Velocity distribution functions of a plasma convecting in the magnetic field of a tangential discontinuity

tons (see above for details).
The electrons penetrate along the same distance as the protons (panels 1,2
The electron clo
The electron cloud is much more confined. It has two symmetric wins
(panels 1,3 on the 3rd row). Their temperature remains isotropic as fo
(panels 1,3 on the 3rd row). Their temperature remains isotropic as fo
protons (panels $1-3$, row 4).
tons (see above for details).
The protons penerrate the TD (see panels 1,2 on the 3rd row).
The bulk velocity in the final position of the cloud is equal to the initial
velocity, $\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0}$, (panels 1,2 on 4 th row).
The shear of \mathbf{B} inside the TD has deformed the cloud. A wing is formed at
the left side ($y>0$, panels 1,3 on the 3rd row).
The temperature remains isotropic and equal to T_{0} (panels $1-3$, 4th row).
protons (panels $1-3$, row 4).

- A1. The velocity distribution function (VDF) of the electrons and protons of a jet injected normal to a TD is reconstructed using the method of numerical integration of the characteristics of the stationary Vlasov equation. In the case of an increasing, unidirectional magnetic field the initial VDF of the jet injected perpendicular to \mathbf{B} is a displaced Maxwellian. It gradually changes to a bi-Maxwellian. This is an effect due the conservation of the total energy and of the magnetic moment. The anisotropy of the resultant VDF depends on the gradient of the magnetic field intensity. The bulk energy of the jet is gradually transformed into gyration energy while the jet moves in the region of increasing field. There is no parallel electric field. The height of the magnetic barrier determines also the distance over which the jet moves across the non-uniform \mathbf{B}-field distribution. The reconstructed VDF and the final bulk velocity of the jet illustrate the process of "adiabatic braking" discussed theoretically by Demidenko et al. $(1969,1972)$ and included in the model of plasma impulsive penetration at the magnetopause by Lemaire (1985). - A2. The VDF of the protons and electrons of a jet injected into an anti-parallel magnetic field distribution and an uniform electric field is highly anisotropic in the velocity and position space. The finite perpendicular electric field accelerates electrostatically the electrons and ions in the region where Bz changes from negative to positive values and $\mathbf{B}=0$. There is no parallel electric field. The jet injected normal to the TD has an initial cylinder-like shape, aligned with the Ox-direction. It is eventually transformed into a current sheet (CS) parallel to the Oy-axis and the TD. The particles are trapped in the current sheet that is centered in $\mathrm{x}=0$ where $\mathbf{B}=0$. Within the CS the particles energy is proportional to the distance from the impact point (the point where they entered for the first time the $\mathbf{B}=0$ region). - B. If E remains everywhere perpendicular to B, the VDF of protons and electrons of the jet remains a displaced Maxwellian. The jet penetrates the TD and move across it into the right hand side (that would correspond to the LLBL in the case of a magnetopause crossing). The shear angle of the magnetic field produces a deformation of the shape of the jet, which is more pronounced for the proton population. In this case the variation of the Bz component from negative to positive values does not correspond to acceleration or trapping.

VI. References

```
l
[2] M. Echim, J. Lemaire, "Earth' Low Latitude Bounary Layer" AGU Mono,
[4] Speiser, T.W., D.J. Williams, H.A. Garcia, J. Geophys. Res., 86, 723, 1981
[5] Lyons,L.L.,.,Speiser, T.W.,.J. Geophys. Res., 87, 2276, 1982
l
lol
[9] Adaptive Stepsize Control for Runge-Kutta, pp. 714-722, Numerical Recipes in 
\10] Demidenko, I....,., Lomino, N.S.,. Padaika, V.G., Rutkevitch, B.G. And Sinel'mikov, K.D., Soviet Physics-Technical Physics, 14, 16, 196
l
```

