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Abstract
A hybrid angular momentum coupling scheme for analysis of quasiresonant reactions interfering with stripping reactions on zero-spin target nucleus is proposed. The method is based on the similarity between the transition amplitude elements derived in the total as well as in the transferred angular momentum schemes. 

1.  Introduction

The nuclear reactions are classified, usually, either as direct or as resonant processes, including their interference.  For descriptions of direct reactions as one-step processes one uses a transferred angular momentum coupling scheme; it is suitable for treatment of transferred of angular momenta between the initial and final channels, e.g.  [1]. For description of resonant reactions it is customary to adopt the total angular momentum scheme that emphasizes the conservation of the total angular momentum of the colliding system, e.g.  [2]. The last one has two representations,the channel spin representation and the spin-orbit representation.

A relationship between the total angular momentum scheme and the transferred angular momentum coupling scheme was established [3]. Specifically this relationship is useful in treatment of the interference of direct and compound transition amplitudes.

A third type of reactions, the quasiresonant ones, shares the characteristics of both direct and resonant processes.  The quasiresonant reactions consist of direct transitions preceded or followed by a single channel resonance, [4]. Examples of such phenomena in low-energy nuclear physics are (a)coupled channel resonances, (b) p - wave threshold anomalies, (c) molecular resonances in heavy ion transfer reactions, etc.

In this paper one proposes a hybrid coupling angular momentum scheme suitable for description of quasiresonant processes.  The method is based on a similarity of the total angular momentum coupling scheme and of the transferred angular momentum coupling scheme in the case of reactions with zero - spin target nucleus.

2.  General Definitions

In the following, the transition amplitude will be derived for the two - body reactions by emphasizing some specific properties. The transition amplitude for the reaction A(a,b)B is defined by [5], 

TmamA,mbmB= EQ \F(2p,ka)< EQ \O(k,\S(r))a(-),(),mamA|R| EQ \O(k,\S(r))b(+),(),mbmB>


                 (1)

The magnetic quantum numbers ma,mA,mb,mB denote, in the matrix element, the intrinsec wave functions of the particles a, A, b, B, while ka(-) and kb(+) stand for the relative motion wave functions in input and exit channels, ( and  are additional quantum numbers, necessary to specify the input and exit channels). The reaction operator R is related to S - operator by the relation,  R= S-1. In order to construct the explicit expression of the transition amplitude some definitions are necessary. 

2.1 Scattering Wave Functions

The scattering wave functions  EQ \O(k,\S(r))()( EQ \O(r,\S(r))) are defined in terms of the harmonic spherical functions as, [3,6],

 EQ \O(k,\S(r))()( EQ \O(r,\S(r)))=4 EQ \I\su(l=0,¥, ) EQ \I\su(m=-l,m=l, )il EQ \F(ckl±(r),kr)Ylm*(k,\S(r)) EQ \F(,k)
)Ylm*(r,\S(r)) EQ \F(,r)
)

         
(2)

The radial wave functions kl()(r) correspond to out/in behavior in the asymptotic region, kl()(r) ei(kr-l EQ \F(p,2)+l-ln(2kr)+l),  is the Coulombian parameter, l- orbital angular momentum, l is the Coulombian phase shift and l is the (nuclear) potential scattering phase shift.
Two important properties of the scattering wave functions has to be mentioned and will be used below:  a)they fulfill the time-reversal relation:


 EQ \O(k,\S(r))(-)*( EQ \O(r,\S(r)))=- EQ \O(k,\S(r))(+)( EQ \O(r,\S(r)))

b) they are orthonormalized wave functions:

 EQ \I\in(,, ) EQ \O(k,\S(r))()( EQ \O(r,\S(r))) EQ \O(k,\S(r))0()( EQ \O(r,\S(r)))d EQ \O(r,\S(r))= EQ \F(4p,k)2( EQ \O(k,\S(r))/k- EQ \O(k,\S(r))0/k0)
         

(3)

2.2 Basis for the Scattering States

The scattering wave functions  EQ \O(k,\S(r))() and the spin wave functions of the colliding particles, (ma(sa), mA(IA)), enter into definition of the entrance channel wave function:

|k(),(),ma,mA >= EQ \O(k,\S(r))()( EQ \O(r,\S(r)))ma(sa)mA(IA)= EQ \I\su(l=0,¥, )

 EQ \I\su(m=-l,l, )Ylm*(k,\S(r)) EQ \F(,k)
) EQ \F(1,r)kl()(r)Ylm(r,\S(r)) EQ \F(,r)
)ma(sa)mA(IA)  
= EQ \I\su(l=0,¥, )

 EQ \I\su(m=-l,l, )Ylm*(k,\S(r)) EQ \F(,k)
)klm()( EQ \O(r,\S(r)))ma(sa)mA(IA)                                                  (4)
Here, we have defined the basis states wave functions klm()( EQ \O(r,\S(r))) for the scattering states:

klm()( EQ \O(r,\S(r)))= EQ \F(1,r)()kl(r)Yml(r,\S(r)) EQ \F(,r)
)


      (5)

If there are considered the spin of the colliding particles, sa and IA, the basis states in an uncoupled scheme will be:

klmmamA()( EQ \O(r,\S(r)))= EQ \F(1,r)()kl(r)Yml(r,\S(r)) EQ \F(,r)
)ma(sa )mA(IA)


     (6)

2.3  Projection Operators on Scattering States

The completeness relation in the uncoupled scheme for the basis states of the scattering wave functions () and of the bound states b is defined as, [7]

1= EQ \I\su(mamAlm,, )|klmmamA()( EQ \O(r,\S(r)))><klmmamA()( EQ \O(r,\S(r)))|+ EQ \I\su(b,, )|bb|

                   (7)

Let is consider the coupled scheme of the total angular momentum in the spin orbit representation. The orbital angular momentum la and the intrinsec spin sa are coupled to the total spin ja of the projectile particle a which couples at its turn to the spin IA of the target A to obtain the total angular momentum J. The corresponding scattering wave function , lajaJM()(k,  EQ \O(r,\S(r))), will be then derived by coupling the scattering wave function klam() with the projectile spin wave function m(sa). The resulting wave function, lajamj()(k, EQ \O(r,\S(r))) is coupled at its turn with the target spin wave function mA(IA):

klm() ma(sa)= EQ \I\su(ja,, )<lasamma|jamj=m+ma>lajamj ()(k, EQ \O(r,\S(r)))
                                    (8)

lajamj ()(k, EQ \O(r,\S(r)))mA  (IA)= EQ \I\su(J,, )<jaIAmjmA|JM>lajaJM()(k, EQ \O(r,\S(r)))

By using equation (5) and (6), the basis states for the scattering wave functions in the total angular momentum coupled scheme will be:  

klam0mamA()( EQ \O(r,\S(r)))=klam()ma(sa)mA(IA)= EQ \I\su(ja\,J,, )<lasam0ma|jamj><jaIAmjmA|JM>lajaJM()(k, EQ \O(r,\S(r)))           (9)

Now, the completeness relation in the coupled total angular momentum scheme can be derived as,

1= EQ \I\su(mamAlam0,, )|klam0mamA()( EQ \O(r,\S(r)))klam0mamA()( EQ \O(r,\S(r)))|+ EQ \I\su(b,, )|bb|

                                 (10)

= EQ \I\su((laja)JM,, )|lajaJM()(k, EQ \O(r,\S(r)))lajaJM()(k, EQ \O(r,\S(r)))|+ EQ \I\su(b,, )|bb|

Similar relations are also available in the exit channel:  


1= EQ \I\su(mbmBlbm,, )|klbmmbmB()( EQ \O(r,\S(r)))klbmmbmB()( EQ \O(r,\S(r)))|+ EQ \I\su(b,, )|bb|

                                (11)

= EQ \I\su((lbjb)JM,, )|lbjbJM()(k, EQ \O(r,\S(r)))lbjbJM()(k, EQ \O(r,\S(r)))|+ EQ \I\su(b,, )|bb|

3.  Transition Amplitude

The unitary operators (10)-(11), corresponding to both the reaction channels, will be applied consequently to the left and to the right side of  R operator in the transition amplitude relation (1): 


TmamAmbmB= EQ \F(2p,ka)

 EQ \I\su((laja)JM,, )     EQ \I\su((lbjb)J'M',, )< EQ \O(k,\S(r))a(-),(),ma,mA|lajaJM(-)(k, EQ \O(r,\S(r)))>
                               (12)

<lajaJM(-)|R|lbjbJ'M'(+)lbjbJ'M'(+)(k, EQ \O(r,\S(r)))|kb(+),(),mb,mB>
One has to remark that the bound states |b> do not appear more as they are orthogonal to scattering states 

| EQ \O(k,\S(r))a(),()>. Using the above definitions, the entrance channel wave function will become:  


| EQ \O(k,\S(r))a(-),(),ma,mA>= EQ \I\su(l=0,¥, )

 EQ \I\su(m0=-la,la, )Ylam0*(k,\S(r)) EQ \F(a,ka)
) EQ \I\su(j,, )<lasam0ma|jamjlaja mj (ka, EQ \O(r,\S(r))a)mA(IA)                    (13)

= EQ \I\su(la=0,¥, )  EQ \I\su(m0=-la,la, )    EQ \I\su(ja,, )

 EQ \I\su(J,, )Ylam0*(k,\S(r)) EQ \F(a,ka)
)<lasam0ma|jamj><jaIAmjmA|JM>lajaJM(ka, EQ \O(r,\S(r)))

The result of projection the entrance channel wave function on the basis state lajaJM(-)(k, EQ \O(r,\S(r))) will be: 

<
 EQ \O(k,\S(r))a(-),(),ma,mA|lajaJM(-)(k, EQ \O(r,\S(r)))> = EQ \I\su(la=0,¥, )  EQ \I\su(m0=-la,la, )    EQ \I\su(ja,, )

 EQ \I\su(J,, )Ylam0*(k,\S(r)) EQ \F(a,ka)
)(ka-k)                             (14)

<lasam0ma|jamj=m0+ma><jaIAmjmA|JM>
A similar result could be obtained for the exit channel.  Because, 


<lajaJM(-)|R|lbjbJ'M'(+)>=Rlaja,lbjbJ(,)JJ'MM'
                                                 (15)

a general expression of the transition amplitude for A(a,b)B reaction is obtained in the spin-orbit representation:  


TmamAmbmB= EQ \F(2p,ka)

 EQ \I\su(lajalbjbJ,, )<lasam0ma|jamja=m0+ma><jaIAmjamA|JM>
                                (16)

<
lbsbmmb|jbmjb=m+mb><jbIBmjbmB|JM>Ylam0*(k,\S(r)) EQ \F(a,ka)
)Ylbm*(k,\S(r)) EQ \F(b,kb)
)RlajalbjbJ(,)
This expression can be considerably simplified if the coordinate system is considered with Oz axis parallel with  EQ \O(k,\S(r))a, i.e.  (k,\S(r)) EQ \F(a,ka)
)=(0,0,0). From the properties of the spherical harmonic functions, 


Ylm(k,\S(r)) EQ \F(a,ka)
)=Yl0(0,0)m,0=m,0 EQ \R(,2l +1)(4)-1/2; Yl0*(0)=Yl0(0)
                                (17)

Equation (14) will become: 


< EQ \O(k,\S(r))a(-),(),ma,mA|lajaJM(-)(k, EQ \O(r,\S(r)))> = EQ \I\su(la=0,¥, )  EQ \I\su(ja,, )

 EQ \I\su(J,, )Yla0(0)(ka-k)<lasa0ma|jama><jaIAmamA|JM>       (18)

A similar procedure is used in the exit channel. Here, one can consider the coordinate system so that Oy axis is parallel with the direction of  EQ \O(k,\S(r))a EQ \O(k,\S(r))b vector, 


(k,\S(r)) EQ \F(b,kb)
)=(,,)(0,b,0)

The method consists in coupling the spherical function Y(k,\S(r)) EQ \F(b,kb)
) with the spin function m(sb) from the eq.  (4) written for the exit channel:  


Ylbm*(k,\S(r)) EQ \F(b,kb)
)mb(sb)= EQ \I\su(jb,, )<lbsbmmb|jbmj >lbjbmj(k,\S(r)) EQ \F(b,kb)
)

                               (19)

By rotating with b angle in the reaction plane, the Oz axis will be collinear with wave number vector  EQ \O(k,\S(r))b. To describe such a rotation, the scattering wave function lbjbmj(k,\S(r)) EQ \F(b,kb)
)lbjbmj(0,b,0) has to be written in terms related to the new rotated coordinate system, lbjbn(0):  


lbjbmj(0,b,0)= EQ \I\su(n,, )(Dnmj jb)*lbjbn(0)

                                    (20)

Using the properties of the rotational matrix [8], 


Dmm'j*(,,)=Dm'mj(-,-,-)

                                                   (21)

Dmjnjb(0,-b,0)=ei(mj+n)dmjnjb(-b)=dnmjjb(b)

the wave functions ljm can be written as 


lbjbmj(0,b,0)= EQ \I\su(n,, )dnmjjb(b)lbjbn(0)

                                          (22)

The wave function lbjbn(0) can be expanded after the spherical harmonic functions suitable for the rotated coordinate system, 


lbjbn(0)= EQ \I\su(m,, )<lbsbmmb|jbn>Ylbm*(0)mb(sb)=<lbsb0mb|jbmb>Yl0(0)mb(sb)mbn                  (23)

and then eq.  (20) will become 


lbjbmj(0,b,0)=<lbsb0mb|jbmb>dmbmjb(b)Ylb0(0)mb(sb)

                        (24)

Replacing lbjbmj(0,b,0) in equation (19), the exit channel wave function will be:  


|kb,(),mb,mB>= EQ \I\su(lb=0,¥, )  EQ \I\su(m=-lb,lb, )

 EQ \F(1,r)kblb(+)(rb)Ylbm(r,\S(r)) EQ \F(b,rb)
) EQ \I\su(jb,, )<lbsbmmb|jbmj><lbsb0mb|jbmb>                     (25)

dmb,mjjb(b)Ylb0(0)mb(sb)mB(IB)
The sum:  


 EQ \I\su(m,, )<lbsbmmb|jbmj >  EQ \F(1,r) kblb(+)(rb)Ylbm(rb,\S(r)) EQ \F(,rb)
)mb(sb)

                                 (26)

represents just the scattering wave functions (+)lbjbmj(kb; EQ \O(r,\S(r))b), which will be coupled with the spin wave function mB(IB) to obtain:  


|kb,(),mb,mB>= EQ \I\su(lb=0,¥, )  EQ \I\su(jb,, )

 EQ \I\su(JM,, )<lbsb0mb|jbmb><jbIBM-mBmB|JM>
                                  (27)

dmbM-mBjbYlb0(0)lbjbJM(kb, EQ \O(r,\S(r)))

This relation allows the evaluation of the projection of the exit channel wave function on the basis vector lbjbJM(kb, EQ \O(r,\S(r))b): 


<lbjbJM(+)(k, EQ \O(r,\S(r)))|kb(+),(),mb,mB> =

                                                      (28)

 EQ \I\su(lbjbJM,, )<lbsb0mb|jbmb><jbIBmbmB|JM>dmb,M-mB jb(b)Ylb0(0)

Finally, the transition amplitude will be :  


TmamA,mbmB= EQ \F(1,2ka)

 EQ \I\su(lalb,, )

 EQ \R(,(2la+1)(2lb+1))

 EQ \I\su(Jjajb,, )<lasa0ma|jama><jaIAmamA|JM>                         (29)

lbsb0mb|jbmb><jbIBM-mBmB|JM>Rlaja,lb,jbJ(,)dmb,M-mBjb(b)

This form of the transition amplitude is compatible under angular dependence with that used in a Direct Reactions Code, DWUCK [9].

4.  Collision Matrix

For a quasiresonant process consisting in a single channel resonance (n0,a=0 with a = all the open channels) preceded or followed by a direct interaction between the eliminated channel n and the others open channels, the collision matrix is derived as, [4] : 


Uab=Uab+2il,, ) EQ \F(iTanbiTnbbgln2,El-E+ReTnnbgln2-i(1-|Tlnb|gl2))


                                    (30)

Here U is the direct component of the collision matrix, Tab denote the background transition matrix given by U=1+2iT, E is the energy of the  resonant level and n2 is the reduced width for the  resonance desintegrated in the n channel.

Lane [10] has deduced in a phenomenological way a resonant term for the S element matrix modeling the p - wave threshold anomaly.  The neutron single particle resonance is coupled, by isospin interaction, to the observed isobar analog proton channel.  Accordingly, the S-matrix element of a (d,p) reaction, has an additional resonant term , originating in the neutron single particle resonance 


Sdp=Sdp+ EQ \I\su(j=1/2\,3/2,, )      EQ \F(aabj(h2/ma2),Ej-E-(S+iP-b)gn2-i/2G')

                                    (31)

The  parameters fix the strength of the coupling between proton and neutron channels.  The resonance energy positions (corresponding to boundary conditions b at channel radius a) are denoted by Ej. The shift Sl=1 and penetrability Pl=1 functions are calculated according R-matrix theory.  The reduced width and the total width of the p-wave neutron single particle resonance are n2 and ', respectively, and (2/a2) is the Wigner width.

It is straightforward to observe, looking in eqs.  (30) and (31) formulas, that the  parameters are connected with the direct transition matrix T and the neutron reduced width : 


abjTann2Tnb

                                                     (32)

For a p - wave single particle resonance the reaction matrix element used in (29) is, 


Rlaja,lbjbJ= EQ \I\su(jb=1/2\,3/2,, )      G',2) EQ \F(alaja;lb=1jb=1/2\,3/2(h2/ma2),Ej-E-(S1+iP1-b)gpn2-i)


                                      (33)

5.  Transition Amplitude in Transferred Angular Momentum Scheme

The transition amplitude in the representation of the transferred angular momentum, according with DWBA theory [1,3], is: 


T(bB),(aA)DW=Jba EQ \I\in(,, )d EQ \O(r,\S(r))a EQ \I\in(,, )d EQ \O(r,\S(r))bb(-)*( EQ \O(k,\S(r))b, EQ \O(r,\S(r))b)<B,b|W|A,a>a(+)( EQ \O(k,\S(r))a, EQ \O(r,\S(r))a)                          (34)

The integration is made over the nuclear distorted waves from the input (a(+)( EQ \O(k,\S(r))a, EQ \O(r,\S(r))a)) and output (b(-)( EQ \O(k,\S(r))b, EQ \O(r,\S(r))b)) channels and the internal nuclear matrix element I,


I( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)B,b|W|A,a>= EQ \I\in(,, )B*b*WAad

                             (35)

The nuclear residual potential is, W=V-U=V-U, where V() is the nuclear interaction and U() are optical potentials generating the  () distorted wave functions;  represent the internal coordinates independent from the position vectors  EQ \O(r,\S(r))a and  EQ \O(r,\S(r))b, Jba is the Jacobian of the transformation to the relative coordinates  EQ \O(r,\S(r))a and  EQ \O(r,\S(r))b.

In the transferred angular momentum scheme, the transferred spin  EQ \O(s,\S(r))= EQ \O(s,\S(r))a- EQ \O(s,\S(r))b couples the total transferred angular momentum  EQ \O(j,\S(r))= EQ \O(I,\S(r))B- EQ \O(I,\S(r))A to obtain the orbital momentum  EQ \O(l,\S(r))= EQ \O(j,\S(r))- EQ \O(s,\S(r)) of the transferred particle. Here IB,IA,sb and sa are the spins of the residual, target, ejectile and projectile particles.

The wave functions contained in the integral of equation (35) will be coupled accordingly with the above coupling scheme; B* and A are coupled in terms of the wave function IBIAj* as,


IBmB*(B)IAmA(A)= EQ \I\su(j,, )<IBIAmB,-mA|jmB-mA> (-)IA-mAIBIAjmj*(B,A)                             (36)

The wave function sbsas* is similarly obtained by coupling the wave functions b* and a. Finally, a transferred orbital angular momentum wave function is derived, 


IBIAjmj *(B,A)sbsasms*(b,a)= EQ \I\su(l,, )<sj-ma+mb,mB-mA|lm>lsjm*(,)                       (37)

The derivation of the transition amplitude is based on an analogue multipole expansion of the internal nuclear matrix, 


IIBmBsbmb;IAmAsama( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)= EQ \I\su(lsj,, )<sbsa-mb,ma|sma-mb><IBIAmB,-mA|jmB-mA>                         (38)

<sj-ma+mb,mB-mA|lm>(-)IA-mA+sa-ma Glsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)

The multipole expansion (38) is introduced in the equation of the transition amplitude (34). In assumption of spin orbit coupling for projectile and ejectile only, we get


TmBmbmAmaDW( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)=Jba EQ \I\su(j,, )<IBIAmB,-mA|jmB-mA> (-)IA-ma  EQ \I\su(s\,l,, )tlsjmmbma ( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)                       (39)

where the "reduced" amplitude tlsjmmbma  is defined by


tlsjmmbma ( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)= EQ \I\su(m'bm'am',, )<sbsa,-m'b,m'a|sm'a-m'b><sj,-m'a+m'b,mB-mA|lm'>                           (40)

(-)sa–ma 'Xlsjm'( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)

The integrals Xlsjm' contain both the distorted wave functions in input and exit channel as well as the Glsjm' multipole component of the nuclear matrix, 


Xlsjm'( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)= EQ \I\in(,, )d EQ \O(r,\S(r))b EQ \I\in(,, )d EQ \O(r,\S(r))am'bmb(-)*( EQ \O(k,\S(r))b, EQ \O(r,\S(r))b)Glsjm'( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)m'ama(+)( EQ \O(k,\S(r))a, EQ \O(r,\S(r))a)                            (41)

The next step which follows in the evaluation of the direct amplitude transition consists in a partial wave expansion of the distorted waves in input and output channels: 


m'xmx(+)( EQ \O(k,\S(r))x, EQ \O(r,\S(r))x)=(4/kxrx) EQ \I\su(jxlxl'xMx,, )<lxsxMxmx|jxmj><l'xsxMx+mx-m'x|jxmj>ilx'lxl'xjx(kx,rx)                   (42)

Ylx Mx*(kx ,kx )Yl'xMx+mx-m'x(rx ,rx)

where mjx =Mx+mx, (x,x) are the polar angles of the vectors  EQ \O(k,\S(r))x, EQ \O(r,\S(r))x and xa,b. 

The radial wave functions ll'j(k,r) are solutions of the coupled radial equations ( ll'): 


[d2/dr2+k2-l'(l'+1)/r2-(2/2)<l'j|U|l'j>ll'j(k,r)

                                              (43)

= EQ \I\su(l"¹l’,, )(2/2)<l’j|U|l"j>l"lj(k,r)

When the nature of the interaction U does not allow l'l, the right sight of equation (43) vanishes and the equations are no longer coupled. The solutions lj cancel in the origin, lj(0)=0, and they have an asymptotic behaviour as 


lj(k,r)=1/2i[Hl*(kr)-ljHl(kr)]exp(il)

                                (44)

where Hl=Gl+iFl is the outgoing-wave Coulomb function, and lj is the reflection coefficient for the (l,j) wave.

It is often helpful to write the multipole expansion functions G as the product of two factors, a spectroscopic coefficient Alsj and a form factor flsjm:  


Glsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)=Alsjflsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)

                                            (45)

The form factor flsjm can also be derived in terms of the harmonic spherical functions and a corresponding radial component, 


flsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)= EQ \I\su(l1\,l2\,M,, )flsjl1l2 (rb,ra)Yl1 M*(b,b)Yl2 m-M*(a,a)<l1l2Mm-M|lm>           (46)

Replacing equations (42) and (45) in equation (40) and integrating on the polar angles  EQ \O(r,\S($))a ,  EQ \O(r,\S($))b, we get the radial component of the form factor flsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a),


 EQ \I\in(,, )d EQ \O(r,\S($))a EQ \I\in(,, )d EQ \O(r,\S($))b[ilb YlbMb ( EQ \O(r,\S($))b)]flsjm( EQ \O(r,\S(r))b, EQ \O(r,\S(r))a)[ ila YlaMa ( EQ \O(r,\S($))a)]=<lblaMbMa|lm>f lblalsj(rb,ra)                    (47)

If we define the radial integrals as, 


Xlsjlb'lbjb,l'ala ja = EQ \F(4p,kbka)

 EQ \I\in(,, )radra EQ \I\in(,, )rbdrbl'blbjb(kb,rb)flsjlb 'la'l'alaja(ka,ra)                                    (48)

the reduced transition amplitude in "finite range" approximation will become: 


tlsjmmbma( EQ \O(k,\S(r))b, EQ \O(k,\S(r))a)= EQ \I\su(,, )(-)2ja +jb-mb-Ma+m(2j+1)- EQ \F(1,2) EQ \R(,(2s+1)(2jb+1)(2ja+1)(2l+1)2)                       (49)

<lasaMama|ja,ma+Ma><lbsbMa-m,mb|jb,Ma-m+mb>
4Alsj<jbja,-Ma+m-mb,ma+Ma|jm+ma-mb>
0EQ \b ()
0
YlbMa-m(b,b)YlaMa*(a,a)Xlsjlb'lb jb ,la'la ja
summed over la,l'a,Ma,ja,lb,l'b and jb.

Considering now a coordinate system with Oz axis parallel with  EQ \O(k,\S(r))a, and Oy axis parallel with vector  EQ \O(k,\S(r))a EQ \O(k,\S(r))

 EQ\O(k,\S(r))b. By rotating with b angle in the reaction plane and using the "zero-range" approximation, ones can demonstrate the following relation for the transition amplitude, [9]


TmBmbmAmaDW= EQ \F(4p,kakb)

 EQ \I\su(lsj,, )

 EQ \R(,2l+1)Alsj<IAjmAmB-mA|IbmB> EQ \I\su(jalajblb,, )<lasa0ma|jama>                       (50)

ila-lb-l<lbsb0mb|jbmb><jbjma-m,m|jama><lbl00|la0>(2lb+1)

0 EQ \R(,(2sa+1)(2j+1)(2jb+1)(2la+1))

EQ \b ()
0

 EQ \F(B,A)
Xlsjlbjb,la jadmb,ma-mjb(b)

where the radial integrals are,


Xlsjlb jb,la ja =  EQ \F(A,B)

 EQ \I\in(,, )dralbjb(kb, EQ \F(A,B)ra)flsj(ra)laja(ka,ra)

                                (51)

A, B are the masses of the target and residual nuclei.

6.  The Total Transition Amplitude

The two amplitudes should be added in order to obtain the total transition amplitude


T=T+T

                                                              (52)

The index  does signify background and in our work it is described by DWBA, (DWBA). Observe that in the case of zero spin target nucleus(IA=0,J=ja,M=ma) the terms from both transition amplitudes (namely eqs.  (29) and (50)), dependent on magnetic quantum numbers only, are identical in the two angular momentum schemes; these terms are in fact the following product

<
lasa0ma|jama><lbsb0mb|jbmb><jbjma-mm|jama>dmb,ma-mjb (b)                               (53)

This suggests that instead to sum T and T, we can sum, up to factors, just the quasiresonant quantities Rlaja,lbjb with the DWBA one, [11], [12], [13],


0EQ \b ()
0
Xlsjlb jb,la ja 
                                                                        (54)

We can further simplify the procedure by defining new quantities ', by the relations


laja,lbjb0EQ \b ()
0
 Xlsjlb jb,la jalaja,lbjb'                                                             (55)

Now the quasiresonant transition amplitude can be simply incorporated in radial integrals for lb=1,jb=1/2,jb=3/2


Xlsjlb jb,la ja (1+ EQ \F(alaja\,lbjb',Ej-E-(S1+iP1-b)gpn2-iG'/2))

                                       (56)

This procedure is very simple from computational point of view, but we have to stress that the total angular momentum scheme (used in construction of quasiresonant term) was here forced to coincide with transferred angular momentum scheme.  The angular momenta in quasiresonant term, are in this procedure, subject of restrictions imposed by 9-j symbol.  But in fact the transitions from initial channel (laja) to the final channel (lbjb) are not identical in the two angular momentum schemes [1].

Satchler has studied [3] the connection between a direct and a compound-nucleus reactions through the two different representation schemes; a relationship has been derived between the collision matrix and the radial integrals in the total angular momentum representation and angular transfer scheme,

Ujblb,jalaJ=(abkakb)1/2(2)-1exp-i(0a+0b) EQ \O(j,\S($))a EQ \O(j,\S($))bÎB(-)IB+jb-J EQ \I\su(lsj,, )il-la-lb-1 EQ \O(j,\S($))

 EQ \O(l,\S($))

 EQ \O(s,\S($))Alsj                               (57)

Xlsjlb jb,la jaW(jajbIAIB;jJ)0EQ \b ()
0

where  EQ \O(x,\S($))= EQ \R(,2x+1) and W(jajbIAIB;jJ) are Racah coefficients. From this expression one can see that the transitions (la,ja)-(lb,jb) via total angular momentum J in the collision matrix are restricted by the presence of Wigner 9-j term, which cancels the contributions that are not satisfying the transferred angular momentum coupling.

For example in the reaction 88Sr(d,p)89Sr(5/2+) the transition (5,4)(1,3/2) appears in total angular momentum scheme but is absent in transferred angular momentum scheme. Similarly, in the reaction 30Si(d,p)31Si*(1/2+) the transition (3,2)(1,3/2) from total angular momentum scheme does not appear in transferred angular momentum scheme.

This shortcoming can be avoided in the following procedure; the quasiresonant term Rlaja,lbjb is added not to radial integrals, but rather to the product,


(2lb+1) EQ \R(,(2sa+1)(2j+1)(2jb+1)(2la+1))<lbl00|la0>0EQ \b ()
0
 Xlsjlb jb,la ja                              (58)

Now the angular momenta in the quasiresonant term of the transition amplitude are no more subjects to restrictions from 9-j symbol.  All the transitions allowed in total angular momentum scheme are taken properly into account.

7.  Conclusions

In this work the transition amplitude element was derived in the total angular momentum coupling scheme using specific properties of the scattering wave functions.  The obtained relation is very similar with the well-known expression of the transition amplitude for a direct process with a zero-spin target nucleus. This suggests a straightway procedure to compute the transition amplitude for a quasiresonant reaction using a DWBA computer code, DWUCK. The numerical results for a comprehensive study of the 3-p threshold effects will be presented in a forthcoming work.
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