Attitude Determination for Magion-5 Satellite Using Magnetometer Data Only

H. Comisel †, M. Ciobanu †, A. Blagau ${ }^{\dagger}$, J. Simunek ${ }^{\dagger \dagger}$, J. Chum ${ }^{\dagger \dagger}$

Summary

 In this work we have developed a bact humerical filer os search for the bestfit state prameters and to solve for the solutions of the

 spacecraft.

Coordinate Systems

moving on the orbit

origin: center of mass of the satellite
oz-axis: directed parallel to the geomagnetic field line
ox-axis. parallel to oslare ecliptic plane at an initial epoch
o--xis:
xx x
oy-axis: $\mathrm{zx} x$

- fived frame (2)
origin: center of Earth
or-axis: parallel the the geomagnetic field line at the intitial epoch
ox-axis: parallel to the solar ecliptic plane
-The satell
- The satellite frame $\sum_{\text {sest }}$) is a coordinate system fixed to the satellite body axes. The satellite frame is aligned with the principal
axe

Parameterization of Attitude Indirect

- 2 successive transformations; first one starts from the fixed frame (or any other inertial coordinate, e.g. GSE system) to the local 2 successive ruansormations. first one starts from the fixed frame (or ar
cordinate and the second one rotates the system to the satellite frame.
- geomertic significance
- allow the predicicion of the initial state parameters
$A_{\Sigma_{l o w} \rightarrow \sum_{s e w}(\theta, \psi, \phi / q)} A_{f_{f u}} \sim \sum_{L_{w}}(\mathbf{q}$
- Euler angle parameterization
$\left.A_{\Sigma_{l u} \rightarrow \sum_{m e t}}=A_{313} \theta, \psi, \phi\right)$

$$
\left(\begin{array}{c}
\cos \psi \cos \phi-\cos \theta \sin \psi \sin \phi \\
-\cos \psi \sin \phi+\cos \theta \sin \psi \cos \phi \sin \theta \sin \psi \\
-\sin \psi \cos \phi-\cos \theta \cos \theta \cos \psi \sin \phi \\
\sin \theta \sin \phi \\
-\sin \psi \sin \phi+\cos \theta \cos \psi \cos \phi \\
-\sin \theta \cos \phi \\
\cos \phi \cos \theta \\
\cos \theta
\end{array}\right)
$$

 the enobserved angle representing the rotated angle along the magnetic fied line of the $\Sigma_{\text {Lo }}$ axis crossing from the eclipicic plane to
the equatrial plane of fhe satellite. q q are determinied from the motion of the magnetic field vector in the solar eclipicic reference the equatorial plane of the
using IGRF 95 model.

Direct

- 1 transformation from the fixed reference to the satellite frame via local system only at the initial epoch

The Attitude Dynamics and Numerical Filter
Kinematic equations
\qquad
$\dot{\mathbf{q}}=\left(\frac{1}{2} \Omega(\Omega)-O^{-1}\left(\mathbf{q}^{t}\right) O\left(\mathbf{q}^{I}\right)\right) \mathbf{q}$
\bullet direct
$Q=\frac{1}{2} \Omega(\Omega)$
$\Omega(\vec{\Omega})=\left(\begin{array}{cccc}0 & \Omega_{3} & -\Omega_{2} & \Omega_{1} \\ -\Omega_{3} & 0 & \Omega_{1} \\ \Omega_{2} & \Omega_{2} \\ -\Omega_{1} & -\Omega_{1} & 0 & \Omega_{3} \\ -\Omega_{1} & \Omega_{2} & -\Omega_{3} & 0\end{array}\right)$
$O(\mathbf{q})=\left(\begin{array}{cccc}-q_{4} & q_{3} & -q_{2} & q_{1} \\ -q_{3} \\ q_{3} & -q_{4} \\ q_{1} & q_{1} & q_{2} \\ q_{1} & q_{2} \\ q_{1} & -q_{2} & -q_{3} & q_{3} \\ \hline q_{4}\end{array}\right)$

Dynamic equations

- $\vec{\Omega}$ - angular rate vector in satelitit frame, \hat{I} - momenta of inertia, $\vec{M}_{\text {octrad }} \vec{M}_{E}$ - control and environmental torgues. \vec{h}, , - Batch numerical filter

State Vector (12 state element)	4 quaternions, 3 angular velocities, 4 moments of Inertia, 1 coefficient of viscosity
Measurement	3 magnetometer readings
Attitude Integrator	4/5-th Order Runge Kutta Method
Earth Magnetic Field Model	IGRF 1995
	to 10-th Harmonic
Environmental Torqu	
	magnetic disturbance torque

- ϕ_{0}, ω_{0} fit parameters
- Loss Function is computed from:
- S - scale factor + alignment matrix, $3 \times 16+$ bias axes coefficients, 3 axes general biases, 9 alignment (and channel mixing)
coefficients Numerical Results

- Measured and estimated
ψ angles for 3244 orbit

- ${ }^{\text {B-D motion of satellites princi- }}$ pates of inertitia in GSE Eferer pal axes of inertia in \mathbf{n} SE refer-
ence for 3244 and 3245 orbits

- ϕ_{0} initial phase
the satellite trace

- numerical filter estimates trusted the direction of magnetic field li

- attiude estimated errors are less than 2 degrees (r.m.s. for θ and ψ angles)
estimates for the third angle

Conclusions
The restiution of the attitude matrix for a near earth satelitit is possible to be achieved by processing 3 axis magnetometer data oony.
The method is based on a theoretical approach of the satell lite motion as well sa on the behaviour of the geonanetic field The method is based on a theoretical approach of the satel lite motion as well as on the ehaviour of the eeomagnetic field along the
rbital trace. The accuracy of the method depends on the correct estimates of external and internal toryues acting on the satel lite, on

