometry (Savoini and

Scholer, 1994, 1996)

2D and 3D clouds of (macro)ions and (macro)electrons:

• PIC: propagation of large gyroradius(Livesey and Pritchett, 1989) and respectively small
gyroradius (Neubert et al., 1992; Nishikawa, 1997) plasma clouds by polarization electric
field

(a complete review in Echim and Lemaire, Space Science Reviews, 92, 565-601, 2000)
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3D small gyroradius plasma cloud moving across a uniform magnetic field (Neubert et al.,

1992)
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3D electric field distribution of CASE A with magnetopause model from Shue et al. (1997)
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3D electric field distribution of CASE B with magnetopause model from Shue et al. (1997)
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